1
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
2
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
3
|
Wang Z, Li N, Wang W, Zhu Y, Liu Y. Endophytic bacterial community diversity in genetically related hybrid rice seeds. Appl Microbiol Biotechnol 2023; 107:6911-6922. [PMID: 37704771 DOI: 10.1007/s00253-023-12782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
The Food and Agriculture Organization of the United Nations (FAO) has identified hybrid rice as ideal for addressing food scarcity in poor nations. A comprehensive investigation of the endophytic bacteria in hybrid rice seeds is essential from a microecological perspective to illuminate the mechanisms underlying its high yield, high quality, and multi-resistance. The endophytic bacterial diversity and community structures of 11 genetically correlated hybrid rice seeds with different rice blast resistance levels were studied using high-throughput sequencing (HTS) on the Illumina MiSeq platform to reveal their "core microbiota" and explore the effect of genotypes, genetic relationships, and resistance. Proteobacteria (78.15-99.15%) represented the most abundant group in the 11 hybrid rice cultivars, while Pantoea, Pseudomonas, and Microbacterium comprised the "core microbiota." Hybrid rice seeds with different genotypes, genetic correlations, and rice blast resistance displayed endophytic bacterial community structure and diversity variation. In addition, the network relationships between the rice seed endophytic bacteria of "the same female parent but different male parents" were more complex than those from "the same male parent but different female parents." Matrilineal inheritance may be the primary method of passing on endophytic bacteria in rice from generation to generation. The endophytic bacterial interaction network in rice blast-resistant hybrid rice seed varieties was more complicated than in susceptible varieties. In summary, this study demonstrated that the genotype, genetic relationship, and rice blast resistance were important factors affecting the community structures and diversity of endophytic bacteria in hybrid rice seeds, which was vital for revealing the interaction between endophytic bacteria and the host. KEY POINTS: • Pantoea, Pseudomonas, and Microbacterium represent the main endophytic bacteria in hybrid rice seeds. • Genotype is the primary factor affecting endophytic bacterial diversity in hybrid rice seeds. • The diversity of the endophytic bacterial community in hybrid rice seeds is related to their genotypes, genetic relationships, and rice blast resistance.
Collapse
Affiliation(s)
- Zhishan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha, 410125, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha, 410125, China.
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 201203, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Nguyen GT, Nguyen HTH, Tran HT, Tran HT, Ho AN, Tran QH, Pham NB. Enhanced podophyllotoxin production of endophyte Fusarium proliferatum TQN5T by host extract and phenylalanine. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12659-1. [PMID: 37436482 DOI: 10.1007/s00253-023-12659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Fermentation technology using endophytes is considered a potential alternative approach for producing pharmaceutical compounds like podophyllotoxin (PTOX). In this study, fungus TQN5T (VCCM 44284) was selected from endophytic fungi isolated from Dysosma versipellis in Vietnam for PTOX production through TLC. The presence of PTOX in TQN5T was further confirmed by HPLC. Molecular identification indicated TQN5T as Fusarium proliferatum with 99.43% identity. This result was asserted by morphological characteristics such as white cottony, filamentous colony, layer and branched mycelium, and clear hyphae septa. Cytotoxic assay indicated both biomass extract and culture filtrate of TQN5T presented strong cytotoxicity on LU-1 and HepG2 with IC50 of 0.11, 0.20, 0.041, and 0071, respectively, implying anti-cancer compounds were accumulated in the mycelium and secreted into the medium. Further, the production of PTOX in TQN5T was investigated in the fermentation condition supplemented with 10 µg/ml of host plant extract or phenylalanine as elicitors. The results revealed a significantly higher amount of PTOX in the PDB + PE and PDB + PA at all studied time points in comparison with PDB (control). Especially, after 168 h of culture, PTOX content in the PDB with plant extract reached the peak with 314 µg/g DW which is 10% higher than the best yield of PTOX in previous studies, denoting F. proliferatum TQN5T as a promising PTOX producer. This is the first study on enhancing the PTOX production in endophytic fungi by supplementing phenylalanine-a precursor for PTOX biosynthesis in plants into fermented media, suggesting a common PTOX biosynthetic pathway between host plant and endophytes. KEY POINTS: • Fusarium proliferatum TQN5T was proven for PTOX production. • Both mycelia extract and spent broth extract of Fusarium proliferatum TQN5T presented strong cytotoxicity on cancer cell lines LU-1 and HepG2. • The supplementation of 10 µg/ml host plant extract and phenylalanine into fermentation media of F. proliferatum TQN5T improved the yield of PTOX.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Thi Hong Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hoa Thi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huyen Thi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anh Ngoc Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Ho Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
5
|
Tiwari P, Bae H. Trends in Harnessing Plant Endophytic Microbiome for Heavy Metal Mitigation in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:1515. [PMID: 37050141 PMCID: PMC10097340 DOI: 10.3390/plants12071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Plant microbiomes represent dynamic entities, influenced by the environmental stimuli and stresses in the surrounding conditions. Studies have suggested the benefits of commensal microbes in improving the overall fitness of plants, besides beneficial effects on plant adaptability and survival in challenging environmental conditions. The concept of 'Defense biome' has been proposed to include the plant-associated microbes that increase in response to plant stress and which need to be further explored for their role in plant fitness. Plant-associated endophytes are the emerging candidates, playing a pivotal role in plant growth, adaptability to challenging environmental conditions, and productivity, as well as showing tolerance to biotic and abiotic stresses. In this article, efforts have been made to discuss and understand the implications of stress-induced changes in plant endophytic microbiome, providing key insights into the effects of heavy metals on plant endophytic dynamics and how these beneficial microbes provide a prospective solution in the tolerance and mitigation of heavy metal in contaminated sites.
Collapse
|
6
|
Liu Y, Morelli M, Koskimäki JJ, Qin S, Zhu YH, Zhang XX. Editorial: Role of endophytic bacteria in improving plant stress resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:1106701. [PMID: 36561457 PMCID: PMC9763997 DOI: 10.3389/fpls.2022.1106701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/03/2023]
Affiliation(s)
- Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, Bari, Italy
| | | | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yong-Hua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xiao-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Thi Tran H, Thu Nguyen G, Thi Nguyen HH, Thi Tran H, Hong Tran Q, Ho Tran Q, Thi Ninh N, Tien Do P, Hoang Chu H, Bich Pham N. Isolation and Cytotoxic Potency of Endophytic Fungi Associated with Dysosma difformis, a Study for the Novel Resources of Podophyllotoxin. MYCOBIOLOGY 2022; 50:389-398. [PMID: 36404896 PMCID: PMC9645267 DOI: 10.1080/12298093.2022.2126166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Endophytic fungi are promising sources for the production of podophyllotoxin-an important anticancer compound, replacing depleted medical plants. In this study, the endophytes associated with Dysosma difformis-an ethnomedicinal plant species were isolated to explore novel sources of podophyllotoxin. Fifty-three endophytic fungi were isolated and identified by morphological observation and ITS-based rDNA sequencing, assigning them to 27 genera in 3 divisions. Fusarium was found the most prevalent genus with a colonization frequency of 11.11%, followed by Trametes (9.26%) and Penicillium (7.41%). Phylogenetic trees were constructed for the endophytic fungi community in two collection sites, Ha Giang and Lai Chau, revealing the adaptation of the species to the specific tissues and habitats. Cytotoxic activity of endophytic fungal extracts was investigated on cancer cell lines such as SK-LU-1, HL-60, and HepG2, demonstrating strong anti-cancer activity of six isolates belonging to Penicillium, Trametes, Purpureocillium, Aspergillus, and Ganoderma with IC50 value of lower than 10 µg/mL. The presence of podophyllotoxin was indicated in Penicillium, Trametes, Aspergillus and for the first time in Purpureocillium and Ganoderma via high-performance liquid chromatography, which implied them as a potential source of this anti-cancer compound.
Collapse
Affiliation(s)
- Hoa Thi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Viet Nam
| | - Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hong Ha Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Huyen Thi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Quang Hong Tran
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Viet Nam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Quang Ho Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Viet Nam
| | - Ngoc Thi Ninh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Phat Tien Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Viet Nam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Viet Nam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
8
|
Abdelfattah A, Tack AJM, Wasserman B, Liu J, Berg G, Norelli J, Droby S, Wisniewski M. Evidence for host-microbiome co-evolution in apple. THE NEW PHYTOLOGIST 2022; 234:2088-2100. [PMID: 34823272 PMCID: PMC9299473 DOI: 10.1111/nph.17820] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
Plants evolved in association with a diverse community of microorganisms. The effect of plant phylogeny and domestication on host-microbiome co-evolutionary dynamics are poorly understood. Here we examined the effect of domestication and plant lineage on the composition of the endophytic microbiome of 11 Malus species, representing three major groups: domesticated apple (M. domestica), wild apple progenitors, and wild Malus species. The endophytic community of M. domestica and its wild progenitors showed higher microbial diversity and abundance than wild Malus species. Heirloom and modern cultivars harbored a distinct community composition, though the difference was not significant. A community-wide Bayesian model revealed that the endophytic microbiome of domesticated apple is an admixture of its wild progenitors, with clear evidence for microbiome introgression, especially for the bacterial community. We observed a significant correlation between the evolutionary distance of Malus species and their microbiome. This study supports co-evolution between Malus species and their microbiome during domestication. This finding has major implications for future breeding programs and our understanding of the evolution of plants and their microbiomes.
Collapse
Affiliation(s)
- Ahmed Abdelfattah
- Institute of Environmental BiotechnologyGraz University of TechnologyPetersgasse 12Graz8010Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Max‐Eyth Allee 10014469PotsdamGermany
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSE‐106 91Sweden
| | - Birgit Wasserman
- Institute of Environmental BiotechnologyGraz University of TechnologyPetersgasse 12Graz8010Austria
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant BiotechnologyCollege of Landscape Architecture and Life SciencesChongqing University of Arts and SciencesYongchuanChongquing402160China
| | - Gabriele Berg
- Institute of Environmental BiotechnologyGraz University of TechnologyPetersgasse 12Graz8010Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Max‐Eyth Allee 10014469PotsdamGermany
- Institute for Biochemistry and BiologyUniversity of Postdam14476Potsdam OT GolmGermany
| | - John Norelli
- Appalachian Fruit Research StationUnited States Department of Agriculture – Agricultural Research ServiceKearneysvilleWV25430USA
| | - Samir Droby
- Department of Postharvest ScienceAgricultural Research OrganizationThe Volcani InstitutePO Box 15159Rishon LeZion7505101Israel
| | - Michael Wisniewski
- Department of Biological SciencesVirginia Polytechnic Institute and State University220 Ag Quad LnBlacksburgVA24061USA
| |
Collapse
|
9
|
Heil JA, Wolock CJ, Pierce NE, Pringle A, Bittleston LS. Sarracenia pitcher plant-associated microbial communities differ primarily by host species across a longitudinal gradient. Environ Microbiol 2022; 24:3500-3516. [PMID: 35384233 DOI: 10.1111/1462-2920.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
Plant-associated microbial communities can profoundly affect plant health and success, and research is still uncovering factors driving the assembly of these communities. Here, we examine how geography versus host species affect microbial community structure and differential abundances of individual taxa. We use metabarcoding to characterize the bacteria and eukaryotes associated with five, often co-occurring species of Sarracenia pitcher plants (Sarraceniaceae) and three natural hybrids along the longitudinal gradient of the U.S. Gulf Coast, as well as samples from S. purpurea in Massachusetts. To tease apart the effects of geography versus host species, we focus first on sites with co-occurring species and then on species located across different sites. Our analyses show that bacterial and eukaryotic community structures are clearly and consistently influenced by host species identity, with geographic factors also playing a role. Naturally-occurring hybrids appear to also host unique communities, that are in some ways intermediate between their parent species. We see significant effects of geography (site and longitude), but these generally explain less of the variation among pitcher communities. Overall, in Sarracenia pitchers, host plant phenotype significantly affects the pitcher microbiomes and other associated organisms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jacob A Heil
- Department of Biological Sciences, Boise State University
| | | | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison
| | | |
Collapse
|
10
|
Phurailatpam L, Dalal VK, Singh N, Mishra S. Heavy Metal Stress Alleviation Through Omics Analysis of Soil and Plant Microbiome. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.817932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heavy metal (HM) contamination of soil and water resources is a global concern, which not only limits crop yield and quality, but also has serious environmental effects. Due to the non-biodegradable nature and toxicity, high concentration of HMs in food and environment is a serious threat to the entire ecosystem. Moreover, the target of supplying safe and quality food to the rising human population (expected to reach ~9–10 bn by the year 2050), necessitates effective treatment of the HM-contaminated soil. Various microbe-mediated bioremediation strategies such as biosorption, bioprecipiation, biostimulation, etc., have been found to be effective in uptake and conversion of HMs to less toxic forms. Further, in the past few years, the use of soil and plant-associated microbiome for HM stress alleviation is gaining attention among the scientific community. In general, microbes are spectacular in being dynamic and more responsive to environmental conditions in comparison to their host plants. Moreover, with the advancements in high throughput sequencing technologies, the focus is eventually shifting from just structural characterization to functional insights into the microbiome. The microbes inhabiting the HM-contaminated environments or associated with HM-tolerant plants are a source for exploring HM-tolerant microbial communities, which could be used for enhancing bioremediation efficiency and conferring HM tolerance in plants. This review discusses the application of omics techniques including metagenomics, metatranscriptomics, metaproteomics, and metabolomics, for rapid and robust identification of HM-tolerant microbial communities, mining novel HM resistance genes, and fabricating the HM resistome.
Collapse
|
11
|
Sahu PK, Tilgam J, Mishra S, Hamid S, Gupta A, K J, Verma SK, Kharwar RN. Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. J Basic Microbiol 2022; 62:647-668. [PMID: 35020220 DOI: 10.1002/jobm.202100462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Endophytic microbiota opens a magnificent arena of metabolites that served as a potential source of medicines for treating a variety of ailments and having prospective uses in agriculture, food, cosmetics, and many more. There are umpteen reports of endophytes improving the growth and tolerance of plants. In addition, endophytes from lifesaving drug-producing plants such as Taxus, Nothapodytes, Catharanthus, and so forth have the ability to produce host mimicking compounds. To harness these benefits, it is imperative to isolate the true endophytes, not the surface microflora. The foremost step in endophyte isolation is the removal of epiphytic microbes from plant tissues, called as surface sterilization. The success of surface sterilization decides "what to grow" (the endophytes) and "what not to grow" (the epiphytes). It is very crucial to use an appropriate sterilant solution, concentration, and exposure time to ensure thorough surface disinfection with minimal damage to the endophytic diversity. Commonly used surface sterilants include sodium hypochlorite (2%-10%), ethanol (70%-90%), mercuric chloride (0.1%), formaldehyde (40%), and so forth. In addition, the efficiency could further be improved by pretreatment with surfactants such as Triton X-100, Tween 80, and Tween 20. This review comprehensively deals with the various sterilants and sterilization methods for the isolation of endophytic microbes. In addition, the mechanisms and rationale behind using specific surface sterilants have also been elaborated at length.
Collapse
Affiliation(s)
- Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India
| | - Jyotsana Tilgam
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India
| | - Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India
| | - Saima Hamid
- Department of Plant Biotechnology and Microbial Ecology, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| | - Amrita Gupta
- Department of Biotechnology, Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Jayalakshmi K
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, India
| | - Satish K Verma
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravindra N Kharwar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Mishra S, Sahu PK, Agarwal V, Singh N. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol 2021; 105:6579-6596. [PMID: 34463800 DOI: 10.1007/s00253-021-11527-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/19/2023]
Abstract
Plant secondary metabolites have significant potential applications in a wide range of pharmaceutical, food, and cosmetic industries by providing new chemistries and compounds. However, direct isolation of such compounds from plants has resulted in over-harvesting and loss of biodiversity, currently threatening several medicinal plant species to extinction. With the breakthrough report of taxol production by an endophytic fungus of Taxus brevifolia, a new era in natural product research was established. Since then, the ability of endophytic microbes to produce metabolites similar to those produced by their host plants has been discovered. The plant "endosphere" represents a rich and unique biological niche inhabited by organisms capable of producing a range of desired compounds. In addition, plants growing in diverse habitats and adverse environmental conditions represent a valuable reservoir for obtaining rare microbes with potential applications. Despite being an attractive and sustainable approach for obtaining economically important metabolites, the industrial exploitation of microbial endophytes for the production and isolation of plant secondary metabolites remains in its infancy. The present review provides an updated overview of the prospects, challenges, and possible solutions for using microbial endophytes as micro-factories for obtaining commercially important plant metabolites.Key points• Some "plant" metabolites are rather synthesized by the associated endophytes.• Challenges: Attenuation, silencing of BGCs, unculturability, complex cross-talk.• Solutions: Simulation of in planta habitat, advanced characterization methods.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India.
| | - Pramod Kumar Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Vishad Agarwal
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| | - Namrata Singh
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| |
Collapse
|
13
|
Gupta MM, Richardson DHS. Editorial: Anthropogenic impacts on symbiotic systems. Symbiosis 2021; 84:229-232. [PMID: 34483443 PMCID: PMC8405853 DOI: 10.1007/s13199-021-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Manju M Gupta
- Sri Aurobindo College, University of Delhi, Delhi, 110017 India
| | | |
Collapse
|
14
|
Mishra S, Goyal D, Phurailatpam L. Targeted 16S rRNA gene and ITS2 amplicon sequencing of leaf and spike tissues of Piper longum identifies new candidates for bioprospecting of bioactive compounds. Arch Microbiol 2021; 203:3851-3867. [PMID: 34013420 DOI: 10.1007/s00203-021-02356-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Piper longum (also known as Indian long pepper) is widely used in Ayurvedic, Siddha and Unani medicine systems. The principle bioactive compound of this plant is piperine, which mainly accumulates in the fruits called spikes. The report of piperine production by endophytic microbes isolated from Piper sp., motivated us to investigate the endophytic microbial diversity associated with the spikes vis-à-vis leaves (which contain negligible levels of piperine). This is the first report to use metagenomics approach to unravel the endophytic microbial diversity in P. longum. Our results indicate that 2, 56, 631 bacterial OTUs and 1090 fungal OTUs were picked cumulatively from both the tissues. Although bacterial and fungal endophytes occupy the same niche, remarkable differences exist in their diversity and abundance. For instance, the most abundant bacterial genera in spikes were Nocardioides and Pseudonocardia (Phylum Actinobacteria; reported to produce bioactive compounds); while, in leaves were Larkinella and Hymenobacter (Phylum Bacteriodetes). Likewise, the fungal endophytes, Periconia, Cladosporium and Coniothyrium (which have been earlier reported to produce commercially important metabolites including piperine), were also present in high abundance in spikes, in comparison to leaves. Further, the results of PICRUSt analysis reveal the high metabolic potential of spike-associated bacteria for secondary metabolism, namely biosynthesis of alkaloids (including pyridine/piperidine), terpenes, flavonoids and antibiotics. Therefore, our findings indicate that the endophytes abundant or unique in spikes could be explored for bioprospecting of novel/commercially important metabolites; an approach that has both ecological and economical benefits.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India.
| | - Deepika Goyal
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India
| | - Laccy Phurailatpam
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, India
| |
Collapse
|