1
|
Wang S, Wang Y, Wang Y, Liu J, Liu F, Dai F, Li J, Li Z. Pollen-Modified Flat Silk Cocoon Pressure Sensors for Wearable Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:4698. [PMID: 39066095 PMCID: PMC11280503 DOI: 10.3390/s24144698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Microstructures have been proved as crucial factors for the sensing performance of flexible pressure sensors. In this study, polypyrrole (PPy)/sunflower pollen (SFP) (P/SFP) was prepared via the in situ growth of PPy on the surface of degreased SFP with a sea urchin-like microstructure; then, these P/SFP microspheres were sprayed onto a flat silk cocoon (FSC) to prepare a sensing layer P/SFP-FSC. PPy-FSC (P-FSC) was prepared as an electrode layer through the in situ polymerization of PPy on the FSC surface. The sensing layer P/SFP-FSC was placed between two P-FSC electrode layers to assemble a P/SFP-FSC pressure sensor together with a fork finger electrode. With 6 mg/cm2 of optimized sprayed P/SFP microspheres, the prepared flexible pressure sensor has a sensitivity of up to 0.128 KPa-1 in the range of 0-13.18 KPa and up to 0.13 KPa-1 in the range of 13.18-30.65 KPa, a fast response/recovery time (90 ms/80 ms), and a minimum detection limit as low as 40 Pa. This fabricated flexible P/SFP-FSC sensor can monitor human motion and can also be used for the encrypted transmission of important information via Morse code. In conclusion, the developed flexible P/SFP-FSC pressure sensor based on microstructure modification in this study shows good application prospects in the field of human-computer interaction and wearable electronic devices.
Collapse
Affiliation(s)
- Shengnan Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Yujia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Yi Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Jiaqi Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Fan Liu
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Zhi Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Li P, Jia X, Sun Z, Tang J, Ji Q, Ma X. Conductive interpenetrating network organohydrogels of gellan gum/polypyrrole with weather-tolerance, piezoresistive sensing and shape-memory capability. Int J Biol Macromol 2024; 262:130215. [PMID: 38365141 DOI: 10.1016/j.ijbiomac.2024.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under -20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation.
Collapse
Affiliation(s)
- Panpan Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinyu Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhaolong Sun
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
3
|
Yoon Y, Jo S, Lee DH, Lee TS. Synthesis of fluorescent, ortho-azonaphthol-containing conjugated polymer for ratiometric fluoride ion sensing. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Phytic Acid-Enhanced Electrospun PCL-Polypyrrole Nanofibrous Mat: Preparation, Characterization, and Mechanism. Macromol Res 2022. [DOI: 10.1007/s13233-022-0086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|