1
|
Wu J, Wang K, Qi X, Zhou S, Zhao S, Lu M, Nie Q, Li M, Han M, Luo X, Yun C, Wang P, Li R, Zhong C, Yu X, Yin WB, Jiang C, Qiao J, Pang Y. The intestinal fungus Aspergillus tubingensis promotes polycystic ovary syndrome through a secondary metabolite. Cell Host Microbe 2025; 33:119-136.e11. [PMID: 39788092 DOI: 10.1016/j.chom.2024.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Polycystic ovary syndrome (PCOS) affects 6%-10% of women of reproductive age and is known to be associated with disruptions in the gut bacteria. However, the role of the gut mycobiota in PCOS pathology remains unclear. Using culture-dependent and internal transcribed spacer 2 (ITS2)-sequencing methods, we discovered an enrichment of the gut-colonizable fungus Aspergillus tubingensis in 226 individuals, with or without PCOS, from 3 different geographical areas within China. Colonization of mice with A. tubingensis led to a PCOS-like phenotype due to inhibition of Aryl hydrocarbon receptor (AhR) signaling and reduced interleukin (IL)-22 secretion in intestinal group 3 innate lymphoid cells (ILC3s). By developing a strain-diversity-based-activity metabolite screening workflow, we identified secondary metabolite AT-C1 as an endogenous AhR antagonist and a key mediator of PCOS. Our findings demonstrate that an intestinal fungus and its secondary metabolite play a critical role in PCOS pathogenesis, offering a therapeutic strategy for improving the management of the disease.
Collapse
Affiliation(s)
- Jiayu Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Kai Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shuang Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meisong Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qixing Nie
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Li
- Department of Physiology and Pathophysiology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Mengwei Han
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing, China
| | - Xi Luo
- Department of Physiology and Pathophysiology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changtao Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
2
|
Liu T, Zhou L, Dong R, Qu Y, Liu Y, Song W, Lv J, Wu S, Peng W, Shi L. Isomalto-Oligosaccharide Potentiates Alleviating Effects of Intermittent Fasting on Obesity-Related Cognitive Impairment during Weight Loss and the Rebound Weight Gain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23875-23892. [PMID: 39431286 DOI: 10.1021/acs.jafc.4c07351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Obesity-related cognitive dysfunction poses a significant threat to public health. The present study demonstrated mitigating effects of intermittent fasting (IF) and its combination with isomalto-oligosaccharides and IF (IF + IMO) on cognitive impairments induced by a high-fat-high-fructose (HFHF) diet in mice, with IF + IMO exhibiting superior effects. Transcriptomic analysis of the hippocampus revealed that the protective effects on cognition might be attributed to the suppression of toll-like receptor 4 (TLR4)/NFκB signaling, oxidative phosphorylation, and neuroinflammation. Moreover, both IF and IF + IMO modulated the gut microbiome and promoted the production of short-chain fatty acids, with IF + IMO displaying more pronounced effects. IF + IMO-modulated gut microbiota, metabolites, and molecular targets associated with cognitive impairments were further corroborated using human data from public databases Gmrepo and gutMgene. Furthermore, the fecal microbiome transplantation confirmed the direct impacts of IF + IMO-derived microbiota on improving cognition functions by suppressing TLR4/NFκB signaling and increasing BDNF levels. Notably, prior exposure to IF + IMO prevented weight-regain-induced cognitive decline, suppressed TLR4/NFκB signaling and inflammatory cytokines in the hippocampus, and mitigated weight regain-caused gut dysbacteriosis without altering body weight. Our study underscores that IMO-augmented alleviating effects of IF on obesity-related cognitive impairment particularly during weight-loss and weight-regain periods, presenting a novel nutritional strategy to tackle obesity-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Dong
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yizhe Qu
- School of Physical Education, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shan Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810016, Qinghai, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Güler MA, Çetin B, Albayrak B, Meral-Aktaş H, Tekgündüz KŞ, Kara M, Işlek A. Isolation, identification, and in vitro probiotic characterization of forty novel Bifidobacterium strains from neonatal feces in Erzurum province, Türkiye. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4165-4175. [PMID: 38299445 DOI: 10.1002/jsfa.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal feces are one of the most important sources for probiotic isolation. The purpose of this study was the isolation and identification of Bifidobacterium spp. from neonatal feces and the evaluation of in vitro probiotic properties of strains including safety tests. RESULTS A total of 40 isolates were obtained from 14 healthy newborns' feces in Erzurum province, Türkiye. By their rep-PCR patterns and 16S rRNA gene sequences, isolates were identified as 26 Bifidobacterium breve and 14 Bifidobacterium longum. Fifteen of the isolates tolerated bile salts and showed high resistance to simulated gastric juice. Isolates exhibited varying rates of auto-aggregation and hydrophobicity. In addition, most of the isolates displayed antibacterial activity against Escherichia coli O157:H7, Staphylococcus aureus ATCC 29213, Salmonella Typhimurium RSHMB 95091, and Pseudomonas aeruginosa ATCC 9027. However, only one strain showed bile salt hydrolase activity and two strains showed the ability to produce H2O2. Bifidobacterium strains were generally sensitive to the tested antibiotics and lacked kanamycin, gentamicin, and streptomycin resistance genes, and hemolytic and DNAse activities. On the other hand, it was determined that five strains had various virulence genes including gelE, esp, efaAfs, hyl, and ace. CONCLUSION Results of the present study suggested that B. longum BH28, B. breve BH4 and B. breve BH5 strains have the potential as probiotic candidates for further studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammet Akif Güler
- Division of Pediatric Nephrology, Department of Pediatrics, Atatürk University, Faculty of Medicine, Erzurum, Türkiye
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Bülent Albayrak
- Department of Gastroenterology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Hacer Meral-Aktaş
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Kadir Şerafettin Tekgündüz
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mustafa Kara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Ali Işlek
- Department of Pediatric Gastroenterology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| |
Collapse
|
4
|
Valvaikar S, Vaidya B, Sharma S, Bishnoi M, Kondepudi KK, Sharma SS. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochem Int 2024; 174:105691. [PMID: 38311217 DOI: 10.1016/j.neuint.2024.105691] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.
Collapse
Affiliation(s)
- Sonali Valvaikar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
5
|
Matta T, Bhatia R, Joshi SR, Bishnoi M, Chopra K, Kondepudi KK. GABA synthesizing lactic acid bacteria and genomic analysis of Levilactobacillus brevis LAB6. 3 Biotech 2024; 14:62. [PMID: 38344283 PMCID: PMC10850046 DOI: 10.1007/s13205-024-03918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/03/2024] [Indexed: 03/10/2024] Open
Abstract
This study was conducted to investigate the γ-aminobutyric acid (GABA) production ability of 20 Lactobacillus and 25 Bifidobacterium strains which were previously isolated in our laboratory. Effect of initial pH, incubation time, monosodium glutamate (MSG), and pyridoxal-5'-phosphate (PLP) concentration for highest GABA production by two potent bacterial strains, Levilactobacillus brevis LAB6 and Limosilactobacillus fermentum LAB19 were optimized in the MRS media. A threefold increase in GABA production at an initial pH 4.0, incubation time of 120 h in medium supplemented with 3% MSG and 400 μM of PLP for LAB6 and 300 μM for LAB19 lead to the production of 19.67 ± 0.28 and 20.77 ± 0.14 g/L of GABA, respectively. Coculturing both strains under optimized conditions led to a GABA yield of 20.02 ± 0.17 g/L. Owing to potent anti-inflammatory activity in-vitro, as reported previously, and highest GABA production ability of LAB6 (MTCC 25662), its whole-genome sequencing and bioinformatics analysis was carried out for mining genes related to GABA metabolism. LAB6 harbored a complete glutamate decarboxylase (GAD) gene system comprising gadA, gadB, and gadC as well as genes responsible for the beneficial probiotic traits, such as for acid and bile tolerance and host adhesion. Comparative genomic analysis of LAB6 with 28 completely sequenced Levilactobacillus brevis strains revealed the presence of 95 strain-specific genes-families that was significantly higher than most other L. brevis strains. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03918-7.
Collapse
Affiliation(s)
- Tushar Matta
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014 India
| | - Ruchika Bhatia
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Santa Ram Joshi
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| |
Collapse
|
6
|
Monga N, Sharma S, Bhatia R, Bishnoi M, Kiran Kondepudi K, Naura AS. Immunomodulatory action of synbiotic comprising of newly isolated lactic acid producing bacterial strains against allergic asthma in mice. Cell Immunol 2023; 393-394:104786. [PMID: 37984277 DOI: 10.1016/j.cellimm.2023.104786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Given the reported role of gut-microbiota in asthma pathogenesis, the present work was carried to evaluate immunomodulatory action of newly isolated lactic acid producing bacterial strains Bifidobacterium breve Bif11 and Lactiplantibacillus plantarum LAB31 against asthma using ovalbumin (OVA) based mouse model. Our results show that both strains modulate Th2 immune response potentially through production of short chain fatty acids (SCFAs), resulting in suppression of OVA-induced airway inflammation. Furthermore, synbiotic comprising of both strains and prebiotic, Isomaltooligosaccharide exhibited superior potential in amelioration of OVA-induced airway inflammation through improved modulation of Th2 immune response. Further, synbiotic protects against OVA-induced mucus hyper-production and airway-hyperresponsiveness. Such protection was associated with normalization of gut microbiome and enhanced production of SCFAs in cecum which correlates closely with population of T-regulatory cells in spleen. Overall, our novel synbiotic possesses the ability to fine-tune the immune response for providing protection against allergic asthma.
Collapse
Affiliation(s)
- Naina Monga
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India; Adjunct Faculty, Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India; Adjunct Faculty, Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India; Adjunct Faculty, Department of Biotechnology, Panjab University, Chandigarh 160014, India; Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India; Adjunct Faculty, Department of Biotechnology, Panjab University, Chandigarh 160014, India; Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, India.
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
7
|
Bifidobacterium breve Bif11 supplementation improves depression-related neurobehavioural and neuroinflammatory changes in the mouse. Neuropharmacology 2023; 229:109480. [PMID: 36868402 DOI: 10.1016/j.neuropharm.2023.109480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Gut dysbiosis has been closely linked to the onset and progression of several brain-related disorders such as depression. The administration of microbiota-based formulations such as probiotics helps restore healthy gut flora and plays a role in preventing and treating depression-like behavior. Therefore, we evaluated the efficacy of probiotic supplementation using our recently isolated putative probiotic Bifidobacterium breve Bif11 in ameliorating lipopolysaccharide (LPS)-induced depression-like behavior in male Swiss albino mice. Mice were fed orally with B. breve Bif11 (1 × 1010 CFU and 2 × 1010 CFU) for 21 days before being challenged with a single intraperitoneal LPS injection (0.83 mg/kg). Behavioral, biochemical, histological and molecular analysis were done with an emphasis on inflammatory pathways linked to depression-like behavior. Daily supplementation with B. breve Bif11 for 21 days prevented the onset of depression-like behavior induced by LPS injection, besides reducing the levels of inflammatory cytokines such as matrix metalloproteinase-2, c-reactive protein, interleukin-6, tumor necrosis factor-alpha and nuclear factor kappa-light-chain-enhancer of activated B cells. It also prevented the decrease of the brain-derived neurotrophic factor levels and neuronal cell viability in the prefrontal cortex of LPS-treated mice. Furthermore, we observed that gut permeability was reduced, there was an improved short-chain fatty acid profile and reduced gut dysbiosis in the LPS mice fed with B. breve Bif11. Similarly, we observed a decrease in behavioural deficits and restoration of gut permeability in chronic mild stress. Together, these results would help in deciphering the role of probiotics in the management of neurological disorders where depression, anxiety and inflammation are prominent clinical features.
Collapse
|