1
|
Ye Z, Wang Y, Zhang G, Hu X, Wang J, Chen X. Exploration of uricase-like activity in Pd@Ir nanosheets and their application in relieving acute gout using self-cascade reaction. J Colloid Interface Sci 2025; 678:380-392. [PMID: 39303557 DOI: 10.1016/j.jcis.2024.09.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Gout, marked by the deposition of sodium urate crystals in joints and peripheral tissues, presents a considerable health challenge. Recent research has shown a growing interest in nanozyme-based treatments for gout. However, literature on nanozymes that combine uricase-like (UOX) activity for uric acid (UA) degradation with catalase (CAT)-like activity for H2O2 elimination through a self-cascade reaction is limited. Herein, we discovered that two-dimensional Pd@Ir nanosheets (NSs) exhibit UOX and CAT activities effectively. Notably, we observed a size-dependent effect of Pd@Ir on activation energy during UA degradation, with the larger Pd@Ir NSs demonstrating a lower energy barrier. The 46-nm Pd@Ir had activation energy as low as 35.9 kJ/mol, surpassing the efficiency of natural bacterial uricase and most reported nanozymes. Through a tandem self-cascade reaction of Pd@Ir, UA was effectively degraded via UOX activity, while the byproduct H2O2 was simultaneously eliminated by CAT-like activity. Cell experiments revealed that Pd@Ir protect normal cells from oxidative stress and promote cell proliferation, demonstrating an excellent self-cascade effect. Additionally, Pd@Ir substantially alleviated gout symptoms in monosodium urate-induced acute gout mice without causing toxic effects on biological organs and tissues. This study opens new avenues for using nanozyme-based cascade reaction systems in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yayao Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gongxin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
3
|
Phan-Xuan T, Breitung B, Dailey LA. Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1981. [PMID: 39044339 DOI: 10.1002/wnan.1981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like activity with selected advantages over native enzymes such as simple synthesis, controllable activity, high stability, and low cost. These materials have been explored as surrogates to natural enzymes in biosensing, therapeutics, environmental protection, and many other fields. Among different nanozymes classes, metal- and metal oxide-based nanozymes are the most widely studied. In recent years, bi- and tri-metallic nanomaterials have emerged often showing improved nanozyme activity, some of which even possess multifunctional enzyme-like activity. Taking this concept even further, high-entropy nanomaterials, that is, complex multicomponent alloys and ceramics like oxides, may potentially enhance activity even further. However, the addition of various elements to increase catalytic activity may come at the cost of increased toxicity. Since many nanozyme compositions are currently being explored for in vivo biomedical applications, such as cancer therapeutics, toxicity considerations in relation to nanozyme application in biomedicine are of vital importance for translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thuong Phan-Xuan
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
- School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Li F, Jiang J, Shen N, Peng H, Luo Y, Li N, Huang L, Lu Y, Liu L, Li B, He J. Flexible microfluidic colorimetric detection chip integrated with ABTS ·+ and Co@MnO 2 nanozyme catalyzed TMB reaction systems for bio-enzyme free detection of sweat uric acid. Anal Chim Acta 2024; 1299:342453. [PMID: 38499424 DOI: 10.1016/j.aca.2024.342453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The development of wearable detection devices that can achieve noninvasive, on-site and real-time monitoring of sweat metabolites is of great demand and practical significance for point-of-care testing and healthcare monitoring. Monitoring uric acid (UA) content in sweat provides a simple and promising way to reduce the risk of gout and hyperuricemia. Traditional bioenzyme based UA assays suffer from high cost, poor stability, inconvenience for storage and easy deactivation of bioenzymes. Wearable microfluidic colorimetric detection device for sweat UA detection has not been reported. The development of novel wearable microfluidic colorimetric detection chip with no requirement of bioenzymes for sweat UA detection is of great importance for health care monitoring. RESULTS Firstly, Co@MnO2 nanozyme with high oxidase-like activity was synthesized and characterized. Co@MnO2 can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) directly to generate blue-green colored ox-TMB. Green colored 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical (ABTS·+) was produced by the oxidation of ABTS by potassium persulfate. UA exhibits distinct quenching effect on Co@MnO2 catalyzed TMB colorimetric reaction system and ABTS·+ based colorimetric system, leading to obvious color fading of the two colorimetric systems. Then, a flexible microfluidic colorimetric detection chip for UA detection was fabricated by assembling Co@MnO2/TMB modified paper chips and ABTS·+ modified paper chips into a polydimethylsiloxane (PDMS) microfluidic chip. The fabricated microfluidic colorimetric detection chip exhibits good linear relationship for sweat UA detection. The linear range is from 20 to 200 μmol/L with detection limit as low as 6.6 μmol/L. Good results were obtained for the detection of UA in actual sweat from three volunteers. SIGNIFICANCE This work provides two bio-enzyme free colorimetric detection systems for UA detection. Furthermore, a simple, low-cost and selective flexible wearable microfluidic colorimetric detection chip was fabricated for noninvasive and on-site detection of sweat UA, which holds great application potential for personal health monitoring and point-of-care testing.
Collapse
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jianming Jiang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Nuotong Shen
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hao Peng
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yi Luo
- Micro/Nano Fabrication Laboratory, Microsystem & Terahertz Research Center, China Academy of Engineering Physics (CAEP), Chengdu, Sichuan, 610200, China
| | - Nannan Li
- Micro/Nano Fabrication Laboratory, Microsystem & Terahertz Research Center, China Academy of Engineering Physics (CAEP), Chengdu, Sichuan, 610200, China; Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Liyang Huang
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yuyang Lu
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Lifu Liu
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Bing Li
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jianbo He
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| |
Collapse
|
5
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Nana L, Ruiyi L, Guangli W, Zaijun L. Electrochemical detection of uric acid in human serum based on ultrasmall Ta 2O 5 nanoparticle anchored Pt atom with ultrahigh uricase and catalase activities. Mikrochim Acta 2023; 190:195. [PMID: 37106244 DOI: 10.1007/s00604-023-05758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
The synthesis of ultrasmall Ta2O5 nanoparticle anchored Pt atom using aspartic acid-functionalized graphene quantum dot (Asp-GQD) is reported. The Asp-GQD was combined with tantalic acid and chloroplatinic acid to rapidly form water-soluble Ta-Asp-GQD and Pt-Asp-GQD complex. Followed by thermal annealing at 900 °C in N2 to obtain Ta2O5-Asp-GQD-Pt. The study shows that the introduction of Asp-GQD as a chelating agent and p-type semiconductor achieves to the formation of ultrasmall Ta2O5 nanoparticle, PN junction at the interface and Pt single atom anchored on the surface of Ta2O5 nanocrystals. The unique structure realizes ultrahigh uricase activity and catalase activities of Ta2O5-Asp-GQD-Pt. The Ta2O5-Asp-GQD-Pt was used as the bifunctional sensing material for the construction of an electrochemical uric acid sensor. The differential pulse voltammetric current at 0.45 V linearly increases with the increase of uric acid concentration in the range 0.001-5.00 mM with the detection limit of 0.41 μM (S/N = 3). The sensor exhibits a much better sensitivity compared with the reported methods for the detection of uric acid. The proposed analytical method has been applied to the electrochemical detection of uric acid in human serum with a spiked recovery of 95-105%. The study also offers one way to design and synthesize multifunctional sensing materials with high catalytic activity.
Collapse
Affiliation(s)
- Li Nana
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Ruiyi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wang Guangli
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Zaijun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Fabrication of a novel nano-biosensor for efficient colorimetric determination of uric acid. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Liu Y, Yan J, Sun Z, Huang Y, Li X, Jin Y. Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione. Mikrochim Acta 2022; 189:63. [PMID: 35031866 DOI: 10.1007/s00604-021-05136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Glutathione (GSH) is an important antioxidant and free radical scavenger that converts harmful toxins into harmless substances and excretes them out of the body. In this paper, 3D hierarchical flower-like nanozyme named MnO2/PS (polystyrene) was successfully prepared by template method for the first time. After the systematical studies, MnO2/PS nanozyme was evaluated to possess favorable oxidase activity and direct 3,3',5,5'-tetramethylbenzidine (TMB) catalytic ability in the near-neutral environment at room temperature. With the addition of different concentrations of GSH, oxidized TMB can be reduced to TMB with the whole process from blue to nearly colorless be observed by naked eyes. In addition, there is a good linear relationship in the range 1-50 μM and a detection limit of 0.08 μM. The method proposed can be successfully applied to the detection of reduced GSH in tablets and injections with good selectivity and high sensitivity. The analysis results exhibited good consistency with the results obtained by HPLC.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University, No. 2699, Qianjin Road, Changchun, 130012, China
| | - Jianghong Yan
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine, Changchun, 130021, China
| | - Zhiheng Sun
- College of Chemistry, Jilin University, No. 2699, Qianjin Road, Changchun, 130012, China
| | - Yu Huang
- College of Chemistry, Jilin University, No. 2699, Qianjin Road, Changchun, 130012, China
| | - Xuwen Li
- College of Chemistry, Jilin University, No. 2699, Qianjin Road, Changchun, 130012, China
| | - Yongri Jin
- College of Chemistry, Jilin University, No. 2699, Qianjin Road, Changchun, 130012, China.
| |
Collapse
|
9
|
Chutia R, Chetia B. Ligand and additive free aerobic synthesis of diynes using Pd–CuFe 2O 4magnetic nanoparticles as an efficient reusable catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj04133e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, we present the synthesis of Pd–CuFe2O4magnetic nanoparticles as an efficient and recyclable catalyst for the oxidative homocoupling of various terminal alkynes to form symmetric 1,3-diynes.
Collapse
Affiliation(s)
- Rituparna Chutia
- Department of Chemistry
- Dibrugarh University
- Dibrugarh-786004
- India
| | - Bolin Chetia
- Department of Chemistry
- Dibrugarh University
- Dibrugarh-786004
- India
| |
Collapse
|