1
|
Elhamdi M, Belhadjletaief C, Hmidet N, Ghorbel S. Proteases and keratinases from Bacillus zhangzhouensis MH1: Practical use in detergent, leather, and waste management processes. Int J Biol Macromol 2025; 284:138036. [PMID: 39592041 DOI: 10.1016/j.ijbiomac.2024.138036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Microbial proteases and keratinases find extensive application in both the detergent and leather industries, as well as in poultry waste management. In this study, a multifunctional strain MH1 exhibiting proteolytic and keratinolytic activities was newly isolated and identified as Bacillus zhangzhouensis. To improve its stability, the proteolytic extract was spray-dried and the stability was assessed during two years of storage. The enzyme preparation was fully stable up to 20 months of conservation at 4 °C even in the absence of any protective agent, while the enzymatic half-life at room temperature was twenty months using maltodextrin as a protector additive. MH1 was a feather-decomposing strain producing keratinases (95 U/ml) on feather medium. Therefore, the study evaluated the use of these enzymes in the detergent, tannery, and feed processes. Results showed that the sprayed proteases showed high compatibility with commercial liquid and solid detergents and efficiently removed bloodstains at low wash temperatures. They also revealed significant dehairing activity of cow skin without surface damage. While keratinases effectively transformed chicken feathers into keratin hydrolysate with strong antioxidant activity. Therefore, these enzymes could be a green alternative to hazardous chemicals utilized for detergent, leather, and biodegradation of keratinous waste.
Collapse
Affiliation(s)
- Marwa Elhamdi
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia.
| | - Chayma Belhadjletaief
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Noomen Hmidet
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Sofiane Ghorbel
- University of Jeddah, Applied College, Biology Department, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Gupta M, Choudhury B, Navani NK. Production and characterization of an organic solvent activated protease from haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR. Heliyon 2024; 10:e25084. [PMID: 38314259 PMCID: PMC10837622 DOI: 10.1016/j.heliyon.2024.e25084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
An unusual haloalkaliphilic bacterium known as Halobiforma sp. strain BNMIITR, which was noticed to produce an extracellular alkaline protease, was found in a soil sample from Northern India's Sambhar Lake. On the generation of protease, the effects of dietary elements including nitrogen and carbon sources, amino acids, and growth conditions like temperature and pH were investigated. When low-cost agricultural by-products were employed as nitrogen sources, the manufacturing of enzymes was significantly boosted. In the present study, protease production was enhanced by 2.94 fold and 2.17 fold. By solvent precipitation and Hydrophobic interaction chromatography (HIC) on Phenyl Sepharose 6 Fast Flow matrix, the enzyme was purified 31.67 fold. It was determined that the apparent molecular mass was 21 kDa. The pH range where the enzyme was most stable was 6.0-12.0, with a temperature of 50 °C as optimum. When there was alkaline earth metals and heavy metals, protease was discovered to be active. It was evident that the enzyme was a serine type of protease because it was active in the presence of a variety of surfactants, oxidizing and reducing chemicals, and phenylmethylsulfonyl fluoride (PMSF) completely inhibited activity. Enzyme exhibited a wide range of substrate specificity. Amazingly, enzyme remained stable both in polar and nonpolar solvents. The most interesting aspect of this enzyme is enhanced activity in polar solvents like dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). It was discovered that the protease was stable and compatible with a number of widely available detergents.
Collapse
Affiliation(s)
- Meenu Gupta
- Botany Department, J. D. Women's College Patna, Bihar, 800023, India
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Bijan Choudhury
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
3
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
4
|
Gaonkar SK, Alvares JJ, Furtado IJ. Recent advances in the production, properties and applications of haloextremozymes protease and lipase from haloarchaea. World J Microbiol Biotechnol 2023; 39:322. [PMID: 37755613 DOI: 10.1007/s11274-023-03779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Proteases and lipases are significant groups of enzymes for commercialization at the global level. Earlier, the industries depended on mesophilic proteases and lipases, which remain nonfunctional under extreme conditions. The discovery of extremophilic microorganisms, especially those belonging to haloarchaea, paved a new reserve of industrially competent extremozymes. Haloarchaea or halophilic archaea are polyextremophiles of domain Archaea that grow at high salinity, elevated temperature, pH range (pH 6-12), and low aw. Interestingly, haloarchaeal proteolytic and lipolytic enzymes also perform their catalytic function in the presence of 4-5 M NaCl in vivo and in vitro. Also, they are of great interest to study due to their capacity to function and are active at elevated temperatures, tolerance to pH extremes, and in non-aqueous media. In recent years, advances have been achieved in various aspects of genomic/molecular expression methods involving homologous and heterologous processes for the overproduction of these extremozymes and their characterization from haloarchaea. A few protease and lipase extremozymes have been successfully expressed in prokaryotic systems, especially E.coli, and enzyme modification techniques have improved the catalytic properties of the recombinant enzymes. Further, in-silico methods are currently applied to elucidate the structural and functional features of salt-stable protease and lipase in haloarchaea. In this review, the production and purification methods, catalytic and biochemical properties and biotechnological applications of haloextremozymes proteases and lipases are summarized along with recent advancements in overproduction and characterization of these enzymes, concluding with the directions for further in-depth research on proteases and lipases from haloarchaea.
Collapse
Affiliation(s)
- Sanket K Gaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
- Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda-Goa, 403401, India.
| | - Jyothi Judith Alvares
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Irene J Furtado
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
5
|
Naik R, Sharma LK. Monitoring migratory birds of India's largest shallow saline Ramsar site (Sambhar Lake) using geospatial data for wetland restoration. WETLANDS ECOLOGY AND MANAGEMENT 2022; 30:477-496. [PMID: 35368405 PMCID: PMC8960692 DOI: 10.1007/s11273-022-09875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Globally, saline lakes occupy about 23% by area, and 44% by volume. Importantly, these lakes might desiccate by 2025 due to agricultural diversion, illegal encroachment, or modify due to pollution, and invasive species. India's largest saline lake, Sambhar is currently shrinking at a phenomenal rate of 4.23% every decade due to illegal saltpan encroachments. This study aims to identify the trend of migratory birds and monthly wetland status. Birds' survey was conducted for 2019, 2020 and 2021, and combined it with literature data of 1994, 2003, and 2013, for understanding their visiting trends, feeding habits, migratory and resident birds ratio, along with ecological diversity index analysis. Normalized Difference Water Index (NDWI) was scripted in Google Earth Engine. Results state that lake has been suitable for 97 species. Highest NDWI values was 0.71 in 2021 and lowest 0.008 in 2019. Notably, the decreasing trend of migratory birds coupled with decreasing water level indicates the dubious status for its existence. If these causal factors are not checked, it might completely desiccate. Authors recommend a few steps that might help conservation. Least, the cost of restoration might exceed the revenue generation. Supplementary Information The online version contains supplementary material available at 10.1007/s11273-022-09875-3.
Collapse
Affiliation(s)
- Rajashree Naik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817 India
| | - Laxmi Kant Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817 India
| |
Collapse
|
6
|
Naik R, Sharma L. Spatio-temporal modelling for the evaluation of an altered Indian saline Ramsar site and its drivers for ecosystem management and restoration. PLoS One 2021; 16:e0248543. [PMID: 34292947 PMCID: PMC8297798 DOI: 10.1371/journal.pone.0248543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
Saline lakes occupy 44% and 23% of the volume and area of all lakes that are tending to suffer from extended dryness, reduced hydro period, or complete desiccation by 2025. The current study is conducted on Sambhar Salt Lake, the largest inland saline Ramsar, site of India, contributing to 9.86% of total salt production. The lake is under threat due to illegal salt pan encroachment, losing brine worth 300 million USD. The objective was to identify the key drivers that affect the lake at a landscape level. Geospatial modelling was conducted for 96 years (1963–2059) at a decadal scale, integrating ground data (birds-soil-water). Land Use Land Cover (LULC) classification was conducted using CORONA aerial imagery of 1963, along with Landsat imageries, using supervised classification for 1972, 1981, 1992, 2009, and 2019, and future prediction for 2029, 2039, 2049, and 2059. Further, images were classified into 8 classes that include the Aravali hills, barren land, saline soil, salt crust, salt pans, wetland, settlement, and vegetation. Past trends show a reduction of wetland from 30.7 to 3.4% at a constant rate (4.23%) to saline soil, which subsequently seemed to increase by 9.3%, increasing thereby the barren land by 4.2%; salt pans by 6.6%, and settlement by 1.2% till 2019. Future predictions show loss of 40% wetland and 120% of saline soil and net increase in 30% vegetation, 40% settlement, 10% salt pan, 5% barren land, and a net loss of 20%, each by Aravali hills and salt crust. Additionally, the ground result shows its alteration and reduction of migratory birds from 3 million to 3000. In the light of UN Decade on Ecosystem Restoration (2021–2030), restoration strategies are suggested; if delayed, more restoration capital may be required than its revenue generation.
Collapse
Affiliation(s)
- Rajashree Naik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Laxmikant Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
- * E-mail:
| |
Collapse
|
7
|
Chauhan AK, Choudhury B. Synthetic dyes degradation using lignolytic enzymes produced from Halopiger aswanensis strain ABC_IITR by Solid State Fermentation. CHEMOSPHERE 2021; 273:129671. [PMID: 33517115 DOI: 10.1016/j.chemosphere.2021.129671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 11/01/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The present work focuses on studying the degradation of industrial synthetic dyes, which poses serious health hazards and a drastic impact on the environment. Currently available enzymatic processes have higher production and operational costs. However, most enzymes are active at acidic pH, which limits its application in textile dye degradation. This problem can be overcome by lignolytic enzymes obtained from halo-alkaliphile through Solid State Fermentation (SSF) using wheat bran (agro-byproduct) as a substrate. The major lignolytic enzymes studied were Lignin Peroxidase (LiP), Manganese Peroxidase (MnP), and laccase. The results demonstrated the highest activity of 215.4 ± 1.57 of LiP, 36.8 ± 2.38 of MnP, and 8.34 ± 0.21 IU/gds of laccase. Crude enzymes were used to treat synthetic dyes (mainly azo dyes), and their potential for its degradation was confirmed by spectrophotometric, GC-MS, and HPLC analysis. The highest decolorization of 82-93% of Malachite Green (MG) was achieved in LiP and MnP mediated reaction system within 2 hours. The laccase reaction system showed degradation of 53.87% of methyl orange without adding any redox mediator. After obtaining these results, the crude LiP and MnP in the reaction system were further subjected to decolorization at a higher MG concentration of 100-600 mg/L without a redox mediator. As a result, both LiP and MnP decolorized MG by 72-89%. Further, GC-MS analysis of MG biodegradation products confirmed the formation of less toxic low molecular weight products such as benzaldehyde and methanone.
Collapse
Affiliation(s)
- Ajay Kumar Chauhan
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 24667, India
| | - Bijan Choudhury
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 24667, India.
| |
Collapse
|
8
|
Chauhan AK, Choudhury B. Suitability of organic solvent and cholinium based ionic liquid activated novel lignolytic enzymes of H. aswanensis for enhanced Kalson lignin degradation. Int J Biol Macromol 2020; 165:107-117. [DOI: 10.1016/j.ijbiomac.2020.09.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
|
9
|
Neelam DK, Agrawal A, Tomer AK, Bandyopadhayaya S, Sharma A, Jagannadham MV, Mandal CC, Dadheech PK. A Piscibacillus sp. Isolated from A Soda Lake Exhibits Anticancer Activity Against Breast Cancer MDA-MB-231 Cells. Microorganisms 2019; 7:microorganisms7020034. [PMID: 30691094 PMCID: PMC6406920 DOI: 10.3390/microorganisms7020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/04/2023] Open
Abstract
Microorganisms thrive in extreme environments and are known for synthesizing valuable metabolites. Salt-loving microorganisms can flourish in saline environments which inhibit the growth of other microbial life, and they possess the potential to produce stable and novel biomolecules for the use in biotechnological applications, including anticancer compounds. Sambhar Lake is the largest inland soda lake in India and is an appropriate habitat for halophilic bacterial and archaeal strains in terms of diversity and potential production of bioactive compounds. In the present study, a moderately halo-alkaliphilic bacterial strain C12A1 was isolated from Sambhar Lake, located in Rajasthan, India. C12A1 was gram-positive, motile, rod-shaped, formed oval endospores, produced carotenoids, and exhibited optimal growth at 37 °C in 10–15% NaCl (pH 8). C12A1 was found to be able to hydrolyze skimmed milk, gelatin, and Tween 80 but unable to hydrolyze starch and carboxymethylcellulose. C12A1 showed 98.87% and 98.50% identity in 16S rRNA gene sequence to P. halophilus and P. salipiscarius, respectively. Nevertheless, C12A1 was clustered within the clade consisting of P. salipiscarius strains, but it showed a distinct lineage. Thus, C12A1 was designated as Piscibacillus sp. Cell proliferation assay results showed that C12A1 broth extract (BEP) decreased cell viability in breast cancer MDA-MB-231 cells, which was confirmed by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Induction of cell toxicity was visualized by microscopy. Reverse Transcriptase PCR (RT-PCR) analysis demonstrated that BEP inhibited the expression of proliferative B-cell lymphoma-extra large (Bcl-xL) and cell cycle marker Cyclin-dependent kinase 2 (CDK2) at transcript levels. Similarly, cell migration and colony formation along with mesenchymal marker vimentin and stem cell marker BMI transcripts were found to be inhibited when cells were treated with the BEP. The anti-breast cancer potential of C12A1 indicates that microorganisms inhabiting saline-alkaline habitats, with Piscibacillus sp. in particular, are a promising source for discovery of novel bioactive substances.
Collapse
Affiliation(s)
- Deepesh Kumar Neelam
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Akhil Agrawal
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Anuj Kumar Tomer
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | | | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Pawan K Dadheech
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| |
Collapse
|
10
|
Isolation and culturing of protease- and lipase-producing Halococcus agarilyticus GUGFAWS-3 from marine Haliclona sp. inhabiting the rocky intertidal region of Anjuna in Goa, India. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1391-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Mokashe N, Chaudhari B, Patil U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int J Biol Macromol 2018; 117:493-522. [DOI: 10.1016/j.ijbiomac.2018.05.217] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 09/30/2022]
|
12
|
Singh N, Choudhury B. Potential of Lentibacillus sp. NS12IITR for production of lipids with enriched branched-chain fatty acids for improving biodiesel properties along with hydrocarbon co-production. Extremophiles 2018; 22:865-875. [PMID: 30032330 DOI: 10.1007/s00792-018-1043-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 01/05/2023]
Abstract
Hypersaline environment is inhabited by array of microbes which have the potential to produce industrially important products. This study explored biomass and lipid production potential of the halophilic bacterium, strain NS12IITR which was isolated from Sambhar Lake, Rajasthan. Sequencing and phylogenetic analysis revealed that the bacterium belonged to genus Lentibacillus. The salient feature of the isolate is its ability to accumulate total cellular lipid up to 18.9 ± 0.45% of dry cell weight. In addition, trans-esterification of extracted lipid yielded 77.6 ± 5.56% of total esters as methyl ester of branched-chain fatty acids (BCFAs). To assess the nature of extracted lipid, lipid sample was fractionated on the silicic acid column, which demonstrated that 49.03 ± 1.35% of the total lipids was neutral in nature. Trans-esterification of the neutral lipid fraction yielded 60.62 ± 4.88% of total esters as methyl ester of BCFAs. Methyl esters of BCFAs were present in trans-esterified products of neutral as well as polar lipid fractions. Furthermore, the isolate produced hydrocarbons both extracellularly (C10-C30) and intra-cellularly (C15-C28). The concentration of extracellular hydrocarbon (21.11 ± 0.78 mg/L) synthesized by strain NS12IITR is in close agreement with the yield reported from other hydrocarbon producing bacteria. This is hereby a first report on the co-production of lipids and hydrocarbon from a halophilic bacterium. The production of neutral lipid with high percentage of BCFAs and co-production of hydrocarbons makes the isolate NS12IITR a potential claimant for biofuel production.
Collapse
Affiliation(s)
- Noopur Singh
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Bijan Choudhury
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
13
|
de Oliveira CT, Rieger TJ, Daroit DJ. Catalytic properties and thermal stability of a crude protease from the keratinolytic Bacillus sp. CL33A. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Mishra S, Raghuvanshi S, Gupta S, Raj K. Application of novel thermo-tolerant haloalkalophilic bacterium Halomonas stevensii for bio mitigation of gaseous phase CO 2 : Energy assessment and product evaluation studies. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Rieger TJ, de Oliveira CT, Pereira JQ, Brandelli A, Daroit DJ. Proteolytic system of Bacillus sp. CL18 is capable of extensive feather degradation and hydrolysis of diverse protein substrates. Br Poult Sci 2017; 58:329-335. [PMID: 28277791 DOI: 10.1080/00071668.2017.1293229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. Feathers are recalcitrant protein-rich wastes produced in huge amounts by poultry processing for meat production. Hence, feather bioconversion and protease production by Bacillus sp. CL18 were investigated. 2. Bacillus sp. CL18 demonstrated a remarkable feather-degrading potential. Through cultivations on feather broth (10 g l-1 feathers), 94.5% ± 3% of whole feathers were degraded after 4 d. Increases in soluble protein contents were observed and protease production was maximal also at d 4. This strain produced diverse proteolytic enzymes during growth. 3. Crude protease displayed optimal activity at 55°C (50-62°C), pH 8.0 (7.0-9.0) and a low thermal stability. Proteolytic activity increased in the presence of Ca2+, Mg2+, Triton X-100, Tween 20 and dimethyl sulphoxide. Inhibition profile indicated that crude protease contains, mainly, serine proteases. Enzyme preparation hydrolysed mainly casein and soy protein isolate. 4. The keratinolytic capacity of Bacillus sp. CL18 at moderate temperatures (30°C) might be appropriate for feather conversion, resulting in protein hydrolysates and proteolytic enzymes. Proteases are postulated to be added-value products that can be obtained from such a bioprocess.
Collapse
Affiliation(s)
- T J Rieger
- a Laboratório de Microbiologia , Universidade Federal da Fronteira Sul (UFFS) , Cerro Largo , Brazil
| | - C T de Oliveira
- a Laboratório de Microbiologia , Universidade Federal da Fronteira Sul (UFFS) , Cerro Largo , Brazil
| | - J Q Pereira
- b Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - A Brandelli
- b Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - D J Daroit
- a Laboratório de Microbiologia , Universidade Federal da Fronteira Sul (UFFS) , Cerro Largo , Brazil
| |
Collapse
|