1
|
Nesterkina M, Kravchenko I, Hirsch AKH, Lehr CM. Thermotropic liquid crystals in drug delivery: A versatile carrier for controlled release. Eur J Pharm Biopharm 2024; 200:114343. [PMID: 38801980 DOI: 10.1016/j.ejpb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Responsive and adaptive soft-matter systems represent an advanced category of materials with potential applications in drug delivery. Among these, liquid crystals (LCs) emerge as multifunctional anisotropic scaffolds capable of reacting to temperature, light, electric or magnetic fields. Specifically, the ordering and physical characteristics of thermotropic LCs are primarily contingent on temperature as an external stimulus. This comprehensive review aims to bridge a notable gap in the biomedical application of thermotropic mesogens by exclusively focusing on drug delivery. Anticipated to inspire diverse ideas, the review intends to facilitate the elegant exploitation of controllable and temperature-induced characteristics of LCs to enhance drug permeation. Here, we delineate recent advancements in thermally-driven LCs with a substantial emphasis on LC monomer mixtures, elastomers, polymers, microcapsules and membranes. Moreover, special emphasis is placed on the biocompatibility and toxicity of LCs as the foremost prerequisite for their application in healthcare. Given the promising prospect of thermotropic LC formulations in a clinical context, a special section is devoted to skin drug delivery. The review covers content from multiple disciplines, primarily targeting researchers interested in innovative strategies in drug delivery. It also appeals to those enthusiastic about firsthand exploration of the feasible biomedical applications of thermotropic LCs. To the best of our knowledge, this marks the first review addressing thermotropic LCs as tunable soft-matter systems for drug delivery.
Collapse
Affiliation(s)
- Mariia Nesterkina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany.
| | - Iryna Kravchenko
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Yang Y, Cui Y, Chen Y, Guo Y, Liu X, Chen X, Liu J, Liu Y, Liu Z. Reflectivity and Angular Anisotropy of Liquid Crystal Microcapsules with Different Particle Sizes by Complex Coalescence. Molecules 2024; 29:3030. [PMID: 38998989 PMCID: PMC11242959 DOI: 10.3390/molecules29133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Cholesteric liquid crystal microcapsules (CLCMs) are used to improve the stability of liquid crystals while ensuring their stimulus response performance and versatility, with representative applications such as sensing, anticounterfeiting, and smart fabrics. However, the reflectivity and angular anisotropy decrease because of the anchoring effect of the polymer shell matrix, and the influence of particle size on this has not been thoroughly studied. In this study, the effect of synthesis technology on microcapsule particle size was investigated using a complex coalescence method, and the effect of particle size on the reflectivity and angular anisotropy of CLCMs was investigated in detail. A particle size of approximately 66 µm with polyvinyl alcohol (PVA, 1:1) exhibited a relative reflectivity of 16.6% and a bandwidth of 20 nm, as well as a narrow particle size distribution of 22 µm. The thermosetting of microcapsules coated with PVA was adjusted and systematically investigated by controlling the mass ratio. The optimized mass ratio of microcapsules (66 µm) to PVA was 2:1, increasing the relative reflectivity from 16.6% (1:1) to 32.0% (2:1) because of both the higher CLCM content and the matching between the birefringence of the gelatin-arabic shell system and PVA. Furthermore, color based on Bragg reflections was observed in the CLCM-coated ortho-axis and blue-shifted off-axis, and this change was correlated with the CLCM particle size. Such materials are promising for anticounterfeiting and color-based applications with bright colors and angular anisotropy in reflection.
Collapse
Affiliation(s)
- Yonggang Yang
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuchen Cui
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- Beijing Engineering Research Center of Printed Electronics Institution, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yinjie Chen
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- Beijing Engineering Research Center of Printed Electronics Institution, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yanan Guo
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- Beijing Engineering Research Center of Printed Electronics Institution, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xiaoqi Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- Beijing Engineering Research Center of Printed Electronics Institution, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xia Chen
- School of New Media, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jianghao Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yu Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zhengfeng Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
3
|
Zhang Y, Yang H, Chen Y, Yu H. Progress in Fabrication and Applications of Cholesteric Liquid Crystal Microcapsules. Chemistry 2024; 30:e202303198. [PMID: 37971158 DOI: 10.1002/chem.202303198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Liquid crystals (LCs) are well known for inherent responsiveness to external stimuli, such as light, thermal, magnetic, and electric fields. Cholesteric LCs are among the most fascinating, since they possess distinctive optical properties due to the helical molecular orientation. However, the good flow, easy contamination, and poor stability of small-molecule LCs limit their further applications, and microencapsulation as one of the most effective tools can evade these disadvantages. Microencapsulation can offer shell-core structure with LCs in the core can strengthen their stability, avoiding interference with the environment while maintaining the stimuli-responsiveness and optical properties. Here, we report recent progress in the fabrication and applications of cholesteric LC microcapsules (CLCMCs). We summarize general properties and basic principles, fabrication methods including interfacial polymerization, in-situ polymerization, complex coacervation, solvent evaporation, microfluidic and polymerization of reactive mesogens, and then give a comprehensive overview of their applications in various popular domains, including smart fabrics, smart sensor, smart displays, anti-counterfeiting, information encryption, biomedicine and actuators. Finally, we discuss the currently facing challenges and the potential development directions in this field.
Collapse
Affiliation(s)
- Yajun Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100020, Beijing, China
| | - Haixiao Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100020, Beijing, China
| | - Yinjie Chen
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, 102600, Beijing, China
| | - Haifeng Yu
- School of Materials Science and Engineering and, Key Laboratory of Polymer Chemistry and, Physics of Ministry of Education, Peking University, 100871, Beijing, China
| |
Collapse
|
4
|
Han WC, Kim YB, Lee YJ, Kim DS. Exploring multiphase liquid crystal polymeric droplets created by a partial phase-separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Hamonangan WM, Lee S, Choi YH, Li W, Tai M, Kim SH. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18159-18169. [PMID: 35426298 DOI: 10.1021/acsami.2c01319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a demand for submillimeter-sized capsules with an ultrathin shell with high visibility and no tactile sensation after release for cosmetic applications. However, neither bulk emulsification nor droplet microfluidics can directly produce such capsules in a controlled manner. Herein, we report the microfluidic production of submillimeter-sized capsules with a spacious lumen and ultrathin biodegradable shell through osmotic inflation of water-in-oil-in-water (W/O/W) double-emulsion drops. Monodisperse double-emulsion drops are produced with a capillary microfluidic device to have an organic solution of poly(lactic-co-glycolic acid) (PLGA) in the middle oil layer. Hypotonic conditions inflate the drops, leading to core volume expansion and oil-layer thickness reduction. Afterward, the oil layer is consolidated to the PLGA shell through solvent evaporation. The degree of inflation is controllable with the osmotic pressure. With a strong hypotonic condition, the capsule radius increases up to 330 μm and the shell thickness decreases to 1 μm so that the ratio of the thickness to radius is as small as 0.006. The large capsules with an ultrathin shell readily release their encapsulant under an external force by shell rupture. In the mechanical test of single capsules, the threshold strain for shell rupture is reduced from 75 to 12%, and the threshold stress is decreased by two orders for highly inflated capsules in comparison with noninflated ones. During the shell rupture, the tactile sensation of capsules gradually disappears as the capsules lose volume and the residual shells are ultrathin.
Collapse
Affiliation(s)
- Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangmin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wanzhao Li
- Infinitus R&D Center, Guangzhou 510623, China
| | - Meiling Tai
- Infinitus R&D Center, Guangzhou 510623, China
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Qu R, Li G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. BIOSENSORS 2022; 12:205. [PMID: 35448265 PMCID: PMC9032088 DOI: 10.3390/bios12040205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 05/06/2023]
Abstract
Liquid crystals (LCs), as the remarkable optical materials possessing stimuli-responsive property and optical modulation property simultaneously, have been utilized to fabricate a wide variety of optical devices. Integrating the LCs and receptors together, LC biosensors aimed at detecting various biomolecules have been extensively explored. Compared with the traditional biosensing technologies, the LC biosensors are simple, visualized, and efficient. Owning to the irreplaceable superiorities, the research enthusiasm for the LC biosensors is rapidly rising. As a result, it is necessary to overview the development of the LC biosensors to guide future work. This article reviews the basic theory and advanced applications of LC biosensors. We first discuss different mesophases and geometries employed to fabricate LC biosensors, after which we introduce various detecting mechanisms involved in biomolecular detection. We then focus on diverse detection targets such as proteins, enzymes, nucleic acids, glucose, cholesterol, bile acids, and lipopolysaccharides. For each of these targets, the development history and state-of-the-art work are exhibited in detail. Finally, the current challenges and potential development directions of the LC biosensors are introduced briefly.
Collapse
Affiliation(s)
- Ruixiang Qu
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| | - Guoqiang Li
- Intelligent Optical Imaging and Sensing Group, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
7
|
Wang L, Xiao R, Yang S, Qiu H, Shen Z, Lv P, Zhang C, Hu W, Nakajima M, Jin B, Lu Y. 3D porous graphene-assisted capsulized cholesteric liquid crystals for terahertz power visualization. OPTICS LETTERS 2020; 45:5892-5895. [PMID: 33057312 DOI: 10.1364/ol.405695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate a high-efficiency visualized terahertz (THz) power meter based on the THz-photothermochromism of capsulized cholesteric liquid crystals (CCLCs) embedded in three-dimensional porous graphene (3DPG). The graphene is a broadband perfect absorber for THz radiation and transfers heat efficiently, and its black background is beneficial for color measurement. Quantitative visualization of THz intensity up to 2.8×102mW/cm2 is presented. The minimal detectable THz power is 0.009 mW. With multi-microcapsule analysis, the relationship between THz power and the average hue value of CCLCs achieves linearity. The device can convert THz radiation to visible light and is lightweight, cheap, and easy to use.
Collapse
|
8
|
Sadati M, Martinez-Gonzalez JA, Zhou Y, Qazvini NT, Kurtenbach K, Li X, Bukusoglu E, Zhang R, Abbott NL, Hernandez-Ortiz JP, de Pablo JJ. Prolate and oblate chiral liquid crystal spheroids. SCIENCE ADVANCES 2020; 6:eaba6728. [PMID: 32832603 PMCID: PMC7439570 DOI: 10.1126/sciadv.aba6728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors.
Collapse
Affiliation(s)
- Monirosadat Sadati
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208, USA
| | - Jose A. Martinez-Gonzalez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78295, SLP, México
| | - Ye Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nader Taheri Qazvini
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208, USA
| | - Khia Kurtenbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Xiao Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA
| | - Emre Bukusoglu
- Chemical Engineering Department, Middle East Technical University, Ankara 06800, Turkey
| | - Rui Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Juan Pablo Hernandez-Ortiz
- Departamento de Materiales y Minerales, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Calle 75 # 79A-51, Bloque M17, Medellín, Colombia
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
9
|
Zhao Z, Li Q, Gong J, Li Z, Zhang J. A poly(allylamine hydrochloride)/poly(styrene sulfonate) microcapsule-coated cotton fabric for stimulus-responsive textiles. RSC Adv 2020; 10:17731-17738. [PMID: 35515608 PMCID: PMC9053607 DOI: 10.1039/d0ra02474k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022] Open
Abstract
This study reports the design of a stimulus-responsive fabric incorporating a combination of microcapsules, containing polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) sodium salt (PSS), formed via a layer-by-layer (LBL) approach. The use of PAH and PSS ensured that the microcapsule structure was robust and pH-sensitive. SEM and TEM studies showed that the composite microcapsule (PAH/PSS) n PAH had a spherical morphology with a hollow structure. FTIR demonstrated the presence of PAH and PSS, confirming the composition of the microcapsule shell. DSC showed that the microcapsules were thermally stable. The size of the microcapsules ranged from 4 μm to 6 μm. The hollow microcapsules can be used as a carrier for loading and releasing chemicals under different pH conditions. The release rate of Rhodamine-B from (PAH/PSS) n PAH microcapsules was higher at pH 5.8 than that at 7.4, confirming the pH sensitivity. The hollow structure of (PAH/PSS) n PAH microcapsules is expected to act as a carrier and medium to introduce functional chemicals into the fabric with long-lasting property and pH stimulus responsivity. Furthermore, a positively charged compound with ethylene oxide groups was added during the coating process as a crosslinker binding (PAH/PSS)2PAH for the microcapsules with the cotton fabric more efficiently. Using this method, numerous substances, e.g., drugs, dyes, natural herbs, or perfumes, could be stored into the LBL microcapsules for a relatively long time, constantly releasing them from the coated textiles. Since LBL microcapsules were easy to combine with fabrics, this study provided a feasible approach for the preparation of functional stimulus-responsive textiles.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province Qingdao 266071 Shandong China
| |
Collapse
|
10
|
Ranjkesh A, Yoon TH. Fabrication of a Single-Substrate Flexible Thermoresponsive Cholesteric Liquid-Crystal Film with Wavelength Tunability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26314-26322. [PMID: 31242728 DOI: 10.1021/acsami.9b05112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, single-substrate flexible liquid crystal (LC) devices have attracted considerable attention because they can provide desirable shapes, small weight, flexibility, and rollability. In this work, we fabricate a flexible single-substrate thermoresponsive cholesteric LC (CLC) film by a facile method called photoenforced stratification method. Our fabricated single-substrate CLC film consists of microscale polymer containers filled with a CLC solution. Our results showed that the temperature response of the fabricated single-substrate CLC film depends on the chiral material doped into the CLC solution. The single-substrate ultrathin CLC film exhibits very high flexibility and robustness without performance reduction. The fabricated flexible single-substrate CLC film may pave the way for the development of novel technologies for thermoresponsive devices with changeable shapes and designs.
Collapse
Affiliation(s)
- Amid Ranjkesh
- Department of Electronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Tae-Hoon Yoon
- Department of Electronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| |
Collapse
|