1
|
Gallardo V, Costa J, Sepúlveda M, Cayún Y, Santander C, Ponce E, Bittencourt J, Arriagada C, Soto J, Pedreschi R, Vicente VA, Cornejo P, Santos C. Lipid Production in Cultivable Filamentous Fungi Isolated from Antarctic Soils: A Comprehensive Study. Microorganisms 2025; 13:504. [PMID: 40142397 PMCID: PMC11944995 DOI: 10.3390/microorganisms13030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Antarctic soil represents an important reservoir of filamentous fungi (FF) species with the ability to produce novel bioactive lipids. However, the lipid extraction method is still a bottleneck. The objective of the present work was to isolate and identify cultivable FF from Antarctic soils, to assess the most effective methods for fatty acid (FA) extraction, and to characterise the obtained lipids. A total of 18 fungal strains belonging to the Botrytis, Cladosporium, Cylindrobasidium, Mortierella, Penicillium, Pseudogymnoascus, and Talaromyces genera and the Melanommataceae family were isolated and identified. The Folch, Bligh and Dyer, and Lewis extraction methods were assessed, and methyl esters of FA (FAMEs) were obtained. The Lewis method was the best in recovering FAMEs from fungal biomass. A total of 17 FAs were identified, and their chemical compositions varied depending on fungal species and strain. Oleic, linoleic, stearic, and palmitic acids were predominant for all fungal strains in the three assessed methods. Among the analysed strains, Cylindrobasidium eucalypti, Penicillium miczynskii, P. virgatum, and Pseudogymnoascus pannorum produced high amounts of FA. This suggests that the soils of Antarctica Bay, as well as harbouring known oleaginous fungi, are also an important source of oleaginous filamentous fungi that remain poorly analysed.
Collapse
Affiliation(s)
- Victor Gallardo
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile; (V.G.); (M.S.)
- Postgraduate Program in Biotechnology, Federal University of Technology-Paraná, Ponta Grossa 84017-220, Brazil; (J.B.); (V.A.V.)
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas—ICB, Universidade Federal do Amazonas, Manaus 69080-900, Brazil;
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile; (Y.C.); (C.S.)
| | - Marcela Sepúlveda
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile; (V.G.); (M.S.)
- Postgraduate Program in Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba 80060-000, Brazil
| | - Yasna Cayún
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile; (Y.C.); (C.S.)
| | - Christian Santander
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile; (Y.C.); (C.S.)
| | - Excequel Ponce
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2340025, Chile; (E.P.); (R.P.)
| | - Juliana Bittencourt
- Postgraduate Program in Biotechnology, Federal University of Technology-Paraná, Ponta Grossa 84017-220, Brazil; (J.B.); (V.A.V.)
| | - César Arriagada
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (C.A.); (J.S.)
| | - Javiera Soto
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (C.A.); (J.S.)
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2340025, Chile; (E.P.); (R.P.)
- Millennium Institute Center for Genome Regulation (CRG), Santiago 8331150, Chile
| | - Vania Aparecida Vicente
- Postgraduate Program in Biotechnology, Federal University of Technology-Paraná, Ponta Grossa 84017-220, Brazil; (J.B.); (V.A.V.)
- Postgraduate Program in Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba 80060-000, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba 84017-220, Brazil
| | - Pablo Cornejo
- Plant Stress Physiology Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile
- Centro Tecnológico de Suelos y Cultivos (CTSyC), Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile
| | - Cledir Santos
- Postgraduate Program in Biotechnology, Federal University of Technology-Paraná, Ponta Grossa 84017-220, Brazil; (J.B.); (V.A.V.)
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile; (Y.C.); (C.S.)
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| |
Collapse
|
2
|
Hassane AMA, Eldiehy KSH, Saha D, Mohamed H, Mosa MA, Abouelela ME, Abo-Dahab NF, El-Shanawany ARA. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 2024; 206:338. [PMID: 38955856 DOI: 10.1007/s00203-024-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, P.O. Box 784028, Assam, India
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, P.O. Box 255000, Zibo, China
| | - Mohamed A Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, P.O. Box 12619, Giza, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Nageh F Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Abdel-Rehim A El-Shanawany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
3
|
Kumar R, Singh A, Shukla E, Singh P, Khan A, Singh NK, Srivastava A. Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. caused by fungal pathogens. J Appl Microbiol 2024; 135:lxae036. [PMID: 38341275 DOI: 10.1093/jambio/lxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
AIMS The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Ekta Shukla
- Department of Botany, Sunbeam College for Women, U.P., Bhagwanpur, Varanasi 221005, India
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Naveen Kumar Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Bihar, Gaya 824236, India
| |
Collapse
|
4
|
Thomas NM, Sathasivam V, Thirunavukarasu M, Muthukrishnan A, Muthukrishnan S, Rajkumar V, Velusamy G, Packiaraj G. Influence of Borassus flabellifer Endocarps Hydrolysate on Fungal Biomass and Fatty Acids Production by the Marine Fungus Aspergillus sp. Appl Biochem Biotechnol 2024; 196:923-948. [PMID: 37273094 DOI: 10.1007/s12010-023-04588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
Polyunsaturated Fatty Acids (PUFAs) are important nutrients for human health. We aimed to evaluate the efficiency of marine water fungus Aspergillus sp. (Accession no: MZ505709) for lipid biosynthesis. The Yeast Extract Glucose (YEG) medium was supplemented with different concentration of Borassus flabellifer Endocarps Hydrolysate (BFEH; 1-5%) to evaluate the fungal biomass and its lipid accumulation. The combination of glucose and BFEH as carbon source increased the fresh weight (25.43 ± 0.33 g/L), dry weight (21.39 ± 0.77 g/L) and lipid yield (3.14 ± 0.09 g/L) of fungal biomass. The lipid content of dried fungal biomass has shown 91.08 ± 5.07 mg cod liver oil equivalents/g and 125.98 ± 5.96 mg groundnut oil equivalents/g biomass. GC-MS and NMR spectrometry analysis revealed the compounds involved in fatty acid metabolism and lipid signaling pathways along with the presence of linolenic acid. Interestingly, fungus grown in BFEH enriched medium has recorded the maximum amount of lipids with major fatty acid derivatives. Increase in the growth rate of Artemia franciscana was observed, when the extracted fungal lipid was supplemented as a food supplement. Therefore, this study suggests that marine fungal lipid may serve as potential natural compound as nutraceuticals and aquafeeds.
Collapse
Affiliation(s)
- Nancy Mary Thomas
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Vinoth Sathasivam
- Department of Biotechnology, Sona College of Arts and Science, Salem, 636 005, Tamil Nadu, India
| | | | - Arun Muthukrishnan
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | | | - Gayathri Velusamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | |
Collapse
|
5
|
Kamalanathan V, Sevugapperumal N, Nallusamy S, Ashraf S, Kailasam K, Afzal M. Metagenomic Approach Deciphers the Role of Community Composition of Mycobiome Structured by Bacillus velezensis VB7 and Trichoderma koningiopsis TK in Tomato Rhizosphere to Suppress Root-Knot Nematode Infecting Tomato. Microorganisms 2023; 11:2467. [PMID: 37894125 PMCID: PMC10609121 DOI: 10.3390/microorganisms11102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
The soil microbiome is crucial for maintaining the sustainability of the agricultural environment. Concerning the role of diverse mycobiomes and their abundance toward the suppression of root-knot nematode (RKN) infection in vegetable crops, our understanding is unclear. To unveil this issue, we examined the fungal microbiome in tomato rhizosphere augmented with bioagents challenged against RKN at taxonomic and functional levels. Composition of the mycobiome in tomato rhizosphere treated with Bacillus velezensis VB7 and Trichoderma koningiopsis TK differed significantly from the infected tomato rhizosphere. The abundance and diversity of fungal species, however, were significantly higher in the combined treatments of bioagents than for individual treatments. Fungal microbiome diversity was negatively correlated in the RKN-associated soil. Network analysis of the fungal biome indicated a larger and complex network of fungal biome diversity in bioagent-treated soil than in nematode-associated tomato rhizosphere. The diversity index represented by that challenging the RKN by drenching with consortia of B. velezensis VB7 and T. koningiopsis TK, or applying them individually, constituted the maximum abundance and richness of the mycobiome compared to the untreated control. Thus, the increased diverse nature and relative abundance of the mycobiome in tomato rhizosphere was mediated through the application of either T. koningiopsis TK or B. velezensis VB7, individually or as a consortium comprising both fungal and bacterial antagonists, which facilitated engineering the community composition of fungal bioagents. This in turn inhibited the infestation of RKN in tomato. It would be interesting to explore further the possibility of combined applications of B. velezensis VB7 and T. koningiopsis TK to manage root-knot nematodes as an integrated approach for managing plant parasitic nematodes at the field level.
Collapse
Affiliation(s)
- Vinothini Kamalanathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Nakkeeran Sevugapperumal
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Suhail Ashraf
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Kumanan Kailasam
- Department of Horticulture, Agricultural College & Research Institute, Kudumiyanmalai, TNAU, Pudukottai 622104, Tamil Nadu, India;
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Diversity of Cellulolytic Microorganisms Associated with the Subterranean Termite Reticulitermes grassei. J Fungi (Basel) 2023; 9:jof9030294. [PMID: 36983462 PMCID: PMC10051133 DOI: 10.3390/jof9030294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Reticulitermes grassei is a subterranean termite species that forages on woody structures of the Iberian Peninsula, and is often a building and crops pest. A total of 23 microorganisms associated with the activity of R. grassei were isolated from colonized ecosystems in southern Spain. They were morphologically and molecularly characterized, with fungi being the most prevalent ones. The fungi showed high values of optimum growth temperature, suggesting that they could be able to survive and develop in warm regions. Their cellulolytic activity was tested in carboxymethylcellulose (CMC) agar, concluding that all fungal isolates produce cellulases, and the enzymatic index (EI) was revealed in CMC agar with Gram’s iodine solution, with Penicillium citrinum showing the highest EI and Trichoderma longibrachiatum the highest mycelial growth rate on CMC. A preliminary microorganism dispersion assay was carried out with the termites, concluding that these insects may have a positive influence on fungal dispersion and the subsequent colonization of new substrates. Our study suggests that fungi associated with R. grassei may potentially be of interest in biotechnological fields such as biofuel production and the food industry.
Collapse
|
7
|
Optimization of culture conditions for biomass and lipid production by oleaginous fungus Penicillium citrinum PKB20 using response surface methodology (RSM). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
9
|
Mhlongo SI, Ezeokoli OT, Roopnarain A, Ndaba B, Sekoai PT, Habimana O, Pohl CH. The Potential of Single-Cell Oils Derived From Filamentous Fungi as Alternative Feedstock Sources for Biodiesel Production. Front Microbiol 2021; 12:637381. [PMID: 33584636 PMCID: PMC7876240 DOI: 10.3389/fmicb.2021.637381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial lipids, also known as single-cell oils (SCOs), are highly attractive feedstocks for biodiesel production due to their fast production rates, minimal labor requirements, independence from seasonal and climatic changes, and ease of scale-up for industrial processing. Among the SCO producers, the less explored filamentous fungi (molds) exhibit desirable features such as a repertoire of hydrolyzing enzymes and a unique pellet morphology that facilitates downstream harvesting. Although several oleaginous filamentous fungi have been identified and explored for SCO production, high production costs and technical difficulties still make the process less attractive compared to conventional lipid sources for biodiesel production. This review aims to highlight the ability of filamentous fungi to hydrolyze various organic wastes for SCO production and explore current strategies to enhance the efficiency and cost-effectiveness of the SCO production and recovery process. The review also highlights the mechanisms and components governing lipogenic pathways, which can inform the rational designs of processing conditions and metabolic engineering efforts for increasing the quality and accumulation of lipids in filamentous fungi. Furthermore, we describe other process integration strategies such as the co-production with hydrogen using advanced fermentation processes as a step toward a biorefinery process. These innovative approaches allow for integrating upstream and downstream processing units, thus resulting in an efficient and cost-effective method of simultaneous SCO production and utilization for biodiesel production.
Collapse
Affiliation(s)
- Sizwe I. Mhlongo
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban, South Africa
| | - Obinna T. Ezeokoli
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Pretoria, South Africa
| | - Patrick T. Sekoai
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
10
|
Oleaginous yeasts isolated from traditional fermented foods and beverages of Manipur and Mizoram, India, as a potent source of microbial lipids for biodiesel production. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01562-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|