1
|
Barakat H, Aljutaily T, Almujaydil MS, Algheshairy RM, Alhomaid RM, Almutairi AS, Alshimali SI, Abdellatif AAH. Amygdalin: A Review on Its Characteristics, Antioxidant Potential, Gastrointestinal Microbiota Intervention, Anticancer Therapeutic and Mechanisms, Toxicity, and Encapsulation. Biomolecules 2022; 12:biom12101514. [PMID: 36291723 PMCID: PMC9599719 DOI: 10.3390/biom12101514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Bioactive amygdalin, found in high concentrations in bitter almonds, has been recognized as a symbol of the cyanogenic glycoside chemical organic substance, which was initially developed as a pharmaceutical for treating cancer after being hydrolyzed to hydrogen cyanide (HCN). Regrettably, research has shown that HCN can also damage normal cells, rendering it non-toxic to the human body. Extreme controversy surrounds both in vivo and in vitro studies, making its use risky. This review provides an extensive update on characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic, mechanisms, toxicity, and encapsulation of amygdalin. Antioxidant, anti-tumor, anti-fibrotic, antiatherosclerosis, anti-inflammatory, immunomodulatory, and analgesic characteristics, and the ability to improve digestive and reproductive systems, neurodegeneration, and cardiac hypertrophy are just some of the benefits of amygdalin. Studies verified the HCN-produced amygdalin to be harmful orally, but only at very high doses. Although intravenous treatment was less effective than the oral method, the oral route has a dose range of 0.6 to 1 g daily. Amygdalin’s toxicity depends heavily on the variety of bacteria in the digestive tract. Unfortunately, there is currently no foolproof method for determining the microbial consortium and providing a safe oral dosage for every patient. Amygdalin encapsulation in alginate-chitosan nanoparticles (ACNPs) is a relatively new area of research. Amygdalin has an enhanced cytotoxic effect on malignant cells, and ACNPs can be employed as an active drug-delivery system to release this compound in a regulated, sustained manner without causing any harm to healthy cells or tissues. In conclusion, a large area of research for a substance that might be the next step in cancer therapy is opened up due to unverified and conflicting data.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- Correspondence: or
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raghad M. Alhomaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh I. Alshimali
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
2
|
Dai W, Li C, Li T, Hu J, Zhang H. Super-taxon in human microbiome are identified to be associated with colorectal cancer. BMC Bioinformatics 2022; 23:243. [PMID: 35729515 PMCID: PMC9215102 DOI: 10.1186/s12859-022-04786-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Microbial communities in the human body, also known as human microbiota, impact human health, such as colorectal cancer (CRC). However, the different roles that microbial communities play in healthy and disease hosts remain largely unknown. The microbial communities are typically recorded through the taxa counts of operational taxonomic units (OTUs). The sparsity and high correlations among OTUs pose major challenges for understanding the microbiota-disease relation. Furthermore, the taxa data are structured in the sense that OTUs are related evolutionarily by a hierarchical structure. RESULTS In this study, we borrow the idea of super-variant from statistical genetics, and propose a new concept called super-taxon to exploit hierarchical structure of taxa for microbiome studies, which is essentially a combination of taxonomic units. Specifically, we model a genus which consists of a set of OTUs at low hierarchy and is designed to reflect both marginal and joint effects of OTUs associated with the risk of CRC to address these issues. We first demonstrate the power of super-taxon in detecting highly correlated OTUs. Then, we identify CRC-associated OTUs in two publicly available datasets via a discovery-validation procedure. Specifically, four species of two genera are found to be associated with CRC: Parvimonas micra, Parvimonas sp., Peptostreptococcus stomatis, and Peptostreptococcus anaerobius. More importantly, for the first time, we report the joint effect of Parvimonas micra and Parvimonas sp. (p = 0.0084) as well as that of Peptostrepto-coccus stomatis and Peptostreptococcus anaerobius (p = 8.21e-06) on CRC. The proposed approach provides a novel and useful tool for identifying disease-related microbes by taking the hierarchical structure of taxa into account and further sheds new lights on their potential joint effects as a community in disease development. CONCLUSIONS Our work shows that proposed approaches are effective to study the microbiota-disease relation taking into account for the sparsity, hierarchical and correlated structure among microbes.
Collapse
Affiliation(s)
- Wei Dai
- Department of Biostatistics, Yale University School of Public Health, 300 George Street, Ste 523, New Haven, CT, 06511, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ting Li
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianchang Hu
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, 300 George Street, Ste 523, New Haven, CT, 06511, USA.
| |
Collapse
|
3
|
Abd Ellatif SA, Bouqellah NA, Abu-Serie MM, Razik ESA, Al-Surhanee AA, Askary AE, Daigham GE, Mahfouz AY. Assessment of probiotic efficacy and anticancer activities of Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1) isolated from dairy products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39684-39701. [PMID: 35112259 DOI: 10.1007/s11356-022-18537-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Resistance to antibiotics is on the rise, and its indiscriminate usage has resulted in human and animal management constraints. In the research for an innovative treatment to diminish antimicrobial resistance, lactic acid bacteria (LAB) throw light on diminishing this problem in public health. As a result, this paper looked at the efficacy of LAB isolates and their active metabolites to combat pathogens, reduce antibiotic use in clinical settings, and explore the anticancer potential of 8 strains of LAB isolated from dairy products. Antifungal and antibacterial potential of LAB isolates against selected crop pathogenic fungi and food pathogenic bacteria had been estimated. Results revealed that all isolates exert antioxidant efficacy relating to DPPH, NO scavenging ability, reducing power, superoxide anion, hydroxyl radical, and anti-lipid peroxidation potential. Additionally, 12B isolate exert the highest anticancer upshot with IC50 values of 43.98 ± 0.4; 36.7 ± 0.6, 43.1 ± 0.8, and 35.1 ± 0.3 μg/ml, versus Caco-2, MCF-7, HepG-2, and PC3 cell lines respectively, whereas 13B isolate significantly had the highest selectivity index between peripheral blood mononuclear cells (PBMCs) and the tested human cancer cell lines compared to 5-fluorouracil. 13B was the most apoptosis-dependent death inducer for all human cancer cell lines besides exerting the lowest percentage of apoptosis against PBMCs suggesting its safety against PBMCs. The most promising strains 12B and 13B were identified by 16S rRNA sequencing as Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1). LAB and their extracts are superb substitutive, safe, and efficient antimicrobial, antioxidant, and antitumor curative agents.
Collapse
Affiliation(s)
- Sawsan A Abd Ellatif
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Nahla Alsayed Bouqellah
- Science College, Biology Department, Taibah University, 42317- 8599, Al-Madinah Al-Munawara, Kingdom of Saudi Arabia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the City of Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Ameena A Al-Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Kingdom of Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| |
Collapse
|
4
|
Xia J, Gu L, Guo Y, Feng H, Chen S, Jurat J, Fu W, Zhang D. Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Front Cell Infect Microbiol 2021; 11:627608. [PMID: 33987106 PMCID: PMC8110911 DOI: 10.3389/fcimb.2021.627608] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
Capsaicin (CAP) is an active ingredient in chili pepper that is frequently consumed. It exerts various pharmacological activities, and also has potential effects on mental illness. However, its mechanism of antidepressant effects is still unclear. Based on the emerging perspective of the gut-brain axis, we investigated the effects of dietary CAP on gut microbes in mice with depression-like behaviors induced by lipopolysaccharide (LPS). C57BL/6J male mice (four weeks old) were given specific feed (standard laboratory chow or laboratory chow plus 0.005% CAP) for 4 months. During the last five days, LPS (0.052/0.104/0.208/0.415/0.83 mg/kg, 5-day) was injected intraperitoneally to induce depression. Behavioral indicators and serum parameters were measured, and gut microbiota were identified by sequencing analysis of the 16S gene. This study showed that dietary CAP improved depressive-like behavior (sucrose preference test, forced swimming test, tail suspension test) and levels of 5-HT and TNF-α in serum of LPS-induced mice with depression-like behaviors. In addition, CAP could recover abnormal changes in depression-related microbiota. Especially at the genus level, CAP enhanced the variations in relative abundance of certain pivotal microorganisms like Ruminococcus, Prevotella, Allobaculum, Sutterella, and Oscillospira. Correlation analysis revealed changes in microbiota composition that was closely related to depressive behavior, 5-HT and TNF-α levels. These results suggested that dietary CAP can regulate the structure and number of gut microbiota and play a major role in the prevention of depression.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Li Gu
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yitong Guo
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hongyan Feng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuhan Chen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jessore Jurat
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Wenjing Fu
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Jaswal V, Palanivelu J, C R. Effects of the Gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity. Biochem Biophys Rep 2018; 14:125-132. [PMID: 29872744 PMCID: PMC5986699 DOI: 10.1016/j.bbrep.2018.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Conventional and Alternative Medicine (CAM) is popularly used due to side-effects and failure of approved methods, for diseases like Epilepsy and Cancer. Amygdalin, a cyanogenic diglycoside is commonly administered for cancer with other CAM therapies like vitamins and seeds of fruits like apricots and bitter almonds, due to its ability to hydrolyse to hydrogen cyanide (HCN), benzaldehyde and glucose. Over the years, several cases of cyanide toxicity on ingestion have been documented. In-vitro and in-vivo studies using various doses and modes of administration, like IV administration studies that showed no HCN formation, point to the role played by the gut microbiota for the commonly seen poisoning on consumption. The anaerobic Bacteriodetes phylum found in the gut has a high β-glucosidase activity needed for amygdalin hydrolysis to HCN. However, there are certain conditions under which these HCN levels rise to cause toxicity. Case studies have shown toxicity on ingestion of variable doses of amygdalin and no HCN side-effects on consumption of high doses. This review shows how factors like probiotic and prebiotic consumption, other CAM therapies, obesity, diet, age and the like, that alter gut consortium, are responsible for the varying conditions under which toxicity occurs and can be further studied to set-up conditions for safe oral doses. It also indicates ways to delay or quickly treat cyanide toxicity due to oral administration and, reviews conflicts on amygdalin's anti-cancer abilities, dose levels, mode of administration and pharmacokinetics that have hindered its official acceptance at a therapeutic level.
Collapse
Affiliation(s)
| | | | - Ramalingam C
- School of Bio-Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Irecta-Nájera CA, Del Rosario Huizar-López M, Casas-Solís J, Castro-Félix P, Santerre A. Protective Effect of Lactobacillus casei on DMH-Induced Colon Carcinogenesis in Mice. Probiotics Antimicrob Proteins 2018; 9:163-171. [PMID: 28316010 DOI: 10.1007/s12602-017-9253-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The administration of probiotics is a promising approach to reduce the prevalence of colon cancer, a multifactorial disease, with hereditary factors, as well as environmental lifestyle-related risk factors. Biogenic polyamines, putrescine, spermidine, and spermine are small cationic molecules with great roles in cell proliferation and differentiation as well as regulation of gene expression. Ornithine decarboxylase is the first rate-limiting enzyme for polyamine synthesis, and upregulation of ornithine decarboxylase activity and polyamine metabolism has been associated with abnormal cell proliferation. This paper is focused on studying the protective role of Lactobacillus casei ATCC 393 in a chemically induced mouse model of colon carcinogenesis, directing our attention on aberrant crypt foci as preneoplastic markers, and on polyamine metabolism as a possible key player in carcinogenesis. BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) to induce colon cancer (20 mg/kg body weight, subcutaneous, twice a week for 24 weeks). L. casei ATCC 393 was given orally (106 CFU, twice a week), 2 weeks before DMH administration. Hematoxylin and eosin staining, high-performance liquid chromatography, and Western blotting were used to evaluate aberrant crypt foci, urinary polyamines, and ornithine decarboxylase expression in the colon. The experimental data showed that the preventive administration of L. casei ATCC 393 may delay the onset of cancer as it significantly reduced the number of DMH-induced aberrant crypt foci, the levels of putrescine, and the expression of ornithine decarboxylase. Hence, this probiotic strain has a prospective role in protection against colon carcinogenesis, and its antimutagenic activity may be associated with the maintenance of polyamine metabolism.
Collapse
Affiliation(s)
- Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Periférico Sur s/n, María Auxiliadora, 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Patricia Castro-Félix
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico.
| |
Collapse
|
7
|
Alberoni D, Baffoni L, Gaggìa F, Ryan PM, Murphy K, Ross PR, Stanton C, Di Gioia D. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Benef Microbes 2018; 9:269-278. [PMID: 29380644 DOI: 10.3920/bm2017.0061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Honey bees are important pollinators of several crops and ecosystems, having a great ecological and economic value. In Europe, the restricted use of chemicals and therapeutic agents in the beekeeping sector has stimulated the search for natural alternatives with a special focus on gut symbionts. The modulation of the gut microbiota has been recognised as a practical and successful approach in the entomological field for the management of insect-related problems. To date, only a few studies have investigated the effect of bacterial supplementation on the health status of colonies, colony productivity and gut symbionts. To this purpose, a preparation of sugar syrup containing bifidobacteria and lactobacilli isolated from bee gut was sprayed on the frames of an apiary located in open field once a week for four weeks. Treated and control hives were monitored for two months for brood extension, honey and pollen harvest. The presence of beneficial gut microorganisms within bee gut was investigated with denaturing gradient gel electrophoresis and next generation sequencing. The administered bacteria led to a significant increase of brood population (46.2%), pollen (53.4%) and harvestable honey in honey supers (59.21%). Analysis of the gut microbiota on the new generation of bees in treated hives showed an increase in relative abundance of Acetobacteraceae and Bifidobacterium spp., which are known to be involved in bee nutrition and protection.
Collapse
Affiliation(s)
- D Alberoni
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - L Baffoni
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - F Gaggìa
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - P M Ryan
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - K Murphy
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - P R Ross
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - C Stanton
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - D Di Gioia
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
8
|
elaheh M, Ali MS, Elnaz M, Ladan N. Prebiotic effect of Jerusalem artichoke (Helianthus tuberosus) fructans on the growth performance of Bifidobacterium bifidum and Escherichia coli. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)61053-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|