1
|
Li J, Li Y, Li J, Jiang N. Species of Diaporthe (Diaporthaceae, Diaporthales) associated with Alnusnepalensis leaf spot and branch canker diseases in Xizang, China. MycoKeys 2025; 116:185-204. [PMID: 40313691 PMCID: PMC12044343 DOI: 10.3897/mycokeys.116.142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Alnusnepalensis is an important tree species in the Himalayas with significant ecological and economic roles. During disease surveys in Xizang, China, we observed leaf spot and branch canker symptoms on this tree. Fungal isolates associated with these diseases were collected and identified based on morphological characteristics and phylogenetic analysis of ITS, cal, his3, tef1, and tub2 sequences. As a result, Diaporthealnicola sp. nov. and D.amygdali were identified from the leaf spots, while D.linzhiensis was identified to be associated with the cankered branches. This study identifies pathogenic species from alder trees, providing a foundation for future disease management and forest health research.
Collapse
Affiliation(s)
- Jieting Li
- Institute of Xizang Plateau Ecology, Key Laboratory of Forest Ecology in Xizang Plateau (Xizang Agricultural and Animal Husbandry University), Ministry of Education, Linzhi, Xizang 860000, ChinaXizang Agricultural and Animal Husbandry UniversityLinzhiChina
- National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Linzhi, Xizang 860000, ChinaNational Forest Ecosystem Observation & Research Station of Linzhi XizangLinzhiChina
| | - Yi Li
- Institute of Xizang Plateau Ecology, Key Laboratory of Forest Ecology in Xizang Plateau (Xizang Agricultural and Animal Husbandry University), Ministry of Education, Linzhi, Xizang 860000, ChinaXizang Agricultural and Animal Husbandry UniversityLinzhiChina
- National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Linzhi, Xizang 860000, ChinaNational Forest Ecosystem Observation & Research Station of Linzhi XizangLinzhiChina
| | - Jiangrong Li
- Institute of Xizang Plateau Ecology, Key Laboratory of Forest Ecology in Xizang Plateau (Xizang Agricultural and Animal Husbandry University), Ministry of Education, Linzhi, Xizang 860000, ChinaXizang Agricultural and Animal Husbandry UniversityLinzhiChina
- National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Linzhi, Xizang 860000, ChinaNational Forest Ecosystem Observation & Research Station of Linzhi XizangLinzhiChina
| | - Ning Jiang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
2
|
Hosseini B, Käfer LS, Link TI. Mating-Type Analysis in Diaporthe Isolates from Soybean in Central Europe. J Fungi (Basel) 2025; 11:251. [PMID: 40278072 PMCID: PMC12028000 DOI: 10.3390/jof11040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Species of the genus Diaporthe have a mating-type system with the two mating types MAT1-1 and MAT1-2, like other ascomycetes. They can either be heterothallic, which means that any isolate only possesses one of the two mating types and needs a mating partner for sexual reproduction, or homothallic, which means that they possess both mating types and are self-fertile. For several Diaporthe species, no sexual reproduction has been observed so far. Using PCR with primers specific to the defining genes MAT1-1-1 and MAT1-2-1, we determined the mating types of 33 isolates of Diaporthe caulivora, D. eres, D. longicolla, and D. novem from central Europe. In addition, we partially sequenced the mating-type genes of 25 isolates. We found that different D. longicolla isolates either possess MAT1-1-1 or MAT1-2-1, making the species heterothallic, which is in contrast to previous studies and the general assumption that D. longicolla only reproduces asexually. D. eres and D. novem were also found to be heterothallic. Using genomic sequence information and re-sequencing of DNA and RNA, we identified the MAT1-1-1 gene in D. caulivora and present here the full sequence of the mating-type locus of this homothallic species. Finally, we used sequence information from MAT1-1-1 and MAT1-2-1, respectively, for improved phylogenetic resolution of our isolates.
Collapse
Affiliation(s)
- Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany;
| | | | - Tobias Immanuel Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany;
| |
Collapse
|
3
|
Phukhamsakda C, Hyde KD, Samarakoon MC, Louangphan J, Navasit K, Al-Otibi F, Bhunjun CS. Unveiling Sordariomycetes taxa associated with woody litter in Northern Thailand. MycoKeys 2025; 115:155-185. [PMID: 40134631 PMCID: PMC11933910 DOI: 10.3897/mycokeys.115.145330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Sordariomycetes species are abundant in woody litter samples. In this study, we introduce two novel species, Diaporthethailandica (Diaporthaceae) and Occultithecachiangraiensis (Xylariaceae), from woody litter materials. We also describe a new host record of D.tulliensis and a new geographical record for D.melonis. All collections were identified based on morphology and phylogenetic analyses of combined datasets. The morphologies of the taxa fit the generic concepts of Diaporthe and Occultitheca, respectively. Diaporthethailandica formed a sister clade with D.raonikayaporum but differs from D.raonikayaporum in the sizes of conidiomata, conidiogenous cells, and beta conidia. Diaporthethailandica also differs from D.raonikayaporum by the absence of gamma conidia. Occultithecachiangraiensis differs from the sister taxon O.rosae in having smaller ascomata and a thicker mucilaginous sheath. We also provide a synopsis of Occultitheca species with details on their morphology, host, and country. These findings provide valuable insights into the diversity and ecological roles of Sordariomycetes, emphasising the need for continued exploration of fungal biodiversity in various environments.
Collapse
Affiliation(s)
- Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Johnny Louangphan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Kedsara Navasit
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
4
|
Zhou Y, Zhang W, Abeywickrama PD, He Z, Zhang Z, Li Y, Li S, Fan Z, Yan J. Diversity and Virulence of Diaporthe Species Associated with Peach Trunk Diseases in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:3238. [PMID: 39599447 PMCID: PMC11597932 DOI: 10.3390/plants13223238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Peach (Prunus persica L.) is one of the most important and oldest stone fruits grown in China. Though Diaporthe species have more commonly been reported as plant pathogens, endophytes and saprophytes with a wide range of plant hosts, little is known about the Diaporthe species associated with peach trunk diseases in China. In the present study, forty-four Diaporthe isolates were obtained from trees with peach branch canker, shoot blight and gummosis symptoms in four provinces in China. Based on a combination of morphology and multi-locus sequence analysis of the rDNA internal transcribed spacer region (ITS), calmodulin (cal), translation elongation factor 1-α (tef1) and β-tubulin (tub2), these Diaporthe isolates were assigned to four species. Detailed descriptions and illustrations of all of the species, D. arecae, D. caulivora, D. discoidispora and D. eres, are provided. This study further reports the first host association of D. caulivora and D. discoidispora on peaches worldwide. The pathogenicity experiment results revealed that D. arecae was the most aggressive species, whereas D. discoidispora was the least aggressive on detached peach shoots. This study provides new insights into the fungi associated with peach trunk diseases in China, and the results of this study may help to facilitate routine diagnosis and planning of suitable plant disease management strategies.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (Z.Z.)
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.Z.); (P.D.A.); (Z.H.); (Y.L.)
- College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.Z.); (P.D.A.); (Z.H.); (Y.L.)
| | - Pranami D. Abeywickrama
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.Z.); (P.D.A.); (Z.H.); (Y.L.)
| | - Zhizheng He
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.Z.); (P.D.A.); (Z.H.); (Y.L.)
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (Z.Z.)
| | - Yonghua Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.Z.); (P.D.A.); (Z.H.); (Y.L.)
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (Z.Z.)
| | - Zaifeng Fan
- College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (W.Z.); (P.D.A.); (Z.H.); (Y.L.)
| |
Collapse
|
5
|
Gao W, Cao J, Xie Y, Sun X, Ma Q, Geng Y, Xu C, Guo Y, Zhang M. Diaporthe species causing shoot dieback of Acer (maple) in Henan Province, China. BMC Microbiol 2024; 24:356. [PMID: 39300361 DOI: 10.1186/s12866-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Maple is an important ornamental plant in China. With the increasing use of maple trees in landscaping, a symptom of shoot dieback has been observed in Henan province, China. RESULTS In this study, 28 Diaporthe isolates were obtained from symptomatic shoots of maple trees between 2020 and 2023. Phylogenetic analyses based on five loci (ITS, TEF, CAL, HIS and TUB) coupled with morphology of 12 representative isolates identified three known species (D. eres, D. pescicola and D. spinosa) and one new species, namely D. pseudoacerina sp. nov. Koch's postulates confirmed that all these species were pathogenic. Additionally, D. pseudoacerina was able to infect China wingnut (Pterocarya stenoptera), pear (Pyrus sp.), and black locust (Robinia pseudoacacia). This study marks the first report of Diaporthe spinosa and D. pescicola pathogens infecting maple trees. CONCLUSIONS These findings enhance the existing knowledge of the taxonomy and host diversity of Diaporthe species as, while also providing valuable information for managing of maple shoot dieback in Henan Province, China.
Collapse
Affiliation(s)
- Wenkai Gao
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiayuan Cao
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuxu Xie
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuyuan Sun
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qingzhou Ma
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuehua Geng
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Xu
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yashuang Guo
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Meng Zhang
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Zhu Y, Ma L, Xue H, Li Y, Jiang N. New species of Diaporthe (Diaporthaceae, Diaporthales) from Bauhiniavariegata in China. MycoKeys 2024; 108:317-335. [PMID: 39310741 PMCID: PMC11415621 DOI: 10.3897/mycokeys.108.128983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Diaporthe species are known as endophytes, saprobes and pathogens infecting a wide range of plants and resulting in important crop diseases. In the present study, four strains of Diaporthe were obtained from diseased leaves of Bauhiniavariegata in Guangdong Province, China. Phylogenetic analyses were conducted to identify these strains using five gene regions: internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-α (tef1) and β-tubulin (tub2). The results combined with morphology revealed two new species of Diaporthe named D.bauhiniicola in D.arecae species complex and D.guangzhouensis in D.sojae species complex.
Collapse
Affiliation(s)
- Yaquan Zhu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Lei Ma
- Forest Pest Control and Quarantine Station of Tonghua County, Tonghua 134001, ChinaForest Pest Control and Quarantine Station of Tonghua CountyTonghuaChina
| | - Han Xue
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Yong Li
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Ning Jiang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
7
|
Jia A, Lin L, Li Y, Fan X. Diversity and Pathogenicity of Six Diaporthe Species from Juglans regia in China. J Fungi (Basel) 2024; 10:583. [PMID: 39194908 DOI: 10.3390/jof10080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Walnut (Juglans regia L.) is cultivated extensively in China for its substantial economic potential as a woody oil species. However, many diseases caused by Diaporthe greatly affect the health of Juglans regia trees. The present study revealed the presence of Diaporthe species from Juglans regia. A total of six species of Diaporthe were isolated from twigs of Juglans regia in three provinces in China, including two known species (Diaporthe gammata and D. tibetensis) and four novel species (D. chaotianensis, D. olivacea, D. shangluoensis and D. shangrilaensis). Phylogenetic relationships of the new species were determined by multilocus phylogenetic analyses based on partial sequences of the internal transcribed spacer (ITS) region, calmodulin (cal) gene, histone H3 (his3) gene, translation elongation factor 1-α (tef1-α) gene and β-tubulin (tub2) gene. Pathogenicity tests indicated that all Diaporthe species obtained in this study were confirmed as pathogens of Juglans regia. This study deepens the understanding of species associated with several disease symptoms in Juglans regia and provides useful information for effective disease control.
Collapse
Affiliation(s)
- Aoli Jia
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lu Lin
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yixuan Li
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinlei Fan
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Wang D, Deng D, Zhan J, Wu W, Duan C, Sun S, Zhu Z. An Emerging Disease of Chickpea, Basal Stem Rot Caused by Diaporthe aspalathi in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1950. [PMID: 39065477 PMCID: PMC11280406 DOI: 10.3390/plants13141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chickpea (Cicer arietinum L.) is an important legume crop worldwide. An emerging disease, basal stem rot with obvious wilt symptoms, was observed in the upper part of chickpea plants during the disease survey in Qiubei County of Yunnan Province. Three fungal isolates (ZD36-1, ZD36-2, and ZD36-3) were obtained from the diseased tissue of chickpea plants collected from the field. Those isolates were morphologically found to be similar to Diaporthe aspalathi. Molecular sequence analyses of multiple gene regions (ITS, tef1, tub2, cal, and his3) indicated that the three isolates showed a high identity with D. aspalathi. Pathogenicity and host range tests of the isolates were performed on the original host chickpea and eight other legume crops. The isolates were strongly pathogenic to chickpea and appeared highly pathogenic to soybean, cowpea, and mung bean; moderated or mild pathogenic to adzuki bean and common bean; however, the isolates did not cause symptoms on grass pea (Lathyrus sativus). Diaporthe aspalathi was previously reported as a main pathogen causing the southern stem canker in soybean. To our knowledge, this is the first report of D. aspalathi inducing basal stem rot on chickpea worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Suli Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| | - Zhendong Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| |
Collapse
|
9
|
Blagojević J, Aleksić G, Vučurović I, Starović M, Ristić D. Exploring the Phylogenetic Diversity of Botryosphaeriaceae and Diaporthe Species Causing Dieback and Shoot Blight of Blueberry in Serbia. PHYTOPATHOLOGY 2024; 114:1333-1345. [PMID: 38015417 DOI: 10.1094/phyto-04-23-0133-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Identifying the precise pathogens responsible for specific plant diseases is imperative for implementing targeted and efficient interventions and mitigating their spread. Dieback and shoot blight significantly diminish the lifespan and productivity of blueberries, yet the causative agents remain largely unidentified. To determine the identity and prevalence of the causal agents of branch dieback and shoot blight, we conducted multiyear and multisite sampling of diseased highbush blueberries (Vaccinium corymbosum cultivar Duke) in Serbia. Sixty-nine monosporic isolates were collected and characterized based on morphological, physiological features and multilocus phylogenetic analysis of internal transcribed spacer, β-tubulin, and translation elongation factor 1-α sequence data. Five species were identified as causal agents: Diaporthe eres (36 isolates), D. foeniculina (3 isolates), Neopestalotiopsis vaccinii (9 isolates), Neopestalotiopsis rosae (6 isolates), and Neofusicoccum parvum (15 isolates). The results of the pathogenicity tests performed with the 23 representative isolates confirmed the role of these species as primary pathogens in causing dieback and shoot blight of blueberry, with Neofusicoccum parvum being the most aggressive and D. eres the least. Our study underscores the diversity of genera and species of ascomycetes capable of causing blueberry dieback and shoot blight. Furthermore, our findings indicate that the agents responsible for the disease in Serbia differ from those identified in other regions worldwide.
Collapse
Affiliation(s)
- Jovana Blagojević
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11000 Belgrade, Serbia
| | - Goran Aleksić
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11000 Belgrade, Serbia
| | - Ivan Vučurović
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11000 Belgrade, Serbia
| | - Mira Starović
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11000 Belgrade, Serbia
| | - Danijela Ristić
- Department of Plant Diseases, Institute for Plant Protection and Environment, Teodora Drajzera 9, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Waqas M, Guarnaccia V, Bardella S, Spadaro D. Molecular Characterization and Pathogenicity of Diaporthe Species Causing Nut Rot of Hazelnut in Italy. PLANT DISEASE 2024; 108:1005-1013. [PMID: 37883635 DOI: 10.1094/pdis-01-23-0168-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hazelnut (Corylus avellana), a nut crop that is rapidly expanding worldwide, is endangered by a rot. Nut rot results in hazelnut defects. A survey was conducted in northwestern Italy during 2020 and 2021 to identify the causal agents of hazelnut rots. Typical symptoms of black rot, mold, and necrotic spots were observed on hazelnuts. The prevalent fungi isolated from symptomatic hazelnut kernels were Diaporthe spp. (38%), Botryosphaeria dothidea (26%), Diplodia seriata (14%), and other fungal genera with less frequent occurrences. Among 161 isolated Diaporthe spp., 40 were selected for further analysis. Based on morphological characterization and multilocus phylogenetic analysis of the ITS, tef-1α, and tub2, seven Diaporthe species were identified as D. eres, D. foeniculina, D. novem, D. oncostoma, D. ravennica, D. rudis, and D. sojae. D. eres was the main species isolated from hazelnut rots, in particular from moldy nuts. The pathogenicity test performed on hazelnuts 'Tonda Gentile del Piemonte' using a mycelium plug showed that all the Diaporthe isolates were pathogenic on their original host. To our knowledge, this work is the first report of D. novem, D. oncostoma, and D. ravennica on hazelnuts worldwide. D. foeniculina, D. rudis, and D. sojae were reported for the first time as agents of hazelnut rot in Italy. Future studies should focus on the comprehension of epidemiology and climatic conditions favoring the development of Diaporthe spp. on hazelnut. Prevention and control measures should target D. eres, representing the main causal agents responsible for defects and nut rot of hazelnuts in Italy.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino 10095, Grugliasco, TO, Italy
| | - Vladimiro Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino 10095, Grugliasco, TO, Italy
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino 10095, Grugliasco, TO, Italy
| | - S Bardella
- Fondazione Agrion - Via Falicetto, 24 12030, Manta, CN, Italy
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino 10095, Grugliasco, TO, Italy
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino 10095, Grugliasco, TO, Italy
| |
Collapse
|
11
|
Batzer JC, Shirazi A, Lawson M, Mathew FM, Sureshbabu BM, Smith DL, Mueller DS. Impact of Foliar Fungicide Application on the Culturable Fungal Endophyte Community of Soybean Seed in the Midwest United States. PLANT DISEASE 2024; 108:647-657. [PMID: 37729650 DOI: 10.1094/pdis-06-23-1122-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The purpose of our study was to determine whether the application of quinone outside inhibitor (QoI) and pyrazole-carboxamide fungicides as a tank mix would impact the endophyte community of soybean seed. Field trials during 2018 in Iowa, South Dakota, and Wisconsin, U.S.A., investigated the impact of a single combination fungicide spray at early pod set in soybeans. The composition of culturable endophytic fungi in mature soybean seed was assessed on three cultivars per state, with maturity groups (MGs) ranging from 1.1 to 4.7. An unusually wet 2018 season delayed harvest, which led to a high level of fungal growth in grain. The survey included 1,080 asymptomatic seeds that were disinfested and individually placed on 5-cm-diameter Petri plates of acidified water agar. The survey yielded 721 fungal isolates belonging to 24 putative species in seven genera; taxa were grouped into genera based on a combination of morphological and molecular evidence. The dominant genera encountered in the survey were Alternaria, Diaporthe, and Fusarium. The study showed that the fungicide treatment reduced the incidence of Fusarium in Wisconsin seed, increased the incidence of Diaporthe in seed from all states, and had no impact on the incidence of Alternaria. This is one of the first attempts to characterize the diversity of seed endophytes in soybean and the first to characterize the impacts of fungicide spraying on these endophyte communities across three states. Our study provides evidence that the impact of a fungicide spray on soybean seed endophyte communities may be influenced by site, weather, and cultivar maturity group.
Collapse
Affiliation(s)
- Jean Carlson Batzer
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| | - Amin Shirazi
- Department of Statistics, Iowa State University, Ames, IA
| | - Maia Lawson
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| | - Febina M Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | | | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI
| | - Daren S Mueller
- Integrated Pest Management Program and Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| |
Collapse
|
12
|
Liu HY, Luo D, Huang HL, Yang Q. Two new species of Diaporthe (Diaporthaceae, Diaporthales) associated with Camelliaoleifera leaf spot disease in Hainan Province, China. MycoKeys 2024; 102:225-243. [PMID: 38449924 PMCID: PMC10915747 DOI: 10.3897/mycokeys.102.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Tea-oil tree (Camelliaoleifera Abel.) is an important edible oil woody plant with a planting area over 3,800,000 hectares in southern China. Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. Here, we conducted an extensive field survey in Hainan Province to identify and characterise Diaporthe species associated with tea-oil leaf spots. As a result, eight isolates of Diaporthe were obtained from symptomatic C.oleifera leaves. These isolates were studied, based on morphological and phylogenetic analyses of partial ITS, cal, his3, tef1 and tub2 gene regions. Two new Diaporthe species (D.hainanensis and D.pseudofoliicola) were proposed and described herein.
Collapse
Affiliation(s)
- Hong Y. Liu
- Forestry Biotechnology Hunan Key Laboratory, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dun Luo
- The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han L. Huang
- The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qin Yang
- Forestry Biotechnology Hunan Key Laboratory, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
13
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
14
|
Pereira DS, Hilário S, Gonçalves MFM, Phillips AJL. Diaporthe Species on Palms: Molecular Re-Assessment and Species Boundaries Delimitation in the D. arecae Species Complex. Microorganisms 2023; 11:2717. [PMID: 38004729 PMCID: PMC10673533 DOI: 10.3390/microorganisms11112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Due to cryptic diversification, phenotypic plasticity and host associations, multilocus phylogenetic analyses have become the most important tool in accurately identifying and circumscribing species in the Diaporthe genus. However, the application of the genealogical concordance criterion has often been overlooked, ultimately leading to an exponential increase in novel Diaporthe spp. Due to the large number of species, many lineages remain poorly understood under the so-called species complexes. For this reason, a robust delimitation of the species boundaries in Diaporthe is still an ongoing challenge. Therefore, the present study aimed to resolve the species boundaries of the Diaporthe arecae species complex (DASC) by implementing an integrative taxonomic approach. The Genealogical Phylogenetic Species Recognition (GCPSR) principle revealed incongruences between the individual gene genealogies. Moreover, the Poisson Tree Processes' (PTPs) coalescent-based species delimitation models identified three well-delimited subclades represented by the species D. arecae, D. chiangmaiensis and D. smilacicola. These results evidence that all species previously described in the D. arecae subclade are conspecific, which is coherent with the morphological indistinctiveness observed and the absence of reproductive isolation and barriers to gene flow. Thus, 52 Diaporthe spp. are reduced to synonymy under D. arecae. Recent population expansion and the possibility of incomplete lineage sorting suggested that the D. arecae subclade may be considered as ongoing evolving lineages under active divergence and speciation. Hence, the genetic diversity and intraspecific variability of D. arecae in the context of current global climate change and the role of D. arecae as a pathogen on palm trees and other hosts are also discussed. This study illustrates that species in Diaporthe are highly overestimated, and highlights the relevance of applying an integrative taxonomic approach to accurately circumscribe the species boundaries in the genus Diaporthe.
Collapse
Affiliation(s)
- Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Sandra Hilário
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal;
- Faculty of Sciences, Biology Department, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Micael F. M. Gonçalves
- Faculty of Sciences, Biology Department, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
- Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
15
|
Lambert C, Schweizer L, Matio Kemkuignou B, Anoumedem EGM, Kouam SF, Marin-Felix Y. Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon. MycoKeys 2023; 99:319-362. [PMID: 37915461 PMCID: PMC10616871 DOI: 10.3897/mycokeys.99.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Collapse
Affiliation(s)
- Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, GermanyMolecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
16
|
Chen P, Abeywickrama PD, Ji S, Zhou Y, Li X, Zhang W, Yan J. Molecular Identification and Pathogenicity of Diaporthe eres and D. hongkongensis (Diaporthales, Ascomycota) Associated with Cherry Trunk Diseases in China. Microorganisms 2023; 11:2400. [PMID: 37894058 PMCID: PMC10609160 DOI: 10.3390/microorganisms11102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to identify fungal species associated with trunk diseases of sweet cherries (Prunus avium) in several commercial cherry orchards in Beijing, Guizhou and Shandong provinces, China. In total, eighteen fungal strains that fitted well into the species concept of Diaporthe were isolated. Based on both morphological and multi-locus phylogenetic analyses of internal transcribed spacer region (ITS), beta-tubulin (tub-2), calmodulin (Cal) and translation elongation factor 1-α (tef1-α) sequencing data, fourteen isolates were identified as Diaporthe eres, while four isolates were classified as D. hongkongensis. Here, we report D. hongkongensis causing sweet cherry branch dieback disease and, further, we confirmed the host association of D. eres with sweet cherries in China. A pathogenicity assay revealed the ability of both D. eres and D. hongkongensis to cause shoot necrosis and stem lesions on Prunus avium cv. 'Brooks' (mean lesion lengths of 1.86 cm and 1.56 cm, respectively). The optimal temperature for the growth of both Diaporthe species was tested. The optimal growth temperature for D. hongkongensis was 30 °C, and the 25-28 °C temperatures were the most favorable for the growth of D. eres strains. This research advances the understanding of fungal trunk diseases in fruit crops, particularly gummosis and branch dieback disease in Chinese cherry orchards, and will aid growers in making decisions about cultural practices and disease management.
Collapse
Affiliation(s)
- Pengzhao Chen
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
| | - Pranami D. Abeywickrama
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
| | - Shuxian Ji
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
| | - Yueyan Zhou
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xinghong Li
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
| | - Wei Zhang
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
| | - Jiye Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.C.); (P.D.A.); (S.J.); (Y.Z.); (X.L.); (J.Y.)
| |
Collapse
|
17
|
Matio Kemkuignou B, Lambert C, Stadler M, Kouam Fogue S, Marin-Felix Y. Unprecedented Antimicrobial and Cytotoxic Polyketides from Cultures of Diaporthe africana sp. nov. J Fungi (Basel) 2023; 9:781. [PMID: 37504769 PMCID: PMC10381184 DOI: 10.3390/jof9070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Four unprecedented polyketides named isoprenylisobenzofuran B (2), isoprenylisobenzofuran C1/C2 (3), diaporisoindole F1/F2 (4), and isochromophilonol A1/A2 (7) were isolated from ethyl acetate extracts of the newly described endophytic fungus Diaporthe africana. Additionally, the previously reported cyclic depsipeptide eucalactam B (1) was also identified, along with the known compounds diaporisoindole A/B (5), tenellone B (6) and beauvericin (8). The taxonomic identification of the fungus was accomplished using a polyphasic approach combining multi-gene phylogenetic analysis and microscopic morphological characters. The structures 1-8 were determined by a detailed analysis of their spectral data, namely high-resolution electrospray ionization mass spectrometry (HR-ESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopy, as well as electronic circular dichroism (ECD) spectra. In addition, chemical methods such as Marfey's analysis were also employed to determine the stereochemistry in compound 1. All the compounds obtained were evaluated for antimicrobial and in vitro cytotoxic properties. Compounds 3-8 were active against certain fungi and Gram-positive bacteria with MIC values of 8.3 to 66.6 µg/mL. In addition, 3-5 displayed cytotoxic effects (22.0 ≤ IC50 ≤ 59.2 µM) against KB3.1 and L929 cell lines, whereas compounds 6-8 inhibited the growth of seven mammalian cancer cell lines with IC50 ranging from 17.7 to 49.5 µM (6), 0.9 to 12.9 µM (7) and 1.9 to 4.3 µM (8).
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Simeon Kouam Fogue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, Cameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Xiao X, Liu Y, Zheng F, Xiong T, Zeng Y, Wang W, Zheng X, Wu Q, Xu J, Crous P, Jiao C, Li H. High species diversity in Diaporthe associated with citrus diseases in China. PERSOONIA 2023; 51:229-256. [PMID: 38665984 PMCID: PMC11041894 DOI: 10.3767/persoonia.2023.51.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Species in Diaporthe have broad host ranges and cosmopolitan geographic distributions, occurring as endophytes, saprobes and plant pathogens. Previous studies have indicated that many Diaporthe species are associated with Citrus. To further determine the diversity of Diaporthe species associated with citrus diseases in China, we conducted extensive surveys in major citrus-producing areas from 2017-2020. Diseased tissues were collected from leaves, fruits, twigs, branches and trunks showing a range of symptoms including melanose, dieback, gummosis, wood decay and canker. Based on phylogenetic comparisons of DNA sequences of the internal transcribed spacer regions (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and beta-tubulin (tub2), 393 isolates from 10 provinces were identified as belonging to 36 species of Diaporthe, including 32 known species, namely D. apiculata, D. biconispora, D. biguttulata, D. caryae, D. citri, D. citriasiana, D. compacta, D. discoidispora, D. endophytica, D. eres, D. fusicola, D. fulvicolor, D. guangxiensis, D. hongkongensis, D. hubeiensis, D. limonicola, D. litchii, D. novem, D. passifloricola, D. penetriteum, D. pescicola, D. pometiae, D. sackstonii, D. sennicola, D. sojae, D. spinosa, D. subclavata, D. tectonae, D. tibetensis, D. unshiuensis, D. velutina and D. xishuangbanica, and four new species, namely D. gammata, D. jishouensis, D. ruiliensis and D. sexualispora. Among the 32 known species, 14 are reported for the first time on Citrus, and two are newly reported from China. Among the 36 species, D. citri was the dominant species as exemplified by its high frequency of isolation and virulence. Pathogenicity tests indicated that most Diaporthe species obtained in this study were weakly aggressive or non-pathogenic to the tested citrus varieties. Only D. citri produced the longest lesion lengths on citrus shoots and induced melanose on citrus leaves. These results further demonstrated that a rich diversity of Diaporthe species occupy Citrus, but only a few species are harmful and D. citri is the main pathogen for Citrus in China. The present study provides a basis from which targeted monitoring, prevention and control measures can be developed. Citation: Xiao XE, Liu YD, Zheng F, et al. 2023. High species diversity in Diaporthe associated with citrus diseases in China. Persoonia 51: 229-256. doi: 10.3767/persoonia.2023.51.06.
Collapse
Affiliation(s)
- X.E. Xiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.D. Liu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - F. Zheng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - T. Xiong
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.T. Zeng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - W. Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - X.L. Zheng
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - Q. Wu
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - J.P. Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - C. Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
19
|
Wei W, Khan B, Dai Q, Lin J, Kang L, Rajput NA, Yan W, Liu G. Potential of Secondary Metabolites of Diaporthe Species Associated with Terrestrial and Marine Origins. J Fungi (Basel) 2023; 9:jof9040453. [PMID: 37108907 PMCID: PMC10143158 DOI: 10.3390/jof9040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Diaporthe species produce versatile secondary metabolites (SMs), including terpenoids, fatty acids, polyketides, steroids, and alkaloids. These structurally diverse SMs exhibit a wide range of biological activities, including cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, and phytotoxic activities, which could be exploited in the medical, agricultural, and other modern industries. This review comprehensively covers the production and biological potencies of isolated natural products from the genus Diaporthe associated with terrestrial and marine origins. A total of 275 SMs have been summarized from terrestrial (153; 55%) and marine (110; 41%) origins during the last twelve years, and 12 (4%) compounds are common to both environments. All secondary metabolites are categorized predominantly on the basis of their bioactivities (cytotoxic, antibacterial, antifungal, and miscellaneous activity). Overall, 134 bioactive compounds were isolated from terrestrial (92; 55%) and marine (42; 34%) origins, but about half the compounds did not report any kind of activity. The antiSMASH results suggested that Diaporthe strains are capable of encoding a wide range of SMs and have tremendous biosynthetic potential for new SMs. This study will be useful for future research on drug discovery from terrestrial and marine natural products.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Dai
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jie Lin
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiyou Liu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| |
Collapse
|
20
|
Zhu YQ, Ma CY, Xue H, Piao CG, Li Y, Jiang N. Two new species of Diaporthe (Diaporthaceae, Diaporthales) in China. MycoKeys 2023; 95:209-228. [DOI: 10.3897/mycokeys.95.98969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Species of Diaporthe have been reported as plant endophytes, pathogens and saprobes on a wide range of plant hosts. Strains of Diaporthe were isolated from leaf spots of Smilax glabra and dead culms of Xanthium strumarium in China, and identified based on morphology and molecular phylogenetic analyses of combined internal transcribed spacer region (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) loci. As a result, two new species named Diaporthe rizhaoensis and D. smilacicola are identified, described and illustrated in the present study.
Collapse
|
21
|
Lin L, Pan M, Gao H, Tian C, Fan X. The Potential Fungal Pathogens of Euonymus japonicus in Beijing, China. J Fungi (Basel) 2023; 9:271. [PMID: 36836386 PMCID: PMC9966606 DOI: 10.3390/jof9020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Euonymus japonicus tolerates the dry and frigid climate of Beijing, China, and effectively filters out particles during the winter. However, fungal infestation frequently causes extreme illness and can even lead to shrub death. In this study, 104 diseased E. japonicus specimens were collected from seven districts in Beijing. Seventy-nine isolates were identified as 22 fungal species in seven genera. The species were Aplosporella hesperidica, A. javeedii, A. prunicola, Botryosphaeria dothidea, Colletotrichum aenigma, Co. euonymi, Co. euonymicola, Co. gloeosporioides, Cytospora ailanthicola, C. albodisca, C. diopuiensis, C. discotoma, C. elaeagni, C. euonymicola, C. euonymina, C. haidianensis, C. leucostoma, C. sophorae, C. zhaitangensis, Diaporthe eres, Dothiorella acericola, and Pestalotiopsis chaoyangensis. On the basis of morphological and phylogenetic analyses, Colletotrichum euonymi, Co. euonymicola, Cytospora zhaitangensis, and Pestalotiopsis chaoyangensis were introduced as novel species. Colletotrichum euonymi, Co. euonymicola, and Pestalotiopsis chaoyangensis were subsequently confirmed as pathogens of E. japonicus leaves by pathogenicity testing. This study provides an important assessment of the fungi associated with diseases of E. japonicus in Beijing, China.
Collapse
Affiliation(s)
- Lu Lin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Hong Gao
- The Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100101, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
22
|
The genome of a Far Eastern isolate of Diaporthe caulivora, a soybean fungal pathogen. Appl Microbiol Biotechnol 2023; 107:1311-1327. [PMID: 36650392 DOI: 10.1007/s00253-023-12370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Diaporthe caulivora is an economically important fungal pathogen and a causal agent of soybean stem canker and seed decay. Here, the genome of a Russian Far Eastern isolate of D. caulivora was sequenced, assembled, and announced. Assembly quality was enough for advanced annotation, including prediction of potential disease-related genes encoding virulence factors and molecular determinants contributing to pathogen-host selection, interactions, and adaptation. Comparative analysis of 15 Diaporthe species was conducted regarding general genome properties, collinearity, and proteomes, and included detailed investigation of interspersed repeats. A notable feature of this analysis is a high recombinant variability of Diaporthe genomes, determined by the number and distribution of interspersed repeats, which also proved to be responsible for the diversity of GC content and genome size. This variability is assumed the main determinant of the divergence of Diaporthe genomes. A Bayesian multi-gene phylogeny was inferred for the 15 Diaporthe species on the basis of twenty thousand polymorphic sites of > 100 orthologous genes using independently adjusted evolutionary models. This allowed for the most accurate determination of evolutionary relationships and species boundaries for effective reporting about these plant pathogens. The evidence, obtained by different genome analysis techniques, implies the host-independent evolution of Diaporthe species. KEY POINTS: • The genome of a Far Eastern isolate of D. caulivora was announced. • A high degree of recombinant variability determines genomic divergence in Diaporthe genus. • The multi-gene phylogeny implies host-independent evolution of Diaporthe species.
Collapse
|
23
|
Abramczyk B, Pecio Ł, Kozachok S, Kowalczyk M, Marzec-Grządziel A, Król E, Gałązka A, Oleszek W. Pioneering Metabolomic Studies on Diaporthe eres Species Complex from Fruit Trees in the South-Eastern Poland. Molecules 2023; 28:molecules28031175. [PMID: 36770841 PMCID: PMC9920373 DOI: 10.3390/molecules28031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Fungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.
Collapse
Affiliation(s)
- Barbara Abramczyk
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Correspondence:
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ewa Król
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
24
|
Chemical Investigation of Endophytic Diaporthe unshiuensis YSP3 Reveals New Antibacterial and Cytotoxic Agents. J Fungi (Basel) 2023; 9:jof9020136. [PMID: 36836251 PMCID: PMC9963169 DOI: 10.3390/jof9020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Chemical investigation of the plant-derived endophytic fungus Diaporthe unshiuensis YSP3 led to the isolation of four new compounds (1-4), including two new xanthones (phomopthane A and B, 1 and 2), one new alternariol methyl ether derivative (3) and one α-pyrone derivative (phomopyrone B, 4), together with eight known compounds (5-12). The structures of new compounds were interpreted on the basis of spectroscopic data and single-crystal X-ray diffraction analysis. All new compounds were assessed for their antimicrobial and cytotoxic potential. Compound 1 showed cytotoxic activity against HeLa and MCF-7 cells with IC50 values of 5.92 µM and 7.50 µM, respectively, while compound 3 has an antibacterial effect on Bacillus subtilis (MIC value 16 μg/mL).
Collapse
|
25
|
Kemkuignou BM, Lambert C, Schmidt K, Schweizer L, Anoumedem EGM, Kouam SF, Stadler M, Stradal T, Marin-Felix Y. Unreported cytochalasins from an acid-mediated transformation of cytochalasin J isolated from Diaporthe cf. ueckeri. Fitoterapia 2023; 166:105434. [PMID: 36681097 DOI: 10.1016/j.fitote.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Chemical investigation of an endophytic fungus herein identified as Diaporthe cf. ueckeri yielded four known compounds, named cytochalasins H and J and dicerandrols A and B. Reports of acid sensitivity within the cytochalasan family inspired an attempt of acid-mediated conversion of cytochalasins H and J, resulting in the acquisition of five polycyclic cytochalasins featuring 5/6/5/8-fused tetracyclic and 5/6/6/7/5-fused pentacyclic skeletons. Two of the obtained polycyclic cytochalasins constituted unprecedented analogues, for which the trivial names cytochalasins J4 and J5 were proposed, whereas the others were identified as the known phomopchalasin A, phomopchalasin D and 21-acetoxycytochalasin J3. The structures of the compounds were determined by extensive spectral analysis, namely HR-ESIMS, ESIMS and 1D/2D NMR. The stereochemistry of cytochalasins J4 and J5 was proposed using their ROESY data, biosynthetic and mechanistic considerations and by comparison of their ECD spectra with those of related congeners. All compounds except for cytochalasins H and J were tested for antimicrobial and cytotoxic activity. Cytochalasins J4 and J5 showed neither antimicrobial nor cytotoxic activity in the tested concentrations, with only weak antiproliferative activity observable against KB3.1 cells. The actin disruptive properties of all cytochalasins obtained in this study and of the previously reported cytochalasins RKS-1778 and phomopchalasin N were examined, and monitored by fluorescence microscopy using human osteo-sarcoma (U2-OS) cells. Compared to their precursor molecules (cytochalasins H and J), phomopchalasins A and D, 21-acetoxycytochalasin J3, cytochalasins J4 and J5 revealed a strongly reduced activity on the F-actin network, highlighting that the macrocyclic ring is crucial for bioactivity.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Elodie Gisèle M Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, P.O. Box 47, Cameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany.
| |
Collapse
|
26
|
Toghueo RMK, Vázquez de Aldana BR, Zabalgogeazcoa I. Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Front Microbiol 2023; 14:1105299. [PMID: 36876098 PMCID: PMC9978114 DOI: 10.3389/fmicb.2023.1105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Festuca rubra subsp. pruinosa is a perennial grass growing in sea cliffs where plants are highly exposed to salinity and marine winds, and often grow in rock fissures where soil is absent. Diaporthe species are one of the most abundant components of the root microbiome of this grass and several Diaporthe isolates have been found to produce beneficial effects in their host and other plant species of agronomic importance. In this study, 22 strains of Diaporthe isolated as endophytes from roots of Festuca rubra subsp. pruinosa were characterized by molecular, morphological, and biochemical analyses. Sequences of the nuclear ribosomal internal transcribed spacers (ITS), translation elongation factor 1-α (TEF1), beta-tubulin (TUB), histone-3 (HIS), and calmodulin (CAL) genes were analyzed to identify the isolates. A multi-locus phylogenetic analysis of the combined five gene regions led to the identification of two new species named Diaporthe atlantica and Diaporthe iberica. Diaporthe atlantica is the most abundant Diaporthe species in its host plant, and Diaporthe iberica was also isolated from Celtica gigantea, another grass species growing in semiarid inland habitats. An in vitro biochemical characterization showed that all cultures of D. atlantica produced indole-3-acetic acid and ammonium, and the strains of D. iberica produced indole 3-acetic acid, ammonium, siderophores, and cellulase. Diaporthe atlantica is closely related to D. sclerotioides, a pathogen of cucurbits, and caused a growth reduction when inoculated in cucumber, melon, and watermelon.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
27
|
Diversity of Endophytic Fungi in Annual Shoots of Prunus mandshurica (Rosaceae) in the South of Amur Region, Russia. DIVERSITY 2022. [DOI: 10.3390/d14121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prunus mandshurica is a rare species of the Russian Far East; it is cultivated for fruits and as an ornamental tree. The objective was to determine the fungi associated with young shoots of the Manchurian apricot, which is an important biotic factor for plant viability and productivity. Fungi were isolated by incubation of shoot fragments (unsterilized or surface-sterilized) on a growth medium and identified according to their cultural and morphological characteristics. Diaporthe eres and Nothophoma quercina isolates were identified by multilocus phylogenetic analysis (apn2, cal, tef1-α, tub2 for D. eres, and ITS, rpb2, tub2 for N. quercina). In total, 12 species (Alternaria alternata, A. tenuissima, Aureobasidium pullulans, Cladosporium cladosporioides, C. herbarum, D. eres, Epicoccum nigrum, Fusarium graminearum, F. oxysporum, N. quercina, Sarocladium strictum, and Tripospermum myrti) and one genus (Gliocladium sp.) were found. Alternaria alternata, N. quercina, and D. eres were the most frequent species of the shoots. Alternaria tenuissima and F. oxysporum were also frequent in some collections, while all other species were rare or occasional in occurrence. Molecular analysis of D. eres and N. quercina revealed redundancy of some species within the D. eres species complex and the genus Nothophoma. This is the first report on the fungal inhabitants of asymptomatic shoots of P. mandshurica. Nothophoma quercina was identified in Russia for the first time.
Collapse
|
28
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
29
|
Gomzhina MM, Gasich EL, Gagkaeva TY, Gannibal PB. Biodiversity of Fungi Inhabiting European Blueberry in North-Western Russia and in Finland. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:441-455. [PMID: 36781539 DOI: 10.1134/s0012496622060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 02/15/2023]
Abstract
European blueberry is a common plant in coniferous and mixed forests that grows in Russia, Northern Europe, Asia, United States, and Canada. Among the fungi that cause blueberry diseases, the most harmful are Diaporthe vaccinii and Colletotrichum acutatum. These fungi are included in the consolidated list of quarantine objects of the Eurasian Economic Union and their occurrence and spread in the territory of countries of this Union is subject to strict control. Most taxa of micromycetes, particularly, Diaporthe and Colletotrichum species, can be correctly identified to the species level based on solely molecular phylogenetic features. The aim of the present work was to assess the biodiversity of fungi associated with blueberry growing in North-Western Russia and in Finland using morphological and molecular genetic features. Altogether, the study included 17 specimens of wild blueberry exhibiting necrotic spots on leaves and stem lesions that were collected in 2017 in St. Petersburg and in five districts of Leningrad region, as well as in the Republic of Karelia and in Finland. Analysis of the morphological and molecular genetic features of the fungal strains isolated from these blueberry specimens led to identification of 11 species: Boeremia exigua, Colletotrichum salicis, Diaporthe eres, Fusarium avenaceum, F. incarnatum, F. sporotrichioides, Heterophoma sylvatica, Kalmusia longispora, Microsphaeropsis olivacea, Neocucurbitaria cava, and Sporocadus rosigena. There were also fungi representing two sections of the genus Alternaria: Alternaria and Infectoriae, and micromycetes of the genera Chaetomium, Cladosporium, Coniothyrium, Curvularia, Epicoccum, Penicillium, Pestalotiopsis, Sordaria, and Trichoderma. The species Colletotrichum salicis, Heterophoma sylvatica, Kalmusia longispora, Microsphaeropsis olivacea, and Neocucurbitaria cava were for the first time found in Russia. The species Sporocadus rosigena was for the first time detected in Finland. Fusarium avenaceum, F. incarnatum, and F. sporotrichioides were for the first time observed in association with blueberry plants. The species Diaporthe vaccinii and Colletotrichum acutatum included in the consolidated list of quarantine objects of the Eurasian Economic Union were not detected in this study.
Collapse
Affiliation(s)
- M M Gomzhina
- All-Russian Research Institute of Plant Protection, St. Petersberg, Russia.
| | - E L Gasich
- All-Russian Research Institute of Plant Protection, St. Petersberg, Russia.
| | - T Yu Gagkaeva
- All-Russian Research Institute of Plant Protection, St. Petersberg, Russia.
| | - Ph B Gannibal
- All-Russian Research Institute of Plant Protection, St. Petersberg, Russia.
| |
Collapse
|
30
|
Yang EF, Karunarathna SC, Dai DQ, Stephenson SL, Elgorban AM, Al-Rejaie S, Xiong YR, Promputtha I, Samarakoon MC, Tibpromma S. Taxonomy and Phylogeny of Fungi Associated with Mangifera indica from Yunnan, China. J Fungi (Basel) 2022; 8:1249. [PMID: 36547582 PMCID: PMC9780836 DOI: 10.3390/jof8121249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe of Yunnan Province (China), fungal taxa belonging to the orders Botryosphaeriales, Calosphaeriales, Chaetothyriales, Diaporthales, and Xylariales were recorded. Morphological examinations coupled with phylogenetic analyses of multigene sequences (ITS, LSU, SSU, tef1-α, rpb1, rpb2, β-tubulin and CAL) were used to identify the fungal taxa. A new genus viz. Mangifericola, four new species viz. Cyphellophora hongheensis, Diaporthe hongheensis, Hypoxylon hongheensis, and Mangifericola hongheensis, four new host and geographical records viz. Aplosporella artocarpi, Hypomontagnella monticulosa, Paraeutypella citricola and Pleurostoma ootheca, and two new collections of Lasiodiplodia are reported.
Collapse
Affiliation(s)
- Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 12211, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Yin-Ru Xiong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
31
|
Choi S, Son D, Chilvers MI, Kim HJ, Sang H. First report of Diaporthe eres causing leaf spot disease on Machilus thunbergii in Korea. PLANT DISEASE 2022; 107:1225. [PMID: 36131501 DOI: 10.1094/pdis-05-22-1243-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Machilus thunbergii (Japanese bay tree) is native to warm temperate and subtropical regions in East Asia such as China, Japan, Korea, Taiwan, and Vietnam (Wu et al., 2006). This tree is used for landscape trees, windbreaks, and furniture because the wood is hard and dense (Hong et al., 2016). In May 2020, a leaf spot disease was observed on M. thunbergii in an arboretum on Wando Island, Korea. Among 25 trees surveyed in the arboretum, 7 trees showed 5 to 30% leaf spot disease. Symptoms consisted of gray and dry leaf spots up to approximately one to two centimeters in diameter, surrounded by a deep black margin. Leaf samples containing lesions were collected from the seven diseased trees. Pieces of leaf tissue (5mm × 5mm) were cut from the lesion margins and surface disinfected with 1% sodium hypochlorite (NaOCl) for 1 min and rinsed with sterile distilled water three times, patted dry on sterile paper towel and placed on Potato Dextrose Agar (PDA) in Petri dishes. From the cultures, ten fungal isolates were obtained and two representative isolates (CMML20-5 and CMML20-6) were stored at the Molecular Microbiology Laboratory, Chonnam National University, Gwangju, Korea. Colony morphology of the two isolates on PDA was observed after 7 days at 25°C in the dark. Conidiomata were induced after 7days in a 14h-10h light-dark condition using sufficiently grown mycelium in PDA, and both alpha and beta conidia were observed. Alpha conidia were 7.6 ± 0.9 × 2.8 ± 0.4 μm (n = 30), fusiform, aseptate, and hyaline. Beta conidia were 28.1 ± 3.6 × 2.7 ± 0.4 μm (n = 30), aseptate, hyaline, linear to hooked. Genomic DNA of the two isolates was extracted using the CTAB DNA extraction method (Cubero et al., 1999), followed by PCR using primer sets of the internal transcribed spacer (ITS1/ITS4) (White et al., 1990), elongation factor 1-α (EF1-728F/EF1-986R), calmodulin (CAL228F/CAL737R) (Carbone and Kohn, 1999), and TUB2 (Bt2a/Bt2b) (Glass and Donaldson 1995). PCR products were sequenced and analyzed to confirm species identity. The obtained sequences were deposited in GenBank (accession numbers OM049469, OM049470 for ITS, OM069429, OM069430 for EF1-α, OP130141, OP130142 for CAL, and OP130139, OP130140 for TUB2). BLASTn search analyses for ITS, EF1-α, CAL, and TUB2 sequences of two isolates selected resulted in near identical match (>97% for ITS, 100% for EF1-α, >99% for CAL, and >96% for TUB2) to sequences of Diaporthe eres strain AR4346 (=Phomopsis fukushii) (JQ807429 for ITS, JQ807355 for EF1-α, KJ435003 for CAL, and KJ420823 for TUB2). Phylogenetic analysis using maximum likelihood indicated that the two isolates grouped with reference strains (AR4346, AR4349, and AR4363) of D. eres with 76% bootstrap support. Based on morphological and phylogenetic analyses, the two isolates characterized in this study are members of the Diaporthe eres species complex as described by Udayanga et at. 2014. Pathogenicity tests were conducted using both detached leaf and whole plant assays. Mycelial PDA plugs (5-mm in diameter) or 10μl of 106 conidia suspensions were inoculated on detached leaves of M. thunbergii from 2-year-old trees and placed in 90 mm Petri-dishes containing wet filter papers or water agar medium. Mock inoculated controls used water in place of conidial suspensions. The plates were sealed with Parafilm and incubated at 25°C in the dark. Two year old M. thunbergii trees were inoculated with wet mycelia (1.5g) that was ground with a homogenizer and mixed with 50ml of sterile water and sprayed onto wounded leaves and stems with a needle. Mock inoculated controls were sprayed with water only. The inoculated seedlings were placed in plastic containers at 25 to 30°C to maintain high humidity. The pathogenicity tests were repeated three times with three replications. In detached leaves, symptoms of black spots were observed 6 days after mycelial plug inoculation and 20 days after conidia inoculation. In whole plants, typical symptoms were observed 9 days after inoculation. Symptoms were not observed on the control leaves and plants. Diaporthe eres was re-isolated from the inoculated leaf and whole plants and morphologically identified, fulfilling Koch's postulates. Diaporthe eres has been reported to cause a leaf spot on Photinia × fraseri 'Red Robin' in China (Song et al. 2019). To our knowledge, this is the first report of leaf spot disease caused by Diaporthe eres on Japanese bay tree (Machilus thunbergii) in Korea. It is expected that use of this tree will expand given its utility, however infection with D. eres can cause serious diseases to the leaves and stems. Therefore, further studies on disease management are needed.
Collapse
Affiliation(s)
- Sungyu Choi
- Chonnam National University, Department of Integrative Food, Bioscience and Biotechnology, Gwangju, Jeollanam-do, Korea (the Republic of);
| | - Doeun Son
- Chonnam National University, Department of Integrative Food, Bioscience and Biotechnology, Gwangju, Jeollanam-do, Korea (the Republic of);
| | - Martin I Chilvers
- Michigan State University, Plant Soil and Microbial Sciences, East Lansing, Michigan, United States;
| | - Hyun-Jun Kim
- Chonnam National University, Department of Forest Resources, Gwangju, Jeollanam-do, Korea (the Republic of);
| | - Hyunkyu Sang
- Chonnam National University, Department of Integrative Food, Bioscience and Biotechnology, 77, Yongbong-ro, Buk-gu, Gwangju, Korea (the Republic of), 61186;
| |
Collapse
|
32
|
Cao L, Luo D, Lin W, Yang Q, Deng X. Four new species of Diaporthe (Diaporthaceae, Diaporthales) from forest plants in China. MycoKeys 2022; 91:25-47. [PMID: 36760894 PMCID: PMC9849071 DOI: 10.3897/mycokeys.91.84970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. During trips to collect forest pathogens in Beijing, Jiangxi, Shaanxi and Zhejiang Provinces in China, 16 isolates of Diaporthe were obtained from branch cankers and leaf spots. These isolates were studied by applying a polyphasic approach including morphological, cultural data, and phylogenetic analyses of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef-1α) and β-tubulin (tub2) loci. Results revealed four new taxa, D.celticola, D.meliae, D.quercicola, D.rhodomyrti spp. nov. and two known species, D.eres and D.multiguttulata.
Collapse
Affiliation(s)
- Lingxue Cao
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dun Luo
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wu Lin
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qin Yang
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaojun Deng
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
33
|
Chaisiri C, Liu X, Lin Y, Luo C. Diaporthe citri: A Fungal Pathogen Causing Melanose Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:1600. [PMID: 35736750 PMCID: PMC9227384 DOI: 10.3390/plants11121600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022]
Abstract
Citrus melanose is a fungal disease caused by Diaporthe citri F.A. Wolf. It is found in various citrus-growing locations across the world. The host range of D. citri is limited to plants of the Citrus genus. The most economically important hosts are Citrus reticulata (mandarin), C. sinensis (sweet orange), C. grandis or C. maxima (pumelo), and C. paradisi (grapefruit). In the life cycle of D. citri throughout the citrus growing season, pycnidia can be seen in abundance on dead branches, especially after rain, with conidia appearing as slimy masses discharged from the dead twigs. Raindrops can transmit conidia to leaves, twigs, and fruits, resulting in disease dispersion throughout small distances. Persistent rains and warm climatic conditions generally favor disease onset and development. The melanose disease causes a decline in fruit quality, which lowers the value of fruits during marketing and exportation. High rainfall areas should avoid planting susceptible varieties. In this article, information about the disease symptoms, history, geographic distribution, epidemiology, impact, and integrated management practices, as well as the pathogen morphology and identification, was reviewed and discussed.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China; (C.C.); (X.L.)
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China; (C.C.); (X.L.)
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China; (C.C.); (X.L.)
- Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China;
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Matio Kemkuignou B, Schweizer L, Lambert C, Anoumedem EGM, Kouam SF, Stadler M, Marin-Felix Y. New polyketides from the liquid culture of Diaporthebreyniae sp. nov. (Diaporthales, Diaporthaceae). MycoKeys 2022; 90:85-118. [PMID: 36760420 PMCID: PMC9849082 DOI: 10.3897/mycokeys.90.82871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/12/2022] Open
Abstract
During the course of a study on the biodiversity of endophytes from Cameroon, a fungal strain was isolated. A multigene phylogenetic inference using five DNA loci revealed that this strain represents an undescribed species of Diaporthe, which is introduced here as D.breyniae. Investigation into the chemistry of this fungus led to the isolation of two previously undescribed secondary metabolites for which the trivial names fusaristatins G (7) and H (8) are proposed, together with eleven known compounds. The structures of all of the metabolites were established by using one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopic data in combination with High-Resolution ElectroSpray Ionization Mass Spectrometry (HR-ESIMS) data. The absolute configuration of phomopchalasin N (4), which was reported for the first time concurrently to the present publication, was determined by analysis of its Rotating frame Overhauser Effect SpectroscopY (ROESY) spectrum and by comparison of its Electronic Circular Dichroism (ECD) spectrum with that of related compounds. A selection of the isolated secondary metabolites were tested for antimicrobial and cytotoxic activities, and compounds 4 and 7 showed weak antifungal and antibacterial activity. On the other hand, compound 4 showed moderate cytotoxic activity against all tested cancer cell lines with IC50 values in the range of 5.8-45.9 µM. The latter was found to be less toxic than the other isolated cytochalasins (1-3) and gave hints in regards to the structure-activity relationship (SAR) of the studied cytochalasins. Fusaristatin H (8) also exhibited weak cytotoxicity against KB3.1 cell lines with an IC50 value of 30.3 µM. Graphical abstract.
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF)BraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
35
|
Zhao J, Qin W, Qiao GH, Lu C, Tan X, Liu J. First report of Diaporthe eres causing leaf spot on Platanus acerifolia in China. PLANT DISEASE 2022; 107:214. [PMID: 35666220 DOI: 10.1094/pdis-01-22-0129-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platanus acerifolia Willd. is one of the world famous urban greening trees, known as "the king of street trees" (Loretta et al. 2020). In August 2021, severe leaf spot disease was observed on P. acerifolia with 15% incidence on a street of Haidian district (116°29'E, 39°95'N), Beijing municipality, China. Typical symptoms were small and irregular brown spots with or without yellow haloes, which gradually expanded, coalesced and became necrotic lesions. For pathogen isolation, the leaf lesions were cut into small tissue pieces, disinfected by 0.3% sodium hypochlorite for 2 min and 70% ethanol for 40 s, rinsed in sterile distilled water, and then incubated on potato dextrose agar (PDA) plates. After incubation at 28°C for 4 days, three fungal isolates (FTDX2, FTDX3, and FTDX6) with similar colony characteristics were obtained after single spore isolation. Colonies were white with fluffy aerial mycelia, abundant pycnidia with black stomata appeared and cream-white liquid oozed after 20 days. Alpha conidia were 7.9 ± 0.6 × 2.5 ± 0.3 μm (n = 30), aseptate, hyaline, fusiform to ellipsoidal, and often biguttulate, while beta conidia were 22.7 ± 1.3 × 1.1 ± 0.1 μm (n = 30), aseptate, hyaline, linear, curved or hamate. The morphological characteristics were consistent with those of Diaporthe sp. (Udayanga et al. 2014). For further identification, total DNA was extracted from the three isolates. The internal transcribed spacer (ITS) region, translation elongation factor 1-α (EF1-α), beta-tubulin (TUB), calmodulin (CAL) and histone (HIS) genes were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), BT2a/BT2b (Glass and Donaldson 1995), CL1/CL2A (O'Donnell et al. 2000) and CYLH3F/H3-1b (Crous et al. 2014), respectively. The sequences were all deposited in GenBank (accession nos. OL870615 - OL870617 for ITS, OL870618 - OL870620 for EF1-α, OL870621 - OL870623 for TUB, OL870624 - OL870626 for CAL, and OL870627 - OL870629 for HIS) and aligned using BLASTn, obtaining 99-100% homology with the corresponding sequences of known Diaporthe eres strains in NCBI. Phylogenetic analysis of the combined sequences attributed the three isolates to the Diaporthe eres clade. Pathogenicity tests were performed on three healthy one-year-old P. acerifolia plants using the randomly selected isolate FTDX2. The leaves were inoculated with 20 µl of spore suspension (106 conidia/ml), with or without wound pretreatment, sterilized water inoculation under the same condition was used as control. All the treated plants were incubated in the greenhouse at 25°C and 90% RH with a 12-h photoperiod. After 8 days, the inoculated plants showed spot symptoms on leaves similar to those previously observed, whereas the control leaves remained symptomless. Lesions on the wounded leaves were much larger in size compared with those unwounded. The same pathogen was re-isolated and identified based on morphological characteristics and gene sequencing data, fulfilling Koch's postulates. Diaporthe eres has been reported to cause leaf spot on many horticultural plants, such as Photinia fraseri (Song et al. 2019) and Podocarpus macrophyllus (Zheng et al. 2020). To our knowledge, this is the first report of D. eres causing leaf spot on Platanus acerifolia in China. This finding is a valuable contribution to the knowledge on leaf spot disease development in horticultural plants.
Collapse
Affiliation(s)
- Juan Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry SciencesBeijing, China, 100097;
| | - Wentao Qin
- Beijing Academy of Agriculture and Forestry Sciences Institute of Plant and Environmental Protection, 572845, No. 9, dawn Garden Road, Haidian District, Beijing, Beijing, China, 100097
- China;
| | | | | | | | | |
Collapse
|
36
|
Investigations on Fungi Isolated from Apple Trees with Die-Back Symptoms from Basilicata Region (Southern Italy). PLANTS 2022; 11:plants11101374. [PMID: 35631798 PMCID: PMC9147037 DOI: 10.3390/plants11101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Val d’Agri is an important orchard area located in the Basilicata Region (Southern Italy). A phenomenon affecting cv. “Golden Delicious” apples which lead to tree death has been observed in the past several years in this area. This phenomenon has already been detected in about 20 hectares and is rapidly expanding. The symptoms observed were “scaly bark” and extensive cankers, mainly located in the lower part of the trunk, associated with wood decay. Dead plants ranged from 20% to 80% and, in many cases, trees were removed by farmers. In order to identify the causes of this phenomenon, investigations were started in autumn/winter 2019. In order to determine the possible causal agents, fungal and bacterial isolations, from symptomatic tissues, were performed in laboratory. Bacterial isolations gave negative results, whereas pure fungal cultures (PFCs) were obtained after 3–4 passages on potato dextrose agar (PDA) media. Genetic material was extracted from each PFC and amplified by PCR using three pairs of primers: ITS5/4, Bt2a/Bt2b and ACT-512F/ACT-783R. The amplicons were directly sequenced, and nucleotide sequences were compared with those already present in the NCBI GenBank nucleotide database. All isolated fungi were identified based on morphological features and multilocus molecular analyses. Neofusicoccum parvum, Diaporthe eres and Trametes versicolor were most frequently isolated, while Pestalotiopsis funerea, Phomopsis spp. and Diaporthe foeniculina were less frequently isolated. All nucleotide sequences obtained in this study have been deposited into the EMBL database. Pathogenicity tests showed that N. parvum was the most pathogenic and aggressive fungus, while Phomopsis sp. was demonstrated to be the less virulent one. All the investigated fungi were repeatedly reisolated from artificially inoculated twigs of 2-year-old apple trees, cv. “Golden Delicious”, and subsequently morphologically and molecularly identified. The role played by the above-mentioned fungi in the alterations observed in field is also discussed.
Collapse
|
37
|
Gomzhina MM, Gannibal PB. Diaporthe species infecting sunflower ( Helianthus annuus) in Russia, with the description of two new species. Mycologia 2022; 114:556-574. [PMID: 35583980 DOI: 10.1080/00275514.2022.2040285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phomopsis stem canker is economically important sunflower disease that caused by multiple Diaporthe species. Recent investigations resulted in the resolution that there are at least 13 Diaporthe species that can infect sunflower. A comprehensive analysis of the biodiversity and geographic distribution of Diaporthe species in Russia, particularly those that infect sunflower, has not been undertaken. For this study, 16 Diaporthe isolates were obtained from samples of stem canker and visually healthy seeds of Helianthus annuus from northwestern, central European, southern European Russia, North Caucasus, and the Urals in 2016-2019. The aim of this study was to identify these Diaporthe isolates based on morphology and sequence analyses of the nuclear ribosomal internal transcribed spacer (ITS) region, partial calmodulin (cal), DNA-lyase (apn2), histone H3 (his3), translation elongation factor-1α gene (tef1), and ß-tubulin (tub2) genes. The phylogenetic reconstruction revealed well-supported monophyletic clades corresponding to six Diaporthe species: D. eres, D. gulyae, D. helianthi, and D. phaseolorum. Two new species were described: Diaporthe monetii sp. nov. and Diaporthe vangoghii sp. nov. The isolates of D. gulyae and D. phaseolorum collected represent the first records of these species in Russia.
Collapse
Affiliation(s)
- Maria M Gomzhina
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| | - Philipp B Gannibal
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| |
Collapse
|
38
|
Vučković N, Vico I, Duduk B, Duduk N. Diversity of Botryosphaeriaceae and Diaporthe Species Associated with Postharvest Apple Fruit Decay in Serbia. PHYTOPATHOLOGY 2022; 112:929-943. [PMID: 34664974 DOI: 10.1094/phyto-07-21-0304-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Family Botryosphaeriaceae and the genus Diaporthe (family Diaporthaceae) represent diverse groups of plant pathogens, which include causal agents of leaf spot, shoot blight, branch and stem cankers, dieback, and pre- and postharvest apple fruit decay. Apple fruit with symptoms of light to dark brown decay were collected during and after harvest from 2016 to 2018. Thirty selected isolates, on which pathogenicity was confirmed, were identified and characterized based on multilocus phylogeny and morphology. Five species from the family Botryosphaeriaceae and two from the genus Diaporthe (fam. Diaporthaceae) were discovered. The most commonly isolated was Diplodia seriata followed by Botryosphaeria dothidea. In this work, Diaporthe rudis is described as a new postharvest pathogen of apple fruit. Diplodia bulgarica, Diplodia sapinea, Neofusicoccum yunnanense, and Diaporthe eres are initially described as postharvest apple and D. sapinea as postharvest quince and medlar fruit pathogens in Serbia. Because species of the family Botryosphaeriaceae and the genus Diaporthe are known to cause other diseases on their hosts, have an endophytic nature, and have a wide host range, findings from this study imply that they may become a new challenge for successful fruit production.
Collapse
Affiliation(s)
- Nina Vučković
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| | - Ivana Vico
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, Belgrade, Serbia
| | - Nataša Duduk
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| |
Collapse
|
39
|
Si YZ, Li DW, Zhong J, Huang L, Zhu LH. Diaporthe sapindicola sp. nov. Causes Leaf Spots of Sapindus mukorossi in China. PLANT DISEASE 2022; 106:1105-1113. [PMID: 34752121 DOI: 10.1094/pdis-04-21-0777-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sapindus mukorossi Gaertn. (Sapindaceae), or soapberry, is an important biodiesel tree in southern China. In recent years, leaf spot disease on soapberry has been observed frequently in a soapberry germplasm repository in Jianning County, Sanming City, Fujian province, China. The symptoms initially appeared as irregular, small, yellow spots, and the centers of the lesions became dark brown with time. Three fungal isolates from lesions were collected. Koch's postulates were performed, and their pathogenicity was confirmed. Morphologically, α-conidia from diseased tissues were single-celled, hyaline, smooth, clavate or ellipsoidal, and biguttulate, measuring 6.2 to 7.2 × 2.3 to 2.7 μm. In addition, the three isolates in this study developed three types (α, β, and γ) of conidia on potato dextrose agar, and their morphological characteristics matched those of Diaporthe. A phylogenetic analysis based on internal transcribed spacer, TEF, TUB, HIS, and CAL sequence data determined that the three isolates are a new species of Diaporthe. Based on both morphological and phylogenetic analyses, the causal fungus, Diaporthe sapindicola sp. nov., was described and illustrated.
Collapse
Affiliation(s)
- Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Jing Zhong
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
40
|
|
41
|
Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Bilański P, Kowalski T. Fungal endophytes in Fraxinus excelsior petioles and their in vitro antagonistic potential against the ash dieback pathogen Hymenoscyphus fraxineus. Microbiol Res 2022; 257:126961. [PMID: 35042053 DOI: 10.1016/j.micres.2022.126961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 02/08/2023]
Abstract
Fungal endophytes were isolated from 250 asymptomatic leaf petioles of Fraxinus excelsior collected from trees showing symptoms of ash dieback in five forest sites in southern Poland. Fungal isolations yielded 1646 colonies representing 97 taxa, including 92 Ascomycota and 5 Basidiomycota species. The most common Ascomycota comprised Nemania serpens (38.0 % of colonized petioles), Diaporthe eres (33.6 %), Venturia fraxini (26.4 %), Diaporthe sp. 1 (20.4 %), Alternaria sp. 1 (14.8 %), Colletotrichum acutatum (14.8 %), Nemania diffusa (14.0 %), Colletotrichum gloeosporioides (12.4 %) and Colletotrichum sp. (12.4 %). The occurrence of all these taxa except Alternaria sp. 1 was significantly different between the studied forest sites. Two yeast species, Vishniacozyma foliicola (4.8 %) and Cystobasidium pinicola (2.8 %), dominated among the Basidiomycota endophytes detected. All the fungal endophytes were tested in dual culture antagonistic assays against two strains of Hymenoscyphus fraxineus, resulting in the development of four interaction types. The interactions included the physical contact of co-partners' mycelia (41.8 %), development of an inhibition zone (47.4 %), growth of endophyte mycelia over H. fraxineus colonies (9.3 %) and growth of H. fraxineus mycelia over endophyte colonies (1.5 %). The strongest antibiotic activity against H. fraxineus, measured by the width of the inhibition zone, was observed for Cytospora pruinosa, Fusarium lateritium, Phoma sp. 2, Pleosporales sp. 2 and Thielavia basicola. A variety of morphophysiological deformations of H. fraxineus hyphae were observed under endophyte pressure: spiral twist of the hyphae, formation of cytoplasmic extrusions, development of torulose hyphae and excessive lateral branching of the hyphae. The strongest antagonistic effects, coupled with the potential to overgrow H. fraxineus colonies, was shown by Clonostachys rosea, Nemania diffusa, N. serpens, Peniophora cinerea, Rosellinia corticium and Xylaria polymorpha. Some of these species were able to attack H. fraxineus hyphae in a mycoparasitic manner. The antagonistic activities included the physical penetration of H. fraxineus hyphae, dissolution of hyphal cell walls, disappearance of pigmentation, disintegration of hyphae and degradation of other fungal structures. In contrast, one of the most commonly detected endophytes in ash leaves, Venturia fraxini, did not show in vitro antagonistic potential against H. fraxineus. Finally, we discuss the potential of the detected fungal endophytes to combat H. fraxineus invasion, the cause of ash decline in Europe.
Collapse
Affiliation(s)
- Piotr Bilański
- Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Cracow, 31-425 Cracow, Al. 29-Listopada 46, Poland
| | - Tadeusz Kowalski
- Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Cracow, 31-425 Cracow, Al. 29-Listopada 46, Poland.
| |
Collapse
|
43
|
Variation in Fungal Community in Grapevine ( Vitis vinifera) Nursery Stock Depends on Nursery, Variety and Rootstock. J Fungi (Basel) 2022; 8:jof8010047. [PMID: 35049987 PMCID: PMC8778211 DOI: 10.3390/jof8010047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are caused by cryptic complexes of fungal pathogens and have become a growing problem for new grapevine (Vitis vinifera) plantations. We studied the role of the nursery, variety, and rootstock in the composition of the fungal communities in root collars and graft unions of planting material in Catalonia (NE Spain). We compared necrosis and fungal communities in graft unions and root collars at harvest, and then after three months of cold storage. We evaluated combinations of eleven red and five white varieties with four common rootstocks coming from six nurseries. Fungal communities were characterized by isolation and metabarcoding of the ITS2 region. Our data suggests that nursery followed by rootstock and variety had significant effects on necrosis and fungal community structure in graft and root tissues. Within the plant, we found large differences in terms fungal community distribution between graft and root tissues. Graft unions housed a significantly higher relative abundance of GTD-related Operational Taxonomic Units (OTUs) than root collars. More severe necrosis was correlated with a lower relative abundance of GTD-related OTUs based on isolation and metabarcoding analyses. Our results suggest that nurseries and therefore their plant production practices play a major role in determining the fungal and GTD-related fungal community in grapevine plants sold for planting. GTD variation across rootstocks and varieties could be explored as a venue for minimizing pathogen load in young plantations.
Collapse
|
44
|
Hilário S, Santos L, Phillips AJL, Alves A. Caveats of the internal transcribed spacer region as a barcode to resolve species boundaries in Diaporthe. Fungal Biol 2021; 126:54-74. [PMID: 34930559 DOI: 10.1016/j.funbio.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023]
Abstract
Species in Diaporthe are largely reported as important plant pathogens. Identification of species in this genus has been complemented by morphological and molecular features. However, one important factor delaying this process is the struggle to formulate robust species concepts to create adequate international phytosanitary measures. Regardless of the wide use of the internal transcribed spacer (ITS) rDNA region, established as the primary DNA barcode for fungi, the tendency for intraspecific variation has been reported, misleading interpretation of phylogenetic analyses. Therefore, the present study aimed to illustrate, using specific examples, how the ITS region may be problematic for species delimitation. We showed that the ITS region is highly variable, with strains of Diaporthe malorum and Diaporthe novem falling into more than one clade, which if analyzed on their own, would be likely recognized as distinct taxa. Divergent ITS paralogs were also proven to coexist within the genome of D. novem. We also suggest that ITS may have escaped from concerted evolution or has undergone a duplication event. Furthermore, this study reports for the first time the existence of a putative hybrid in the genus Diaporthe. Our findings offer new clues towards the intraspecific and intragenomic variation in the ITS region, raising questions about its value for barcoding, i.e., identifying species in the genus Diaporthe. Therefore, we recommend that the ITS region be analyzed cautiously and always compared for congruence prior to description of novel taxa.
Collapse
Affiliation(s)
- Sandra Hilário
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Liliana Santos
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Alan J L Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Artur Alves
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, et alBoonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
46
|
Yang Q, Tang J, Zhou GY. Characterization of Diaporthe species on Camelliaoleifera in Hunan Province, with descriptions of two new species. MycoKeys 2021; 84:15-33. [PMID: 34720645 PMCID: PMC8545784 DOI: 10.3897/mycokeys.84.71701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
Tea-oil tree (Camelliaoleifera Abel.) is an important edible oil woody plant with a planting area over 3,800,000 hectares in southern China. Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. At present, relatively little is known about the taxonomy and genetic diversity of Diaporthe on C.oleifera. Here, we conducted an extensive field survey in Hunan Province in China to identify and characterise Diaporthe species associated with tea-oil leaf spots. As a result, eleven isolates of Diaporthe were obtained from symptomatic C.oleifera leaves. These isolates were studied by applying a polyphasic approach including morphological and phylogenetic analyses of partial ITS, cal, his3, tef1 and tub2 gene regions. Two new Diaporthe species (D.camelliae-oleiferae and D.hunanensis) were proposed and described herein, and C.oleifera was revealed to be new host records of D.hubeiensis and D.sojae. This study indicated there is a potential of more undiscovered Diaporthe species from C.oleifera in China.
Collapse
Affiliation(s)
- Qin Yang
- Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Changsha China.,The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Cahngsha China
| | - Jie Tang
- Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Changsha China
| | - Guo Y Zhou
- Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Changsha China.,The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Cahngsha China
| |
Collapse
|
47
|
|
48
|
|
49
|
Manawasinghe IS, Phillips AJL, Xu J, Balasuriya A, Hyde KD, Stępień Ł, Harischandra DL, Karunarathna A, Yan J, Weerasinghe J, Luo M, Dong Z, Cheewangkoon R. Defining a species in fungal plant pathology: beyond the species level. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00481-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
|