1
|
Sandhu G, Khan A, Trivedi PK. Transport channels enabling uptake, translocation and detoxification of arsenic in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109994. [PMID: 40408928 DOI: 10.1016/j.plaphy.2025.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025]
Abstract
Arsenic (As), a toxic metalloid and global environmental contaminant, poses serious threats to living organisms through groundwater and dietary exposure. Both acute and chronic exposures of As result in severe physiological and biochemical disturbances in organisms. In plants, As uptake occurs through transporters for essential metal ions, which often lack selectivity due to structural similarities between As species and essential ions. Nodulin 26-like intrinsic proteins (NIPs) facilitate the transport of As(III), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA), while phosphate transporters (PHTs) mediate As(V) uptake due to its similarity to phosphate. Internalized As is detoxified through sulfur (S)-rich molecules like glutathione (GSH) and phytochelatins (PCs), forming thiol-As complexes. These complexes are either transported to shoots for sequestration or stored in vacuoles, reducing toxicity. Detoxification relies on sulfate transporters (SULTRs) for S uptake and ATP-binding cassette (ABCC) transporters for vacuolar sequestration of thiol-As complexes. Understanding these molecular mechanisms is crucial for mitigating As toxicity. This review outlines the roles of transporters and their regulation controlling As detoxification. These transporters are promising targets for genome-editing and molecular breeding to develop crops with reduced As levels in edible tissues, addressing food safety and environmental remediation.
Collapse
Affiliation(s)
- Gurpreet Sandhu
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India
| | - Aruba Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India.
| |
Collapse
|
2
|
Pilli K, Patra PK, Pal S, Dash B, M J, Acharjee PU, Vinayak R. Efficacy of yellow gypsum application on mitigating arsenic bioavailability in groundnut and Boro-rice grown under arsenic contaminated soil. Heliyon 2024; 10:e26530. [PMID: 38434320 PMCID: PMC10907670 DOI: 10.1016/j.heliyon.2024.e26530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Agricultural soils naturally enriched with Arsenic (As) represent a significant global human health risk. In the present investigation, a series of pot experiments were conducted to study the efficacy of three levels of Yellow Gypsum (YG) application on bioavailability of As to kharif groundnut followed by boro-rice grown under 17 different levels of soil As contamination for two consecutive years. The results revealed that application of YG @ 60 kg ha-1 effectuated the lowest soil As content and the highest percent decline in soil extractable As at pegging (9.42 mg kg-1 and 9.81%) and harvesting (8.81 mg kg-1 and 11.85%) in groundnut, maximum tillering (7.52 mg kg-1 and 16.95%) and harvesting (6.77 mg kg-1 and 19.85%) in boro-rice respectively. It was also observed that irrespective of its level, the extractable As content of soil decreased significantly (P < 0.05) with increasing dosage of YG. Increase in YG dose effectuated a significant (P < 0.05) increasing trend and increase in As content in soil indicated a decreasing trend of Ca:As, Fe:As and S:As ratios which pointed out the potentiality of YG for reducing As bio-availability in contaminated soils and thus could be a good option for mitigating the risk of As contamination in food chain.
Collapse
Affiliation(s)
- Kiran Pilli
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Prasanta Kumar Patra
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Subhajit Pal
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Bishnuprasad Dash
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Jaison M
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Pravat Utpal Acharjee
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| | - Rudra Vinayak
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
3
|
Pandey AK, Zorić L, Sun T, Karanović D, Fang P, Borišev M, Wu X, Luković J, Xu P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant-Rhizosphere Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2554. [PMID: 36235420 PMCID: PMC9572132 DOI: 10.3390/plants11192554] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization, urbanization, and mine tailings runoff are the main sources of heavy metal contamination of agricultural land, which has become one of the major constraints to crop growth and productivity. Finding appropriate solutions to protect plants and agricultural land from heavy metal pollution/harmful effects is important for sustainable development. Phytoremediation and plant growth-promoting rhizobacteria (PGPR) are promising methods for this purpose, which both heavily rely on an appropriate understanding of the anatomical structure of plants. Specialized anatomical features, such as those of epidermis and endodermis and changes in the root vascular tissue, are often associated with heavy metal tolerance in legumes. This review emphasizes the uptake and transport of heavy metals by legume plants that can be used to enhance soil detoxification by phytoremediation processes. Moreover, the review also focuses on the role of rhizospheric organisms in the facilitation of heavy metal uptake, the various mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera involved in these processes. The information presented here can be exploited for improving the growth and productivity of legume plants in metal-prone soils.
Collapse
Affiliation(s)
- Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lana Zorić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Dunja Karanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Xinyang Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Jadranka Luković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
4
|
Mondal S, Pramanik K, Ghosh SK, Pal P, Ghosh PK, Ghosh A, Maiti TK. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: a critical review. PLANTA 2022; 255:87. [PMID: 35303194 DOI: 10.1007/s00425-022-03869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A critical investigation into arsenic uptake and transportation, its phytotoxic effects, and defense strategies including complex signaling cascades and regulatory networks in plants. The metalloid arsenic (As) is a leading pollutant of soil and water. It easily finds its way into the food chain through plants, more precisely crops, a common diet source for humans resulting in serious health risks. Prolonged As exposure causes detrimental effects in plants and is diaphanously observed through numerous physiological, biochemical, and molecular attributes. Different inorganic and organic As species enter into the plant system via a variety of transporters e.g., phosphate transporters, aquaporins, etc. Therefore, plants tend to accumulate elevated levels of As which leads to severe phytotoxic damages including anomalies in biomolecules like protein, lipid, and DNA. To combat this, plants employ quite a few mitigation strategies such as efficient As efflux from the cell, iron plaque formation, regulation of As transporters, and intracellular chelation with an array of thiol-rich molecules such as phytochelatin, glutathione, and metallothionein followed by vacuolar compartmentalization of As through various vacuolar transporters. Moreover, the antioxidant machinery is also implicated to nullify the perilous outcomes of the metalloid. The stress ascribed by the metalloid also marks the commencement of multiple signaling cascades. This whole complicated system is indeed controlled by several transcription factors and microRNAs. This review aims to understand, in general, the plant-soil-arsenic interaction, effects of As in plants, As uptake mechanisms and its dynamics, and multifarious As detoxification mechanisms in plants. A major portion of this article is also devoted to understanding and deciphering the nexus between As stress-responsive mechanisms and its underlying complex interconnected regulatory networks.
Collapse
Affiliation(s)
- Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Birbhum, Santiniketan, West Bengal, 731235, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Pallab Kumar Ghosh
- Directorate of Open and Distance Learning, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
5
|
Peralta JM, Bianucci E, Romero-Puertas MC, Furlan A, Castro S, Travaglia C. Targeting redox metabolism of the maize-Azospirillum brasilense interaction exposed to arsenic-affected groundwater. PHYSIOLOGIA PLANTARUM 2021; 173:1189-1206. [PMID: 34331344 DOI: 10.1111/ppl.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arsenic in groundwater constitutes an agronomic problem due to its potential accumulation in the food chain. Among the agro-sustainable tools to reduce metal(oid)s toxicity, the use of plant growth-promoting bacteria (PGPB) becomes important. For that, and based on previous results in which significant differences of As translocation were observed when inoculating maize plants with Az39 or CD Azospirillum strains, we decided to decipher the redox metabolism changes and the antioxidant system response of maize plants inoculated when exposed to a realistic arsenate (AsV ) dose. Results showed that AsV caused morphological changes in the root exodermis. Photosynthetic pigments decreased only in CD inoculated plants, while oxidative stress evidence was detected throughout the plant, regardless of the assayed strain. The antioxidant response was strain-differential since only CD inoculated plants showed an increase in superoxide dismutase, glutathione S-transferase (GST), and glutathione reductase (GR) activities while other enzymes showed the same behavior irrespective of the inoculated strain. Gene expression assays reported that only GST23 transcript level was upregulated by arsenate, regardless of the inoculated strain. AsV diminished the glutathione (GSH) content of roots inoculated with the Az39 strain, and CD inoculated plants showed a decrease of oxidized GSH (GSSG) levels. We suggest a model in which the antioxidant response of the maize-diazotrophs system is modulated by the strain and that GSH plays a central role acting mainly as a substrate for GST. These findings generate knowledge for a suitable PGPB selection, and its scaling to an effective bioinoculant formulation for maize crops exposed to adverse environmental conditions.
Collapse
Affiliation(s)
- Juan Manuel Peralta
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ana Furlan
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Claudia Travaglia
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK. Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: A review. Microbiol Res 2021; 250:126809. [PMID: 34166969 DOI: 10.1016/j.micres.2021.126809] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The toxic metalloid arsenic (As), is a major pollutant of soil and water, imposing severe health concerns on human lives. It enters the food chain mainly through As-contaminated crops. The uptake, translocation and accumulation of As in plant tissue are often controlled by certain soil-inhabiting microbial communities. Among them, indigenous, free-living As-resistant plant growth-promoting rhizobacteria (PGPR) plays a pivotal role in As-immobilization. Besides, the plant's inability to withstand As after a threshold level is actively managed by these PGPR increasing As-tolerance in host plants by a synergistic plant-microbe interaction. The dual functionality of As-resistant PGPR i.e., phytostimulation and minimization of As-induced phytotoxic damages are one of the main focal points of this review article. It is known that such PGPR having the functional arsenic-resistant genes (in ars operon) including As-transporters, As-transforming genes contributed to the As accumulation and detoxification/transformation respectively. Apart from assisting in nutrient acquisition and modulating phytohormone levels, As-resistant PGPR also influences the antioxidative defense system in plants by maneuvering multiple enzymatic and non-enzymatic antioxidants. Furthermore, they are effective in reducing membrane damage and electrolyte leakage in plant cells. As-induced photosynthetic damage is also found to be salvaged by As-resistant PGPR. Briefly, the eco-physiological, biochemical and molecular mechanisms of As-resistant PGPR are thus elaborated here with regard to the As-exposed crops.
Collapse
Affiliation(s)
- Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| |
Collapse
|
7
|
Peralta JM, Travaglia CN, Romero-Puertas MC, Furlan A, Castro S, Bianucci E. Unraveling the impact of arsenic on the redox response of peanut plants inoculated with two different Bradyrhizobium sp. strains. CHEMOSPHERE 2020; 259:127410. [PMID: 32615455 DOI: 10.1016/j.chemosphere.2020.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) can be present naturally in groundwater from peanut fields, constituting a serious problem, as roots can accumulate and mobilize the metalloid to their edible parts. Understanding the redox changes in the legume exposed to As may help to detect potential risks to human health and recognize tolerance mechanisms. Thirty-days old peanut plants inoculated with Bradyrhizobium sp. strains (SEMIA6144 or C-145) were exposed to a realistic arsenate concentration, in order to unravel the redox response and characterize the oxidative stress indexes. Thus, root anatomy, reactive oxygen species detection by fluorescence microscopy and, ROS histochemical staining along with the NADPH oxidase activity were analyzed. Besides, photosynthetic pigments and damage to lipids and proteins were determined as oxidative stress indicators. Results showed that at 3 μM AsV, the cross-section areas of peanut roots were augmented; NADPH oxidase activity was significantly increased and O2˙¯and H2O2 accumulated in leaves and roots. Likewise, an increase in the lipid peroxidation and protein carbonyls was also observed throughout the plant regardless the inoculated strain, while chlorophylls and carotenes were increased only in those inoculated with Bradyrhizobium sp. C-145. Interestingly, the oxidative burst, mainly induced by the NADPH oxidase activity, and the consequent oxidative stress was strain-dependent and organ-differential. Additionally, As modifies the root anatomy, acting as a possibly first defense mechanism against the metalloid entry. All these findings allowed us to conclude that the redox response of peanut is conditioned by the rhizobial strain, which contributes to the importance of effectively formulating bioinoculants for this crop.
Collapse
Affiliation(s)
- Juan Manuel Peralta
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina; Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008, Granada, Spain
| | - Claudia N Travaglia
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008, Granada, Spain
| | - Ana Furlan
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
8
|
Seraj MF, Rahman T, Lawrie AC, Reichman SM. Assessing the Plant Growth Promoting and Arsenic Tolerance Potential of Bradyrhizobium japonicum CB1809. ENVIRONMENTAL MANAGEMENT 2020; 66:930-939. [PMID: 32918111 DOI: 10.1007/s00267-020-01351-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Accumulation of heavy metals in soil is of concern to the agricultural production sector, because of the potential threat to food quality and quantity. Inoculation with plant growth-promoting bacteria (PGPR) has previously been shown to alleviate heavy metal stress but the mechanisms are unclear. Potential mechanisms by which inoculation with Bradyrhizobium japonicum CB1809 affected the legume soybean (Glycine max cv. Zeus) and the non-legume sunflower (Helianthus annus cv. Hyoleic 41) were investigated in solution culture under 5 μM As stress. Adding As resulted in As tissue concentrations of up to 5 mg kg-1 (shoots) and 250 mg kg-1 (roots) in both species but did not reduce shoot or root biomass. Inoculation increased root biomass but only in the legume (soybean) and only with As. Inoculation resulted in large (up to 100%) increases in siderophore concentration but relatively small changes (±10-15%) in auxin concentration in the rhizosphere. However, the increase in siderophore concentration in the rhizosphere did not result in the expected increases in tissue N or Fe, especially in soybean, suggesting that their function was different. In conclusion, siderophores and auxins may be some of the mechanisms by which both soybean and sunflower maintained plant growth in As-contaminated media.
Collapse
Affiliation(s)
- Md Ferdous Seraj
- School of Engineering, RMIT University, Melbourne, VIC, Australia
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | - Tania Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ann C Lawrie
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Suzie M Reichman
- School of Engineering, RMIT University, Melbourne, VIC, Australia.
- Centre for Anthropogenic Pollution Impact and Management, School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Deciphering the Symbiotic Plant Microbiome: Translating the Most Recent Discoveries on Rhizobia for the Improvement of Agricultural Practices in Metal-Contaminated and High Saline Lands. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhizosphere and plant-associated microorganisms have been intensely studied for their beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB) and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result of the interactions between the plant genome and its associated microbiome. Here, we provide a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies to improve crop yield.
Collapse
|
10
|
Fagorzi C, Checcucci A, diCenzo GC, Debiec-Andrzejewska K, Dziewit L, Pini F, Mengoni A. Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes. Genes (Basel) 2018; 9:genes9110542. [PMID: 30413093 PMCID: PMC6266702 DOI: 10.3390/genes9110542] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Alice Checcucci
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - George C diCenzo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Klaudia Debiec-Andrzejewska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Francesco Pini
- Department of Agri-food Production and Environmental Science, University of Florence, 50144 Florence, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|