1
|
Scacchi A, Hasheminejad K, Javan Nikkhah S, Sammalkorpi M. Controlling self-assembling co-polymer coatings of hydrophilic polysaccharide substrates via co-polymer block length ratio. J Colloid Interface Sci 2023; 640:809-819. [PMID: 36905890 DOI: 10.1016/j.jcis.2023.02.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
HYPOTHESIS The degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates. SIMULATIONS We examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film. Such setups are common in e.g. hygiene, pharmaceutical, and paper product applications. FINDINGS Variation of the block length ratio (35 monomers in total) reveals that all examined compositions readily coat the substrate. However, strongly asymmetric block co-polymers with short hydrophobic segments are best in wetting the surface, whereas approximately symmetric composition leads to most stable films with highest internal order and well-defined internal stratification. At intermediate asymmetries, isolated hydrophobic domains form. We map the sensitivity and stability of the assembly response for a large variety of interaction parameters. The reported response persists for a wide polymer mixing interactions range, providing general means to tune surface coating films and their internal structure, including compartmentalization.
Collapse
Affiliation(s)
- Alberto Scacchi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland; Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kourosh Hasheminejad
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
2
|
Chen Y, Schultz AJ, Errington JR. Coupled Monte Carlo and Molecular Dynamics Simulations on Interfacial Properties of Antifouling Polymer Membranes. J Phys Chem B 2021; 125:8193-8204. [PMID: 34259529 DOI: 10.1021/acs.jpcb.1c01966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use molecular simulation to study the wetting behavior of antifouling polymer-tethered membranes. We obtain the interfacial properties (e.g., contact angle) of water at various temperatures for five polymer membranes, including a base polysulfone (PSF) membrane and four other PSF membranes grafted with antifouling polymers (two poly(ethylene glycol) (PEG) tethers and two zwitterionic tethers). We implement a coupled Monte Carlo (MC)/molecular dynamics (MD) approach to determine the interface potentials of water on the membrane surfaces in an efficient manner. Within this method, short MC and MD simulations are performed in cycles to collect the surface excess free energy of a thin water film on polymer membrane surfaces. Simulation results show that the grafting of zwitterionic tethers provides a more significant enhancement in the hydrophilicity of the PSF membrane than that of the PEG tethers. Water completely wets the surface of zwitterionic polymer membranes.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| | - Andrew J Schultz
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| | - Jeffrey R Errington
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| |
Collapse
|
3
|
Tong Y, Huang L, Zuo C, Li W, Xing W. Novel PVDF-g-NMA Copolymer for Fabricating the Hydrophilic Ultrafiltration Membrane with Good Antifouling Property. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lukuan Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Chengjiang Zuo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
4
|
Faustino CMC, Lemos SMC, Monge N, Ribeiro IAC. A scope at antifouling strategies to prevent catheter-associated infections. Adv Colloid Interface Sci 2020; 284:102230. [PMID: 32961420 DOI: 10.1016/j.cis.2020.102230] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023]
Abstract
The use of invasive medical devices is becoming more common nowadays, with catheters representing one of the most used medical devices. However, there is a risk of infection associated with the use of these devices, since they are made of materials that are prone to bacterial adhesion with biofilm formation, often requiring catheter removal as the only therapeutic option. Catheter-related urinary tract infections (CAUTIs) and central line-associated bloodstream infections (CLABSIs) are among the most common causes of healthcare-associated infections (HAIs) worldwide while endotracheal intubation is responsible for ventilator-associated pneumonia (VAP). Therefore, to avoid the use of biocides due to the potential risk of bacterial resistance development, antifouling strategies aiming at the prevention of bacterial adherence and colonization of catheter surfaces represent important alternative measures. This review is focused on the main strategies that are able to modify the physical or chemical properties of biomaterials, leading to the creation of antiadhesive surfaces. The most promising approaches include coating the surfaces with hydrophilic polymers, such as poly(ethylene glycol) (PEG), poly(acrylamide) and poly(acrylates), betaine-based zwitterionic polymers and amphiphilic polymers or the use of bulk-modified poly(urethanes). Natural polysaccharides and its modifications with heparin, have also been used to improve hemocompatibility. Recently developed bioinspired techniques yielding very promising results in the prevention of bacterial adhesion and colonization of surfaces include slippery liquid-infused porous surfaces (SLIPS) based on the superhydrophilic rim of the pitcher plant and the Sharklet topography inspired by the shark skin, which are potential candidates as surface-modifying approaches for biomedical devices. Concerning the potential application of most of these strategies in catheters, more in vivo studies and clinical trials are needed to assure their efficacy and safety for possible future use.
Collapse
Affiliation(s)
- Célia M C Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sara M C Lemos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Zhu J, Xiao Y, Zhang H, Li Y, Yuan Y, Yang Z, Chen S, Zheng X, Zhou X, Jiang ZX. Peptidic Monodisperse PEG “combs” with Fine-Tunable LCST and Multiple Imaging Modalities. Biomacromolecules 2019; 20:1281-1287. [DOI: 10.1021/acs.biomac.8b01693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junfei Zhu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Xiao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Yeh CC, Venault A, Yeh LC, Chinnathambi A, Alharbi SA, Higuchi A, Chang Y. Universal Bioinert Control of Polystyrene Interfaces via Hydrophobic-Driven Self-Assembled Surface PEGylation with a Well-Defined Block Sequence. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chih-Chen Yeh
- Department of Chemical Engineering and R&D Center for Membrane Technology; Chung Yuan Christian University; 200 Chung Pei Road Chung-Li City 32023 Taiwan
| | - Antoine Venault
- Department of Chemical Engineering and R&D Center for Membrane Technology; Chung Yuan Christian University; 200 Chung Pei Road Chung-Li City 32023 Taiwan
| | - Lu-Chen Yeh
- Department of Chemical Engineering and R&D Center for Membrane Technology; Chung Yuan Christian University; 200 Chung Pei Road Chung-Li City 32023 Taiwan
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology; College of Science; King Saud University; P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology; College of Science; King Saud University; P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Akon Higuchi
- Department of Chemical and Materials Engineering; National Central University; Jhong-Li Taoyuan 320 Taiwan
| | - Yung Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology; Chung Yuan Christian University; 200 Chung Pei Road Chung-Li City 32023 Taiwan
| |
Collapse
|
7
|
Hu D, Zuo C, Cao Q. Physical deposition behavior of charged amphiphilic diblock copolymers: Effect of charge distribution and electric field. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x1702002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Jaymand M, Hatamzadeh M, Omidi Y. Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress in synthesis and applications. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2014.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Hu MX, Li JN, Zhang SL, Li L, Xu ZK. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. Colloids Surf B Biointerfaces 2014; 123:809-13. [DOI: 10.1016/j.colsurfb.2014.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/24/2022]
|
10
|
Deng H, Liu J, Zhao X, Zhang Y, Liu J, Xu S, Deng L, Dong A, Zhang J. PEG-b-PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules 2014; 15:4281-92. [DOI: 10.1021/bm501290t] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongzhang Deng
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinjian Liu
- Tianjin
Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Xuefei Zhao
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuming Zhang
- Tianjin
Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Tianjin
Key Laboratory of Radiation Molecular and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China
| | - Shuxin Xu
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianhua Zhang
- Department
of Polymer Science and Technology and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Abstract
This review provides a snapshot of recent progress in the chemical modification of syndiotactic polystyrene.
Collapse
Affiliation(s)
- Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Iran
| |
Collapse
|