1
|
Yang F, Ni B, Liang X, He Y, Yuan C, Chu J, Huang Y, Zhong H, Yang L, Lu J, Xu Y, Zhang Q, Chen W. Mesenchymal stromal cell-derived extracellular vesicles as nanotherapeutics for concanavalin a-induced hepatitis: modulating the gut‒liver axis. Stem Cell Res Ther 2025; 16:4. [PMID: 39773662 PMCID: PMC11706160 DOI: 10.1186/s13287-024-04013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND As cell-free nanotherapeutics, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown potential therapeutic action against liver diseases. However, their effects on autoimmune hepatitis (AIH) are not yet well understood. METHODS AND RESULTS In this study, we utilized a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model to investigate the effects of MSC-EVs on AIH. We found that MSC-EVs provide significant protection against Con A-induced hepatitis in C57BL/6 male mice, with their effectiveness being critically dependent on the gut microbiota. MSC-EVs modulate the composition of the gut microbiota, particularly by increasing the abundance of norank_f__Muribaculaceae, and impact liver metabolic profiles, leading to significant amelioration of liver injury. The identification of Acetyl-DL-Valine as a protective metabolite underscores the therapeutic potential of targeting gut‒liver axis interactions in liver diseases. CONCLUSION Overall, our data demonstrate that MSC-EVs exhibit nanotherapeutic potential in Con A-induced hepatitis and provide new insights into the treatment of autoimmune hepatitis.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
| | - Beibei Ni
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Xiaoqi Liang
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yizhan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University Zhaoqing hospital, Zhaoqing, 526070, P.R. China
| | - Chao Yuan
- General practice, Guangdong provincial people's hospital, Guangzhou, 510080, P.R. China
| | - Jiajie Chu
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yiju Huang
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Hongyu Zhong
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Li Yang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
| | - Jianxi Lu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| | - Wenjie Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
2
|
Affiliation(s)
- Yabin Meng
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shuyan Han
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jun Wu
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
4
|
Nuri A, Mansoori Y, Bezaatpour A, Shchukarev A, Mikkola J. Magnetic Mesoporous SBA‐15 Functionalized with a NHC Pd(II) Complex: An Efficient and Recoverable Nanocatalyst for Hiyama Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201803798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayat Nuri
- Department of Applied ChemistryUniversity of Mohaghegh Ardabili, Ardabil, Iran 56199-11367
| | - Yagoub Mansoori
- Department of Applied ChemistryUniversity of Mohaghegh Ardabili, Ardabil, Iran 56199-11367
| | - Abolfazl Bezaatpour
- Department of Applied ChemistryUniversity of Mohaghegh Ardabili, Ardabil, Iran 56199-11367
| | - Andrey Shchukarev
- Technical ChemistryDepartment of ChemistryChemical-Biological CenterUmeå University SE-90187, Umeå Sweden
| | - Jyri‐Pekka Mikkola
- Technical ChemistryDepartment of ChemistryChemical-Biological CenterUmeå University SE-90187, Umeå Sweden
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial ChemistryÅbo Akademi University, Biskopsgatan 8 FIN-20500, Turku-Åbo Finland
| |
Collapse
|
5
|
Zhao S, Xu M, Cao C, Yu Q, Zhou Y, Liu J. A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. J Mater Chem B 2017; 5:6908-6919. [DOI: 10.1039/c7tb00613f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Co-delivery of gene and drug therapies for cancer treatment remains a major goal of nanocarrier research.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Mengmeng Xu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chengwen Cao
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Qianqian Yu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yanhui Zhou
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
6
|
Yi Z, Hussain HI, Feng C, Sun D, She F, Rookes JE, Cahill DM, Kong L. Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9937-46. [PMID: 25902154 DOI: 10.1021/acsami.5b02131] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The controlled release of salicylic acid (SA), a key phytohormone, was mediated by using a novel decanethiol gatekeeper system grafted onto mesoporous silica nanoparticles (MSNs). The decanethiol was conjugated only to the external surfaces of the MSNs through glutathione (GSH)-cleavable disulfide linkages and the introduction of a process to assemble gatekeepers only on the outer surface so that the mesopore area can be maintained for high cargo loading. Raman and nitrogen sorption isotherm analyses confirmed the successful linkage of decanethiol to the surface of MSNs. The in vitro release of SA from decanethiol gated MSNs indicated that the release rate of SA in an environment with a certain amount of GSH was significantly higher than that without GSH. More importantly, in planta experiments showed the release of SA from decanethiol gated MSNs by GSH induced sustained expression of the plant defense gene PR-1 up to 7 days after introduction, while free SA caused an early peak in PR-1 expression which steadily decreased after 3 days. This study demonstrates the redox-responsive release of a phytohormone in vitro and also indicates the potential use of MSNs in planta as a controlled agrochemical delivery system.
Collapse
Affiliation(s)
- Zhifeng Yi
- †Institute for Frontier Materials, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - Hashmath I Hussain
- ‡Center for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - Chunfang Feng
- †Institute for Frontier Materials, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - Dequan Sun
- ‡Center for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - Fenghua She
- †Institute for Frontier Materials, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - James E Rookes
- ‡Center for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - David M Cahill
- ‡Center for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| | - Lingxue Kong
- †Institute for Frontier Materials, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria 3216, Australia
| |
Collapse
|
7
|
Du X, Xiong L, Dai S, Qiao SZ. γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. Adv Healthc Mater 2015; 4:771-81. [PMID: 25582379 DOI: 10.1002/adhm.201400726] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/10/2022]
Abstract
Poor cellular uptake of drug delivery carriers and uncontrolled drug release remain to be the major obstacles in cancer therapy due to their low delivery efficiency. In this study, a multifunctional intracellular GSH (glutathione)-responsive silica-based drug delivery system with enhanced cellular uptake capability is developed. Uniform 50 nm colloidal mesoporous silica nanoparticles (MSNs) with mercaptopropyl-functionalized core and silanol-contained silica surface (MSNs-SHin ) are designed and fabricated as a platform for drug covalent attachment and particle surface modification. Doxorubicin (DOX) with primary amine group as an anticancer model drug is covalently conjugated to the mesopores of MSNs-SHin via disulfide bonds in the presence of a heterobifunctional linker (N-Succinimidyl 3-(2-pyridyldithio) propionate). Poly(γ-glutamic acid) (γ-PGA) can be coated onto the particle surface by sequential electrostatic adsorption of polyethyleneimine (PEI) and γ-PGA. The constructed delivery system exhibits enhanced cellular uptake via a speculated γ-glutamyl transpeptidase (GGT)-mediated endocytosis pathway and controlled drug release capacity via intracellular GSH-responsive disulfide-bond cleavage, and thus significantly inhibits the growth of cancer cells. The multifunctional delivery system paves a new way for developing high-efficient particle-based nanotherapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Xin Du
- School of Chemical Engineering; University of Adelaide; Adelaide SA5005 Australia
| | - Lin Xiong
- School of Chemical Engineering; University of Adelaide; Adelaide SA5005 Australia
| | - Sheng Dai
- School of Chemical Engineering; University of Adelaide; Adelaide SA5005 Australia
| | - Shi Zhang Qiao
- School of Chemical Engineering; University of Adelaide; Adelaide SA5005 Australia
| |
Collapse
|