1
|
Ma J, Basit RA, Yuan S, Zhao X, Liu X, Fan G. Optimization of fermentation conditions for the production of recombinant feruloyl esterase BpFae T132C-D143C. Folia Microbiol (Praha) 2025; 70:441-454. [PMID: 39283535 DOI: 10.1007/s12223-024-01197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/02/2024] [Indexed: 05/09/2025]
Abstract
Feruloyl esterases (FAEs) are a crucial component of the hemicellulose-degrading enzyme family that facilitates the degradation of lignocellulose while releasing hydroxycinnamic acids such as ferulic acid with high added value. Currently, the low enzyme yield of FAEs is one of the primary factors limiting its application. Therefore, in this paper, we optimized the fermentation conditions for the expression of FAE BpFaeT132C-D143C with excellent thermal stability in Escherichia coli by experimental design. Firstly, we explored the effects of 11 factors such as medium type, isopropyl-β-D-thiogalactopyranoside (IPTG) concentration, and inoculum size on BpFaeT132C-D143C activity separately by the single factor design. Then, the significance of the effects of seven factors, such as post-induction temperature, shaker rotational speed, and inoculum size on BpFaeT132C-D143C activity, was analyzed by Plackett-Burman design. We identified the main factors affecting the fermentation conditions of E. coli expressing BpFaeT132C-D143C as post-induction temperature, pre-induction period, and post-induction period. Finally, we used the steepest ascent path design and response surface method to optimize the levels of these three factors further. Under the optimal conditions, the activity of BpFaeT132C-D143C was 3.58 U/ml, which was a significant 6.6-fold increase compared to the pre-optimization (0.47 U/ml), demonstrating the effectiveness of this optimization process. Moreover, BpFaeT132C-D143C activity was 1.52 U/ml in a 3-l fermenter under the abovementioned optimal conditions. It was determined that the expression of BpFaeT132C-D143C in E. coli was predominantly intracellular in the cytoplasm. This study lays the foundation for further research on BpFaeT132C-D143C in degrading agricultural waste transformation applications.
Collapse
Affiliation(s)
- Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Rana Abdul Basit
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Sihan Yuan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xuan Zhao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Guangsen Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing, 100048, China.
| |
Collapse
|
2
|
Fu Z, Cheng S, Ma J, Basit RA, Du Y, Tian S, Fan G. Identification of Yeast Strain YA176 for Bio-Purification of Soy Molasses to Produce Raffinose Family Oligosaccharides and Optimization of Fermentation Conditions. Appl Biochem Biotechnol 2025; 197:943-963. [PMID: 39340630 DOI: 10.1007/s12010-024-05065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Soybean molasses, which contains high levels of raffinose family oligosaccharides (RFOs) such as stachyose and raffinose, is subjected to a process of bio-purification to remove sucrose while maintaining the RFOs, consequently increasing its value. This study employed morphological observation, physiological and biochemical studies, and molecular biology techniques to identify YA176, a yeast strain renowned for its effective bio-purification of soy molasses. Through single-factor and orthogonal experiments, optimal bio-purification conditions were established. YA176, belonging to Wickerhamomyces anomalus, demonstrated robust growth across a wide range of temperature and pH levels, coupled with remarkable tolerance to glucose, sucrose, and NaCl up to 41.2%, 47.3%, and 10%, respectively. Under these optimized conditions, YA176 efficiently utilized sucrose while preserving 93.3% of raffinose and 78.6% of stachyose, ensuring the retention of functional RFOs. In summary, yeast strain YA176 exhibits exceptional bio-purification abilities, making it an ideal candidate for producing functional RFOs from soy molasses.
Collapse
Affiliation(s)
- Zhilei Fu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
- School of Biology and Food Science, Hebei MinZu Normal University, Chengde, 067000, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
| | - Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Rana Abdul Basit
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yihua Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shubin Tian
- Sweet Code Nutrition and Health Institute, Zibo, 256306, China
| | - Guangsen Fan
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China.
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
- Sweet Code Nutrition and Health Institute, Zibo, 256306, China.
| |
Collapse
|
3
|
Bernardino ARS, Torres CAV, Crespo JG, Reis MAM. Biotechnological 2-Phenylethanol Production: Recent Developments. Molecules 2024; 29:5761. [PMID: 39683919 DOI: 10.3390/molecules29235761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
2-Phenylethanol (2-PE) is a key flavor compound with a rose-like scent, used in the cosmetics, perfume, home care and food industries. This aroma compound can be obtained naturally from various flowers, however chemical synthesis is the most used route to meet market demand. The increasing interest in natural products has led to the development of more environmentally friendly alternatives for 2-PE production through biotechnological approaches. The most efficient approach involves the biotransformation of L-phenylalanine into 2-PE via the Ehrlich pathway, a process observed in different microorganisms such as yeasts and bacteria. 2-PE produced by this way can be considered as natural. However, due to the toxicity of the aroma to the producing microorganism, low production yields are typically obtained, motivating efforts to develop production processes that can overcome this bottleneck, enhance 2-PE yields and reduce the production costs. This review presents and discusses the latest advances in the bioproduction of 2-PE through microbial fermentation, in terms of producing strains, the optimization of cultivation processes, strategies to mitigate product toxicity, and the use of low value feedstocks. Novel applications for 2-PE are also highlighted.
Collapse
Affiliation(s)
- Ana R S Bernardino
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LAQVREQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiana A V Torres
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João G Crespo
- LAQVREQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- ITQB, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria A M Reis
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Qiu M, Jiang J, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. The biosynthesis of L-phenylalanine-derived compounds by engineered microbes. Biotechnol Adv 2024; 77:108448. [PMID: 39260779 DOI: 10.1016/j.biotechadv.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
L-Phenylalanine (L-Phe) is an important aromatic amino acid, which has been widely used in food, health care products, medicine and other fields. Based on the relatively mature microbial biosynthesis process, a variety of L-phenylalanine-derived compounds have attracted more and more attentions owing to their extensively potential applications in the fields of food, medicine, spices, cosmetics, and pesticides. However, the challenge of biosynthesis of L-phenylalanine-derived compounds remains the issue of low production and productivity. With the development of metabolic engineering and synthetic biology, the biosynthesis of L-phenylalanine has reached a high level. Therefore, the synthesis of L-phenylalanine-derived compounds based on high production strains of L-phenylalanine has broad prospects. In addition, some L-phenylalanine-derived compounds are more suitable for efficient synthesis by exogenous addition of precursors due to their longer metabolic pathways and the inhibitory effects of many intermediate products. This review systematically summarized the research progress of L-phenylalanine-derived compounds, including phenylpyruvate derivatives, trans-cinnamic derivatives, p-coumaric acid derivatives and other L-phenylalanine-derived compounds (such as flavonoids). Finally, the main strategies to improve the production of L-phenylalanine-derived compounds were summarized, and the development trends of the synthesis of L-phenylalanine-derived compounds by microbial method were also prospected.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
5
|
Zhao Y, Li S, Shu Q, Yang X, Deng Y. Highly efficient production of 2-phenylethanol by wild-type Saccharomyces bayanus strain. BIORESOURCE TECHNOLOGY 2024; 403:130867. [PMID: 38777235 DOI: 10.1016/j.biortech.2024.130867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
2-Phenylethanol (2-PE) is a highly valuable aromatic alcohol utilized in fragrance, cosmetics and food industries. Due to the toxic by-products from chemical synthesis and the low productivity of the extraction method, bioproduction of 2-PE by yeast is considered promising. In this study, a wild-type Saccharomyces bayanus L1 strain producing 2-PE was isolated from soy sauce mash. Transcriptional analysis showed that 2-PE was synthesized via the Ehrlich pathway and Shikimate pathway in S. bayanus L1. By improving the fermentation conditions in shaking flasks, the maximum 2-PE titer reached 4.2 g/L with a productivity of 0.058 g/L/h within 72 h. In fed-batch fermentation, S. bayanus L1 strain produced 6.5 g/L of 2-PE within 60 h, achieving a productivity of 0.108 g/L/h. These findings suggest that S. bayanus L1 strain is an efficient 2-PE producer, paving the way for highly efficient 2-PE production.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiyun Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan, Hubei 430023, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Shandong Bohi Industry Co., Ltd., 333, Binhe Road, Boxing Industrial Park, Binzhou, Shandong 256599, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Shandong Bohi Industry Co., Ltd., 333, Binhe Road, Boxing Industrial Park, Binzhou, Shandong 256599, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Pachapur VL, Castillo MV, Saini R, Brar SK, Le Bihan Y. Integrated biorefinery approach for utilization of wood waste into levulinic acid and 2-Phenylethanol production under mild treatment conditions. J Biotechnol 2024; 389:78-85. [PMID: 38718873 DOI: 10.1016/j.jbiotec.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
In a bid to explore the on-site biorefinery approach for conversion of forestry residues, lignocellulosic biomass into value-added products was studied. The bark white pine wood was subjected to the microwave technique of fast and slow hydrolysis under varying acid and biomass concentrations to produce levulinic acid (LA). The HCl (2% v/v) and plant biomass (1% w/v) were identified as the optimum conditions for fast wood hydrolysis (270 ºC for 12 sec), which led to maximum LA yield of 446.68 g/kgPB. The proposed sustainable approach is mild, quick, and utilized a very low concentration of the HCl for the production of LA. The hydrolysate was used as a medium for Kluyveromyces marxianus growth to produce 2-phenylethanol (2-PE). K. marxianus used 74-95% of furfural from hydrolysate as a co-substrate to grow. The proposed model of the integrated biorefinery is an affordable on-site approach of using forest waste into localized solutions to produce LA and 2-PE.
Collapse
Affiliation(s)
- Vinayak Laxman Pachapur
- Investissement Québec-CRIQ, Québec, QC, Canada; Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Mariana Valdez Castillo
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
7
|
Tong Q, Yang L, Zhang J, Zhang Y, Jiang Y, Liu X, Deng Y. Comprehensive investigations of 2-phenylethanol production by the filamentous fungus Annulohypoxylon stygium. Appl Microbiol Biotechnol 2024; 108:374. [PMID: 38878128 PMCID: PMC11180157 DOI: 10.1007/s00253-024-13226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024]
Abstract
2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.
Collapse
Affiliation(s)
- Qianwen Tong
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinxiang Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinrui Liu
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youjin Deng
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Bernardino AR, Grosso F, Torres CA, Reis MA, Peixe L. Exploring the biotechnological potential of Acinetobacter soli ANG344B: A novel bacterium for 2-phenylethanol production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00839. [PMID: 38633817 PMCID: PMC11021914 DOI: 10.1016/j.btre.2024.e00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
A bacterium, Acinetobacter soli ANG344B, isolated from river water, exhibited an exceptional capacity to produce 2-phenylethanol (2-PE) using L-phenylalanine (L-Phe) as a precursor-a capability typically observed in yeasts rather than bacteria. Bioreactor experiments were conducted to evaluate the production performance, using glucose as the carbon source for cellular growth and L-Phe as the precursor for 2-PE production. Remarkably, A. soli ANG344B achieved a 2-PE concentration of 2.35 ± 0.26 g/L in just 24.5 h of cultivation, exhibiting a global volumetric productivity of 0.10 ± 0.01 g/L.h and a production yield of 0.51 ± 0.01 g2-PE/gL-Phe, a result hitherto reported only for yeasts. These findings position A. soli ANG344B as a highly promising microorganism for 2-PE production. Whole-genome sequencing of A. soli strain ANG344 revealed a genome size of 3.52 Mb with a GC content of 42.7 %. Utilizing the Rapid Annotation using Subsystem Technology (RAST) server, 3418 coding genes were predicted, including genes coding for enzymes previously associated with the metabolic pathway of 2-PE production in other microorganisms, yet unreported in Acinetobacter species. Through gene mapping, 299 subsystems were identified, exhibiting 30 % subsystem coverage. The whole genome sequence data was submitted to NCBI GeneBank with the BioProject ID PRJNA982713. These draft genome data offer significant potential for exploiting the biotechnological capabilities of A. soli strain ANG344 and for conducting further comparative genomic studies.
Collapse
Affiliation(s)
- Ana R.S. Bernardino
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- LAQV‑REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829‑516 Caparica, Portugal
| | - Filipa Grosso
- UCIBIO – Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Microbiology, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristiana A.V. Torres
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria A.M. Reis
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luísa Peixe
- UCIBIO – Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Microbiology, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP – Culture Collection of Porto-Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Yuan H, Sun Q, Wang L, Fu Z, Zhou T, Ma J, Liu X, Fan G, Teng C. Optimization of High-Density Fermentation Conditions for Saccharomycopsis fibuligera Y1402 through Response Surface Analysis. Foods 2024; 13:1546. [PMID: 38790845 PMCID: PMC11121647 DOI: 10.3390/foods13101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Saccharomycopsis fibuligera, which produces enzymes like amylase and protease as well as flavor substances like β-phenyl ethanol and phenyl acetate, plays a crucial role in traditional fermented foods. However, this strain still lacks a high-density fermentation culture, which has had an impact on the strain's industrial application process. Therefore, this study investigated the optimization of medium ingredients and fermentation conditions for high-density fermentation of S. fibuligera Y1402 through single-factor design, Plackett-Burman design, steepest ascent test, and response surface analysis. The study found that glucose at 360.61 g/L, peptone at 50 g/L, yeast extract at 14.65 g/L, KH2PO4 at 5.49 g/L, MgSO4 at 0.40 g/L, and CuSO4 at 0.01 g/L were the best medium ingredients for S. fibuligera Y1402. Under these conditions, after three days of fermentation, the total colony count reached 1.79 × 108 CFU/mL. The optimal fermentation conditions were determined to be an initial pH of 6.0, an inoculum size of 1.10%, a liquid volume of 12.5 mL/250 mL, a rotation speed of 120 r/min, a fermentation temperature of 21 °C and a fermentation time of 53.50 h. When fermentation was conducted using the optimized medium and conditions, the total colony count achieved a remarkable value of 5.50 × 109 CFU/mL, exhibiting a substantial increase of nearly 31 times the original value in the optimal culture medium. This significant advancement offers valuable insights and a reference for the industrial-scale production of S. fibuligera.
Collapse
Affiliation(s)
- Hongyang Yuan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
| | - Qi Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
| | - Lanshuang Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
| | - Zhilei Fu
- School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde 067000, China;
| | - Tianze Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
| | - Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
| | - Xiaoyan Liu
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Guangsen Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
- Sweet Code Nutrition & Health Institute, Zibo 256306, China
| | - Chao Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; (H.Y.); (Q.S.); (L.W.); (T.Z.); (J.M.); (C.T.)
| |
Collapse
|
10
|
Zhang Y, Sun Q, Liu X, Basit RA, Ma J, Fu Z, Cheng L, Fan G, Teng C. Screening, Identification, and Fermentation Condition Optimization of a High-Yield 3-Methylthiopropanol Yeast and Its Aroma-Producing Characteristics. Foods 2024; 13:418. [PMID: 38338553 PMCID: PMC10855053 DOI: 10.3390/foods13030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
A high-yield 3-methylthiopropanol (3-Met) yeast Y1402 was obtained from sesame-flavored Daqu, and it was identified as Saccharomycopsis fibuligera. S. fibuligera Y1402 showed a broad range of growth temperatures and pH, as well as the maximum tolerance to glucose, NaCl, nicotine, and 3-Met at 50% (w/w), 15% (w/v), 1.2 g/L, and 18 g/L, respectively. After optimization using single-factor experiments, a Plackett-Burman design, a steepest ascent test, and a Box-Behnken design, the 3-Met yield reached 4.03 g/L by S. fibuligera Y1402 under the following optimal conditions: glucose concentration of 40 g/L, yeast extract concentration of 0.63 g/L, Tween 80 concentration of 2 g/L, L-methionine concentration of 5 g/L, liquid volume of 25 mL/250 mL, initial pH of 5.3, fermentation temperature of 32 °C, inoculum size of 0.8%, shaking speed of 210 rpm, and fermentation time of 54 h. The fermentation was scaled up to a 3 L fermenter under the optimized conditions, and the yield of 3-Met reached 0.71 g/L. Additionally, an aroma analysis revealed that the flavor substances produced by S. fibuligera Y1402 in sorghum hydrolysate medium was mainly composed of compounds with floral, sweet, creamy, roasted nut, and clove-like aromas. Therefore, S. fibuligera has great potential for application in the brewing of Baijiu and other fermented foods.
Collapse
Affiliation(s)
- Yujiao Zhang
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Qi Sun
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Xiaoyan Liu
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Rana Abdul Basit
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Jinghao Ma
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Zhilei Fu
- Department of Biology and Food Science, Hebei Normal University for Nationalities, Chengde 067000, China;
| | - Liujie Cheng
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Guangsen Fan
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| | - Chao Teng
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (Q.S.); (X.L.); (R.A.B.); (J.M.); (L.C.); (C.T.)
| |
Collapse
|
11
|
Yang R, Ma J, Wang Z, Du Y, Tian S, Fan G, Liu X, Teng C. The Identification of a Strain for the Biological Purification of Soy Molasses to Produce Functional Soy Oligosaccharides and Optimize Purification Conditions. Foods 2024; 13:296. [PMID: 38254597 PMCID: PMC10814589 DOI: 10.3390/foods13020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Soy molasses is rich in oligosaccharides like sucrose, stachyose, and raffinose, with stachyose and raffinose being functional oligosaccharides. Harnessing soy molasses for the production of functional soy oligosaccharides (FSO) can significantly elevate its value. Biological purification, a method leveraging the selective utilization of different carbon sources by microorganisms, allows for the specific removal of sucrose from soy molasses while preserving stachyose and raffinose, thereby increasing the FSO content. This research identified a yeast named YT312 with strong purification capabilities for soy molasses and optimized the purification conditions. The study revealed that yeast YT312 was Wickerhamomyces anomalus, exhibiting a broad range of growth temperatures and pH levels alongside a high tolerance to glucose, sucrose, and NaCl. Through single-factor and orthogonal experiments, it was established that under specific conditions-0.375% inoculum size, 30 °C fermentation temperature, 150 rpm shaking speed, 10-fold dilution ratio, pH of 7, and 12 h of fermentation-sucrose was completely removed from soy molasses, while functional raffinose and stachyose were retained at rates of 96.1% and 90.2%, respectively. Consequently, W. anomalus YT312 displayed exceptional characteristics for the biological purification of soy molasses and the production of FSO.
Collapse
Affiliation(s)
- Ran Yang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
| | - Jinghao Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
| | - Zechen Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
| | - Yihua Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
| | - Shubin Tian
- Sweet Code Nutrition and Health Institute, Zibo 256306, China;
| | - Guangsen Fan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyan Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Chao Teng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.Y.); (J.M.); (Z.W.); (Y.D.); (X.L.); (C.T.)
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Wang D, He M, Zhang M, Yang H, Huang J, Zhou R, Jin Y, Wu C. Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods. Crit Rev Food Sci Nutr 2023; 63:12136-12149. [PMID: 35875880 DOI: 10.1080/10408398.2022.2098688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ploessl D, Zhao Y, Shao Z. Engineering of non-model eukaryotes for bioenergy and biochemical production. Curr Opin Biotechnol 2023; 79:102869. [PMID: 36584447 DOI: 10.1016/j.copbio.2022.102869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022]
Abstract
The prospect of leveraging naturally occurring phenotypes to overcome bottlenecks constraining the bioeconomy has marshalled increased exploration of nonconventional organisms. This review discusses the status of non-model eukaryotic species in bioproduction, the evaluation criteria for effectively matching a candidate host to a biosynthetic process, and the genetic engineering tools needed for host domestication. We present breakthroughs in genome editing and heterologous pathway design, delving into innovative spatiotemporal modulation strategies that potentiate more refined engineering capabilities. We cover current understanding of genetic instability and its ramifications for industrial scale-up, highlighting key factors and possible remedies. Finally, we propose future opportunities to expand the current collection of available hosts and provide guidance to benefit the broader bioeconomy.
Collapse
Affiliation(s)
- Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA; Bioeconomy Institute, Iowa State University, Ames, IA, USA; The Ames Laboratory, Ames, IA, USA.
| |
Collapse
|
14
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|
15
|
Li H, Liu S, Liu Y, Hui M, Pan C. Functional microorganisms in Baijiu Daqu: Research progress and fortification strategy for application. Front Microbiol 2023; 14:1119675. [PMID: 36778882 PMCID: PMC9911690 DOI: 10.3389/fmicb.2023.1119675] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Daqu is a saccharifying and fermenting starter in the production of Chinese Baijiu; its quality directly affects the quality of Baijiu. The production of Daqu is highly environment-dependent, and after long-term natural domestication, it is rich in a wide variety of microorganisms with a stable composition, which provide complex and diverse enzymes and flavor (precursor) substances and microbiota for Jiupei (Fermented grains) fermentation. However, inoculation with a relatively stable microbial community can lead to a certain upper limit or deficiencies of the physicochemical properties (e.g., saccharification capacity, esterification capacity) of the Daqu and affect the functional expression and aroma formation of the Daqu. Targeted improvement of this problem can be proposed by selecting functional microorganisms to fortify the production of Daqu. This review introduced the isolation, screening, identification and functional characteristics of culture-dependent functional microorganisms in Baijiu-brewing, the core functional microbiota community of Daqu, and the related research progress of functional microorganisms fortified Daqu, and summarized the fortifying strategies of functional microorganisms, aiming to further deepen the application of functional microorganisms fortification in Daqu fermentation and provide ideas for the flavor regulation and quality control of Baijiu.
Collapse
Affiliation(s)
- Haideng Li
- College of Biological Engineering, Henan University of Technology, Henan, Zhengzhou, China,College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shengyuan Liu
- International Education College, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Henan, Zhengzhou, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Chunmei Pan,
| |
Collapse
|
16
|
Screening of Yeasts Isolated from Baijiu Environments for Producing 3-Methylthio-1-propanol and Optimizing Production Conditions. Foods 2022; 11:foods11223616. [PMID: 36429207 PMCID: PMC9689521 DOI: 10.3390/foods11223616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
3-Methylthio-1-propanol (3-Met) is widely used as a flavoring substance and an essential aroma ingredient in many foods. Producing 3-Met by microbial transformation is green and eco-friendly. In the present study, one strain, YHM-G, which produced a high level of 3-Met, was isolated from the Baijiu-producing environment. Strain YHM-G was identified as Hyphopichia burtonii according to its morphological properties, physiological and biochemical characteristics, and ribosomal large subunit 26S rRNA gene D1/D2 domain sequence analysis. The optimal conditions for 3-Met production by YHM-G were obtained by single factor design, Plackett-Burman design, steepest ascent path design and response surface methodology as follows: 42.7 g/L glucose, pH 6, 0.9 g/L yeast extract, 6 g/L L-methionine (L-Met), culture temperature 28 °C, shaking speed 210 rpm, loading volume 50 mL/250 mL, inoculum size 0.5% (v/v), culturing period 48 h and 2.5 g/L Tween-80. Under these optimal conditions, the 3-Met production by strain YHM-G was 3.16 g/L, a value 88.1% higher than that before optimization. Strain YHM-G can also produce a variety of flavor compounds that are important for many foods. This strain thus has the potential to increase the abundance of 3-Met in some fermented foods and enhance their aroma profiles.
Collapse
|
17
|
Gurunathan S, Lee AR, Kim JH. Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. Int J Mol Sci 2022; 23:12526. [PMID: 36293381 PMCID: PMC9604067 DOI: 10.3390/ijms232012526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
18
|
Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 2022; 11:foods11010109. [PMID: 35010235 PMCID: PMC8750221 DOI: 10.3390/foods11010109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes. In fact, the rarity of natural 2-PE in flowers has led to the inability to satisfy the large market demand and to a high selling price. Hence, there is a need to develop a more efficient, economic, and environmentally friendly biotechnological approach as an alternative to the conventional industrial one. The most promising method is through microbial fermentation, particularly using yeasts. Numerous yeasts have the ability to produce 2-PE using l-Phe as precursor. Some agro-industrial waste and by-products have the particularity of a high nutritional value, making them suitable media for microbial growth, including the production of 2-PE through yeast fermentation. This review summarizes the biotechnological production of 2-PE through the fermentation of different yeasts on synthetic media and on various agro-industrial waste and by-products.
Collapse
|
19
|
Screening a Strain of Klebsiella sp. O852 and the Optimization of Fermentation Conditions for Trans-Dihydrocarvone Production. Molecules 2021; 26:molecules26092432. [PMID: 33922023 PMCID: PMC8122266 DOI: 10.3390/molecules26092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Flavors and fragrances have high commercial value in the food, cosmetic, chemical and pharmaceutical industries. It is interesting to investigate the isolation and characterization of new microorganisms with the ability to produce flavor compounds. In this study, a new strain of Klebsiella sp. O852 (accession number CCTCC M2020509) was isolated from decayed navel orange (Citrus sinensis (L.) Osbeck), which was proved to be capable of converting limonene to trans-dihydrocarvone. Besides, the optimization of various reaction parameters to enhance the trans-dihydrocarvone production in shake flask was performed for Klebsiella sp. O852. The results showed that the yield of trans-dihydrocarvone reached up to 1 058 mg/L when Klebsiella sp. O852 was incubated using LB-M medium for 4 h at 36 °C and 150 rpm, and the biotransformation process was monitored for 36 h after adding 1680 mg/L limonene/ethanol (final ethanol concentration of 0.8% (v/v)). The content of trans-dihydrocarvone increased 16 times after optimization. This study provided a basis and reference for producing trans-dihydrocarvone by biotransformation.
Collapse
|