1
|
Lakra U, Lincoln Singh Munda V, Nigam VK, Sharma SR. Optimisation, characterization, and biological evaluation of novel exopolysaccharide from Bacillus licheniformis (BITSL006). Nat Prod Res 2024; 38:3783-3792. [PMID: 37812180 DOI: 10.1080/14786419.2023.2265041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
The study investigated production, characterisation, and biological properties of exopolysaccharide (EPS) from a thermophilic bacterium, Bacillus licheniformis using sucrose as a main carbon source at a temperature of 75 °C, resulting in a yield of 2.87 g/L. The surface topology of EPS was determined using FESEM indicating its porous nature. Subsequently, FTIR was employed to examine EPS and identified the presence of carboxyl and hydroxyl groups, which are believed to be associated with water-holding capacity (WHC). Comparing the FTIR spectrum of various exopolysaccharides, it was inferred that the exopolysaccharide derived from Ramkund closely resembles dextran. EDX and ICP-MS analysis revealed the presence of Sulphur and Selenium which might be involved in the anticancer properties of EPS. This is the first report on bacterial EPS from a hot spring (Ram kund) with antioxidant property, WHC, and high solubility. These properties offer beneficial resources for exploration in the pharmaceutical and agriculture industries.
Collapse
Affiliation(s)
- Usha Lakra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | | | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
2
|
Balasubramaniam S, Sakthivel A, Ramesh K, Manisseeri C, Ganeshan S, Subramani M, Gnanajothi K. Bioprospecting of exopolysaccharides from the endophytic fungi Epicoccum sorghinum AMFS4, for its structure, composition, bioactivities and application in seed priming. Nat Prod Res 2024:1-11. [PMID: 39049511 DOI: 10.1080/14786419.2024.2380012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The endophytic fungi, Epicoccum sorghinum AMFS4 was investigated for its metabolic components and composition of bioactive exopolysaccharides (EPS). Metabolic analysis of the ethyl acetate extract majorly detected sugars derivatives such as, 4-Cholesten-3-one semicarbazone (20.9%), d-Fructose (18.96%), and α-d-Galactopyranosiduronicacid (1.71%). The growth curve and EPS yield were determined as 12.22 ± 1.02 g/L and 7.41 ± 0.32 g/L (dry weight) respectively on day 8. The deproteined EPS has been characterised with pyranose ring linked by α-glycosidic bonds, composing fructose, galactose and glucose monosaccharides validated by HPLC. Total sugar content was found to be 93.18 ± 0.81% with detection of proteins and uronate. The viscous EPS appeared filamentous under SEM observation and behaves as emulsifier with notable antioxidant properties. Priming of EPS on tomato seeds showed early induction of secondary rooting than in the control seedlings. Thus, E. sorghinum AMFS4 synthesises bioactive EPS with simple carbohydrate structure, good water absorption and significant metabolic influence on seed germination.
Collapse
Affiliation(s)
- Santhanalakshmi Balasubramaniam
- Translational Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Anitha Sakthivel
- Translational Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kaviraj Ramesh
- Department of Plant Science, Central University of Kerala, Periye, Kerala, India
| | - Chithra Manisseeri
- Department of Plant Science, Central University of Kerala, Periye, Kerala, India
| | | | - Mayavan Subramani
- Plant Molecular Genetics and Epigenomics, DE State University, Dover, Delaware, USA
| | - Kapildev Gnanajothi
- Translational Plant Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Zaghloul EH, Abdel-Latif HH, Elsayis A, Hassan SWM. Production and characterization of novel marine black yeast's exopolysaccharide with potential antiradical and anticancer prospects. Microb Cell Fact 2024; 23:60. [PMID: 38388439 PMCID: PMC10882794 DOI: 10.1186/s12934-024-02332-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
The marine black yeasts are characterized by the production of many novel protective substances. These compounds increase their physiological adaptation to multi-extreme environmental stress. Hence, the exopolysaccharide (EPS) producing marine black yeast SAHE was isolated in this study. It was molecularly identified as Hortaea werneckii (identity 98.5%) through ITS1 and ITS4 gene sequencing analysis. The physicochemical properties of the novel SAHE-EPS were investigated through FTIR, GC-MS, TGA, ESM, and EDX analysis, revealing its heteropolysaccharide nature. SAHE-EPS was found to be thermostable and mainly consists of sucrose, maltose, cellobiose, lactose, and galactose. Furthermore, it exhibited an amorphous texture and irregular porous surface structure. SAHE-EPS showed significant antiradical activity, as demonstrated by the DPPH radical scavenging assay, and the IC50 was recorded to be 984.9 μg/mL. In addition, SAHE-EPS exhibited outstanding anticancer activity toward the A549 human lung cancer cell line (IC50 = 22.9 μg/mL). Conversely, it demonstrates minimal cytotoxicity toward the WI-38 normal lung cell line (IC50 = 203 μg/mL), which implies its safety. This study represents the initial attempt to isolate and characterize the chemical properties of an EPS produced by the marine black yeast H. werneckii as a promising antiradical and anticancer agent.
Collapse
Affiliation(s)
- Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | | | - Asmaa Elsayis
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Sahar W M Hassan
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
4
|
Kowsalya M, Velmurugan T, Mythili R, Kim W, Sudha KG, Ali S, Kalpana B, Ramalingam S, Rajeshkumar MP. Extraction and characterization of exopolysaccharides from Lactiplantibacillus plantarum strain PRK7 and PRK 11, and evaluation of their antioxidant, emulsion, and antibiofilm activities. Int J Biol Macromol 2023; 242:124842. [PMID: 37182634 DOI: 10.1016/j.ijbiomac.2023.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Exopolysaccharides (EPS) are produced by probiotic bacteria Lactiplantibacillus plantarum PRK7 and L. plantarum PRK11. The structure of EPS-7 and EPS-11 was characterized by Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GCMS), and thermogravimetric analysis (TGA). Further, in in vitro studies antioxidant, emulsion, and antibiofilm activity were investigated. The FTIR spectrum confirmed the presence of polysaccharides in EPS-7 and EPS-11, with absorbance at 1654.93 and 1655.33 cm-1, respectively. H1 NMR further confirmed the presence of glucose, galactose, xylose, and mannose. Sugar derivatives in EPS-7 and EPS-11 were further confirmed with GCMS. The SEM analysis revealed that EPS-7 had a weblike structure and EPS-11 had a smooth porous layer. The result of the TGA revealed that EPS-7 and EPS-11 had greater thermal stability at 319.1 and 300.1 °C, respectively. Furthermore, EPS-7 and EPS-11 showed a good percentage of free radical scavenging in DPPH (89.77 % and 93.1 %), ABTS (57.65 % and 58.63 %), hydroxyl radical scavenging (44.46 % and 40.308 %), and reducing power assay. The emulsion activity was confirmed with edible oils such as coconut oil, sesame oil, almond oil, castor oil, and neem oil. The highest emulsion activity for EPS-7 and EPS-11 was found be with coconut and castor oil. In addition, the antibiofilm activity against pathogens revealed that EPS possess can prevent biofilm formation. Thus, it was found that EPS-7 and EPS-11 possess good structural characteristics and their biological activity makes them ideal for applications in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Mariyappan Kowsalya
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India
| | - Thangavel Velmurugan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India
| | - R Mythili
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Kattakgounder Govindaraj Sudha
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India
| | - Saheb Ali
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Balakrishnan Kalpana
- Department of Nanotechnology, K.S.R. College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Srinivasan Ramalingam
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Mohan Prasanna Rajeshkumar
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637 215, Tamil Nadu, India.
| |
Collapse
|