1
|
Ryckman M, Gantois N, Dominguez RG, Desramaut J, Li LL, Even G, Audebert C, Devos DP, Chabé M, Certad G, Monchy S, Viscogliosi E. Molecular Identification and Subtype Analysis of Blastocystis sp. Isolates from Wild Mussels ( Mytilus edulis) in Northern France. Microorganisms 2024; 12:710. [PMID: 38674653 PMCID: PMC11051716 DOI: 10.3390/microorganisms12040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Blastocystis sp. is the most common single-celled eukaryote colonizing the human gastrointestinal tract worldwide. Because of the proven zoonotic potential of this protozoan, sustained research is therefore focused on identifying various reservoirs of transmission to humans, and in particular animal sources. Numerous groups of animals are considered to be such reservoirs due to their handling or consumption. However, some of them, including mollusks, remain underexplored. Therefore, a molecular epidemiological survey conducted in wild mussels was carried out in Northern France (Hauts-de-France region) to evaluate the frequency and subtypes (STs) distribution of Blastocystis sp. in these bivalve mollusks. For this purpose, 100 mussels (Mytilus edulis) were randomly collected in two sampling sites (Wimereux and Dannes) located in the vicinity of Boulogne-sur-Mer. The gills and gastrointestinal tract of each mussel were screened for the presence of Blastocystis sp. by real-time polymerase chain reaction (qPCR) assay followed by direct sequencing of positive PCR products and subtyping through phylogenetic analysis. In parallel, sequences of potential representative Blastocystis sp. isolates that were previously obtained from temporal surveys of seawater samples at marine stations offshore of Wimereux were integrated in the present analysis. By taking into account the qPCR results from all mussels, the overall prevalence of the parasite was shown to reach 62.0%. In total, more than 55% of the positive samples presented mixed infections. In the remaining mussel samples with a single sequence, various STs including ST3, ST7, ST14, ST23, ST26 and ST44 were reported with varying frequencies. Such distribution of STs coupled with the absence of a predominant ST specific to these bivalves strongly suggested that mussels might not be natural hosts of Blastocystis sp. and might rather be carriers of parasite isolates from both human and animal (bovid and birds) waste. These data from mussels together with the molecular identification of isolates from marine stations were subsequently discussed along with the local geographical context in order to clarify the circulation of this protozoan in this area. The identification of human and animal STs of Blastocystis sp. in mussels emphasized the active circulation of this protozoan in mollusks and suggested a significant environmental contamination of fecal origin. This study has provided new insights into the host/carrier range and transmission of Blastocystis sp. and emphasized its potential as an effective sentinel species for water quality and environmental contamination.
Collapse
Affiliation(s)
- Manon Ryckman
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Ruben Garcia Dominguez
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Jeremy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Luen-Luen Li
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Gaël Even
- GD Biotech—Gènes Diffusion, F-59000 Lille, France; (G.E.); (C.A.)
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Christophe Audebert
- GD Biotech—Gènes Diffusion, F-59000 Lille, France; (G.E.); (C.A.)
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Damien Paul Devos
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Sébastien Monchy
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| |
Collapse
|
2
|
Suarez P, Vallejos-Almirall A, Fernández I, Gonzalez-Chavarria I, Alonso J, Vidal G. Identification of Cryptosporidium parvum and Blastocystis hominis subtype ST3 in Cholga mussel and treated sewage: Preliminary evidence of fecal contamination in harvesting area. Food Waterborne Parasitol 2024; 34:e00214. [PMID: 38188968 PMCID: PMC10770711 DOI: 10.1016/j.fawpar.2023.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidium parvum and Blastocystis hominis are foodborne parasites known for causing diarrhea. They accumulate in mussels grown on contaminated water bodies, due to the discharge of treated sewage from sewage treatment plants (STP). Despite this, some countries like Chile do not include these parasites in the control or monitoring of sewage water. The objective of this research was to evaluate the contamination of C. parvum. and B. hominis from treated sewage (disinfected by chlorination) and Cholga mussels in a touristic rural cove from the bay of Concepción. Cholga mussels from commercial stores and a treated sewage sample were analyzed. Cryptosporidium spp. was identified by Ziehl-Neelsen-Staining (ZNS) and C. parvum by direct-immunofluorescence assay (IFA) from ZNS-positive samples. Blastocystis hominis was identified by PCR using locus SSU rDNA. C. parvum and B. hominis subtype ST3 were found in 40% and 45% of Cholga mussel samples, respectively, and both parasites were identified in the treated sewage. Blastocystis hominis SSU rDNA gene alignment from Cholga mussels and treated sewage showed 89% of similarity, indicating that could be the same parasite in both samples. We describe the first evidence of possible contamination with these parasites from treated sewage to Cholga mussel suggesting an environmental contamination with high human risk. Based on these results, further studies will consider all the rural coves and STP from the bay to prevent possible contamination of these parasites.
Collapse
Affiliation(s)
- P. Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A. Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - I. Fernández
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - I. Gonzalez-Chavarria
- Laboratorio de Lipoproteínas y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J.L. Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, Spain
| | - G. Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
| |
Collapse
|
3
|
Costantini F, Lovecchio N, Nandimandalam M, Manglli A, Faggioli F, Biasin M, Manetti C, Roversi PF, Nascetti A, de Cesare G, Caputo D. Biomolecular Monitoring Tool Based on Lab-on-Chip for Virus Detection. BIOSENSORS 2023; 13:544. [PMID: 37232905 PMCID: PMC10216243 DOI: 10.3390/bios13050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications.
Collapse
Affiliation(s)
- Francesca Costantini
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | - Nicola Lovecchio
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| | - Manasa Nandimandalam
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | - Ariana Manglli
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Francesco Faggioli
- CREA Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | | | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, 00138 Rome, Italy
| | - Giampiero de Cesare
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| | - Domenico Caputo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (N.L.)
| |
Collapse
|
4
|
Merks H, Boone R, Janecko N, Viswanathan M, Dixon BR. Foodborne protozoan parasites in fresh mussels and oysters purchased at retail in Canada. Int J Food Microbiol 2023; 399:110248. [PMID: 37210953 DOI: 10.1016/j.ijfoodmicro.2023.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Studies worldwide have reported the presence of protozoan parasites in a variety of commercial bivalve shellfish. The uptake of these parasites by shellfish occurs during filter feeding in faecally-contaminated waters. The objective of the present study was to determine the prevalence of Giardia, Cryptosporidium and Toxoplasma in fresh, live shellfish purchased in three Canadian provinces as part of the retail surveillance activities led by FoodNet Canada (Public Health Agency of Canada). Packages containing mussels (n = 253) or oysters (n = 130) were purchased at grocery stores in FoodNet Canada sentinel sites on a biweekly basis throughout 2018 and 2019, and shipped in coolers to Health Canada for testing. A small number of packages were not tested due to insufficient quantity or poor quality. Following DNA extraction from homogenized, pooled tissues, nested PCR and DNA sequencing were used to detect parasite-specific sequences. Epifluorescence microscopy was used to confirm the presence of intact cysts and oocysts in sequence-confirmed PCR-positive samples. Giardia duodenalis DNA was present in 2.4 % of 247 packages of mussels and 4.0 % of 125 packages of oysters, while Cryptosporidium parvum DNA was present in 5.3 % of 247 packages of mussels and 7.2 % of 125 packages of oysters. Toxoplasma gondii DNA was only found in mussels in 2018 (1.6 % of 249 packages). Parasite DNA was detected in shellfish purchased in all three Canadian provinces sampled, and there was no apparent seasonal variation in prevalence. While the present study did not test for viability, parasites are known to survive for long periods in the marine environment, and these findings suggest that there is a risk of infection, especially when shellfish are consumed raw.
Collapse
Affiliation(s)
- Harriet Merks
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Ryan Boone
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Mythri Viswanathan
- Food-borne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, 370 Speedvale Avenue West, Suite #201, Guelph, Ontario N1H 7M7, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
5
|
Carbonara M, Mendonza-Roldan JA, Perles L, Alfaro-Alarcon A, Romero LM, Murillo DB, Piche-Ovares M, Corrales-Aguilar E, Iatta R, Walochnik J, Santoro M, Otranto D. Parasitic fauna of bats from Costa Rica. Int J Parasitol Parasites Wildl 2022; 20:63-72. [PMID: 36655207 PMCID: PMC9841367 DOI: 10.1016/j.ijppaw.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Bats are important reservoirs and spreaders of pathogens, including those of zoonotic concern. Though Costa Rica hosts one of the highest bat species' diversity, no information is available about their parasites. In order to investigate the occurrence of vector-borne pathogens (VBPs) and gastrointestinal (GI) parasites of chiropterans from this neotropical area, ectoparasites (n = 231) and stools (n = 64) were collected from 113 bats sampled in Santa Cruz (site 1) and Talamanca (site 2). Mites, fleas and ticks were morphologically and molecularly identified, as well as pathogens transmitted by vectors (VBPs, i.e., Borrelia spp., Rickettsia spp., Bartonella spp.) and from feces, such as Giardia spp., Cryptosporidium spp. and Eimeria spp. were molecularly investigated. Overall, 21 bat species belonging to 15 genera and 5 families were identified of which 42.5% were infested by ectoparasites, with a higher percentage of mites (38.9%, i.e., Cameronieta sp. and Mitonyssoides sp.) followed by flies (2.6%, i.e., Joblingia sp.) and tick larvae (1.7%, i.e., Ornithodoros sp.). Rickettsia spp. was identified in one immature tick and phylogenetically clustered with two Rickettsia species of the Spotted Fever Group (i.e., R. massiliae and R. rhipicephali). The frequency of GI parasite infection was 14%, being 3.1% of bats infected by Giardia spp. (un-identified non-duodenalis species), 1.5% by Eimeria spp. and 9.4% by Cryptosporidium spp. (bat and rodent genotypes; one C. parvum-related human genotype). The wide range of ectoparasites collected coupled with the detection of Rickettsia sp., Giardia and Cryptosporidium in bats from Costa Rica highlight the role these mammals may play as spreaders of pathogens and the need to further investigate the pathogenic potential of these parasites.
Collapse
Affiliation(s)
| | | | - Lívia Perles
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Daniel Barrantes Murillo
- Pathology Department, National University, Heredia, Costa Rica,Department of Pathobiology, College of Veterinary Medicine, Alabama, USA
| | - Marta Piche-Ovares
- Research Center for Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica,Department of Virology, School of Veterinary Medicine, National University, Heredia, Costa Rica
| | | | - Roberta Iatta
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, University of Vienna, Vienna, Austria
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy,Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran,Corresponding author. Department of Veterinary Medicine, University of Bari, Valenzano, 70010, Bari, Italy.
| |
Collapse
|
6
|
Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods 2022; 11:foods11162542. [PMID: 36010541 PMCID: PMC9407268 DOI: 10.3390/foods11162542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, with approximately one third of the population around the world seropositive. The consumption of contaminated food is the main source of infection. These include meat products with T. gondii tissue cysts, and dairy products with tachyzoites. Recently, contamination has been detected in fresh products with oocysts and marine products. Despite the great health problems that are caused by T. gondii, currently there are no standardized methods for its detection in the food industry. In this review, we analyze the current detection methods, the prevalence of T. gondii in different food products, and the control measures. The main detection methods are bioassays, cell culture, molecular and microscopic techniques, and serological methods, but some of these do not have applicability in the food industry. As a result, emerging techniques are being developed that are aimed at the detection of multiple parasites simultaneously that would make their application more efficient in the industry. Since the prevalence of this parasite is high in many products (meat and milk, marine products, and vegetables), it is necessary to standardize detection methods, as well as implement control measures.
Collapse
|
7
|
Marangi M, Lago N, Mancinelli G, Lillo Antonio O, Scirocco T, Sinigaglia M, Specchiulli A, Cilenti L. Occurrence of the protozoan parasites Toxoplasma gondii and Cyclospora cayetanensis in the invasive Atlantic blue crab Callinectes sapidus from the Lesina Lagoon (SE Italy). MARINE POLLUTION BULLETIN 2022; 176:113428. [PMID: 35150989 DOI: 10.1016/j.marpolbul.2022.113428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of the protozoan parasites Toxoplasma gondii and Cyclospora cayetanensis was molecularly investigated in the hemolymph, gills, stomach, hepatopancreas and gonads of the eleven invasive Atlantic blue crab Callinectes sapidus from the Lesina Lagoon (Mediterranean Sea). Out of 11 blue crabs, 6 (54.5%) and 4 (36.4%) were found positive to T. gondii and C. cayetanenis, respectively; parasites were found only in the six females analysed, while the remaining five males resulted negative. Moreover, out of 55 tissues samples, 7 (12.7%) and 8 (14.5%) were positive to T. gondii and C. cayetanensis, respectively with hemolymph and gills being the most infected tissues. This is the first report of the presence of protozoan pathogens in wild crab species collected from a Mediterranean lagoon. The present results may provide a baseline reference on microbial infection in the species for invaded Mediterranean waters, and on the potential health risks related with its consumption if eaten raw.
Collapse
Affiliation(s)
- Marianna Marangi
- Department of Science of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy.
| | - Nicola Lago
- CNR-IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, 71010 Lesina, Foggia, Italy
| | - Giorgio Mancinelli
- CNR-IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, 71010 Lesina, Foggia, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Roma, Italy
| | - Oscar Lillo Antonio
- CNR-IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, 71010 Lesina, Foggia, Italy
| | - Tommaso Scirocco
- CNR-IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, 71010 Lesina, Foggia, Italy
| | - Milena Sinigaglia
- Department of Science of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Antonietta Specchiulli
- CNR-IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, 71010 Lesina, Foggia, Italy
| | - Lucrezia Cilenti
- CNR-IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, 71010 Lesina, Foggia, Italy
| |
Collapse
|
8
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|