1
|
Chen Q, Zhu L, Zhang S, Qiao S, Ding ZJ, Zheng SJ, Guo J, Su N. Structures and mechanisms of the ABC transporter ABCB1 from Arabidopsis thaliana. Structure 2025; 33:903-915.e5. [PMID: 40101709 DOI: 10.1016/j.str.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
The Arabidopsis thaliana auxin transporter ABCB1 plays a fundamental role in the regulation of plant growth and development. While its homolog ABCB19 was previously shown to transport brassinosteroids (BR), another class of essential hormones, the ability of ABCB1 to mediate BR transport has remained unexplored. In this study we show that ABCB1 also transports brassinosteroids with an in vitro brassinolide (BL) transport assay. Using single-particle cryo-electron microscopy, we determined ABCB1 structures in multiple inward-facing conformations in the apo state, ANP-bound state, BL-bound state, and the both BL- and ANP-bound state. BL binds to the large cavity of two transmembrane domains, inducing a slight conformational change. Additionally, we obtained the structure of ABCB1 in an outward-facing conformation. By comparing these different conformations, we elucidated the possible mechanism of hormone transport by ABCB1. These high-resolution structures help us to understand the structural basis for hormone recognition and transport mechanisms of ABCB1.
Collapse
Affiliation(s)
- Qian Chen
- Center for Membrane Receptors and Brain Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China
| | - Li Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - Sufen Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Qiao
- Center for Membrane Receptors and Brain Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China; State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Nannan Su
- Center for Membrane Receptors and Brain Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
2
|
Wang Y, Ledvina HE, Tower CA, Kambarev S, Liu E, Charity JC, Kreuk LSM, Tang Q, Chen Q, Gallagher LA, Radey MC, Rerolle GF, Li Y, Penewit KM, Turkarslan S, Skerrett SJ, Salipante SJ, Baliga NS, Woodward JJ, Dove SL, Peterson SB, Celli J, Mougous JD. Discovery of a glutathione utilization pathway in Francisella that shows functional divergence between environmental and pathogenic species. Cell Host Microbe 2023; 31:1359-1370.e7. [PMID: 37453420 PMCID: PMC10763578 DOI: 10.1016/j.chom.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Glutathione (GSH) is an abundant metabolite within eukaryotic cells that can act as a signal, a nutrient source, or serve in a redox capacity for intracellular bacterial pathogens. For Francisella, GSH is thought to be a critical in vivo source of cysteine; however, the cellular pathways permitting GSH utilization by Francisella differ between strains and have remained poorly understood. Using genetic screening, we discovered a unique pathway for GSH utilization in Francisella. Whereas prior work suggested GSH catabolism initiates in the periplasm, the pathway we define consists of a major facilitator superfamily (MFS) member that transports intact GSH and a previously unrecognized bacterial cytoplasmic enzyme that catalyzes the first step of GSH degradation. Interestingly, we find that the transporter gene for this pathway is pseudogenized in pathogenic Francisella, explaining phenotypic discrepancies in GSH utilization among Francisella spp. and revealing a critical role for GSH in the environmental niche of these bacteria.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Catherine A Tower
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Stanimir Kambarev
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Elizabeth Liu
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - James C Charity
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Qing Tang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Qiwen Chen
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Guilhem F Rerolle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yaqiao Li
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Davies JS, Currie MJ, North RA, Scalise M, Wright JD, Copping JM, Remus DM, Gulati A, Morado DR, Jamieson SA, Newton-Vesty MC, Abeysekera GS, Ramaswamy S, Friemann R, Wakatsuki S, Allison JR, Indiveri C, Drew D, Mace PD, Dobson RCJ. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2023; 14:1120. [PMID: 36849793 PMCID: PMC9971032 DOI: 10.1038/s41467-023-36590-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Rachel A North
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand. .,Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Jack M Copping
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Daniela M Remus
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dustin R Morado
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Subramanian Ramaswamy
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University, 1203 W State St, West Lafayette, IN 47906, USA
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, S-40530, Gothenburg, Sweden
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
4
|
ATP-binding cassette transporters and neurodegenerative diseases. Essays Biochem 2021; 65:1013-1024. [PMID: 34415015 DOI: 10.1042/ebc20210012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.
Collapse
|
5
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|
6
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Leninger M, Sae Her A, Traaseth NJ. Inducing conformational preference of the membrane protein transporter EmrE through conservative mutations. eLife 2019; 8:48909. [PMID: 31637997 PMCID: PMC6805155 DOI: 10.7554/elife.48909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Transporters from bacteria to humans contain inverted repeat domains thought to arise evolutionarily from the fusion of smaller membrane protein genes. Association between these domains forms the functional unit that enables transporters to adopt distinct conformations necessary for function. The small multidrug resistance (SMR) family provides an ideal system to explore the role of mutations in altering conformational preference since transporters from this family consist of antiparallel dimers that resemble the inverted repeats present in larger transporters. Here, we show using NMR spectroscopy how a single conservative mutation introduced into an SMR dimer is sufficient to change the resting conformation and function in bacteria. These results underscore the dynamic energy landscape for transporters and demonstrate how conservative mutations can influence structure and function.
Collapse
Affiliation(s)
- Maureen Leninger
- Department of Chemistry, New York University, New York, United States
| | - Ampon Sae Her
- Department of Chemistry, New York University, New York, United States
| | | |
Collapse
|
8
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
9
|
Zhang XC, Zhang H. P-type ATPases use a domain-association mechanism to couple ATP hydrolysis to conformational change. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0087-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
10
|
Lefèvre F, Boutry M. Towards Identification of the Substrates of ATP-Binding Cassette Transporters. PLANT PHYSIOLOGY 2018; 178:18-39. [PMID: 29987003 PMCID: PMC6130012 DOI: 10.1104/pp.18.00325] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Most ATP-binding cassette (ABC) proteins function in transmembrane transport, and plant genomes encode a large number of ABC transporters compared with animal or fungal genomes. These transporters have been classified into eight subfamilies according to their topology and phylogenetic relationships. Transgenic plants and mutants with altered ABC transporter expression or function have contributed to deciphering the physiological roles of these proteins, such as in plant development, responses to biotic and abiotic stress, or detoxification activities within the cell. In agreement with the diversity of these functions, a large range of substrates (e.g. hormones and primary and secondary metabolites) have been identified. We review in detail transporters for which substrates have been unambiguously identified. However, some cases are far from clear, because some ABC transporters have the ability to transport several structurally unrelated substrates or because the identification of their substrates was performed indirectly without any flux measurement. Various heterologous or homologous expression systems have been used to better characterize the transport activity and other biochemical properties of ABC transporters, opening the way to addressing new issues such as the particular structural features of plant ABC transporters, the bidirectionality of transport, or the role of posttranslational modifications.
Collapse
Affiliation(s)
- François Lefèvre
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Single-molecule fluorescence studies on the conformational change of the ABC transporter MsbA. BIOPHYSICS REPORTS 2018. [DOI: 10.1007/s41048-018-0057-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Dibutyl phthalate alters the metabolic pathways of microbes in black soils. Sci Rep 2018; 8:2605. [PMID: 29422490 PMCID: PMC5805725 DOI: 10.1038/s41598-018-21030-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
Dibutyl phthalate (DBP) is well known as a high-priority pollutant. This study explored the impacts of DBP on the metabolic pathways of microbes in black soils in the short term (20 days). The results showed that the microbial communities were changed in black soils with DBP. In nitrogen cycling, the abundances of the genes were elevated by DBP. DBP contamination facilitated 3'-phosphoadenosine-5'-phosphosulfate (PAPS) formation, and the gene flux of sulfate metabolism was increased. The total abundances of ABC transporters and the gene abundances of the monosaccharide-transporting ATPases MalK and MsmK were increased by DBP. The total abundance of two-component system (TCS) genes and the gene abundances of malate dehydrogenase, histidine kinase and citryl-CoA lyase were increased after DBP contamination. The total abundance of phosphotransferase system (PTS) genes and the gene abundances of phosphotransferase, Crr and BglF were raised by DBP. The increased gene abundances of ABC transporters, TCS and PTS could be the reasons for the acceleration of nitrogen, carbon and sulfate metabolism. The degrading-genes of DBP were increased markedly in soil exposed to DBP. In summary, DBP contamination altered the microbial community and enhanced the gene abundances of the carbon, nitrogen and sulfur metabolism in black soils in the short term.
Collapse
|
13
|
Karasik A, Ledwitch KV, Arányi T, Váradi A, Roberts A, Szeri F. Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol-17-β-D-glucuronide binding in a Drosophila ATP binding cassette type-C transporter. FASEB J 2018; 32:669-680. [PMID: 28939593 DOI: 10.1096/fj.201700606r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ATP binding cassette type-C (ABCC) transporters move molecules across cell membranes upon hydrolysis of ATP; however, their coupling of ATP hydrolysis to substrate transport remains elusive. Drosophila multidrug resistance-associated protein (DMRP) is the functional ortholog of human long ABCC transporters, with similar substrate and inhibitor specificity, but higher activity. Exploiting its high activity, we kinetically dissected the catalytic mechanism of DMRP by using E2-d-glucuronide (E2G), the physiologic substrate of human ABCC. We examined the DMRP-mediated interdependence of ATP and E2G in biochemical assays. We observed E2G-dependent ATPase activity to be biphasic at subsaturating ATP concentrations, which implies at least 2 E2G binding sites on DMRP. Furthermore, transport measurements indicated strong nonreciprocal cooperativity between ATP and E2G. In addition to confirming these findings, our kinetic modeling with the Complex Pathway Simulator indicated a 10-fold decrease in the E2G-mediated activation of ATP hydrolysis upon saturation of the second E2G binding site. Surprisingly, the binding of the second E2G allowed for substrate transport with a constant rate, which tightly coupled ATP hydrolysis to transport. In summary, we show that the second E2G binding-similar to human ABCC2-allosterically stimulates transport activity of DMRP. Our data suggest that this is achieved by a significant increase in the coupling of ATP hydrolysis to transport.-Karasik, A., Ledwitch, K. V., Arányi, T., Váradi, A., Roberts, A., Szeri, F. Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol-17-β-D-glucuronide binding in a Drosophila ATP binding cassette type-C transporter.
Collapse
Affiliation(s)
- Agnes Karasik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Tamás Arányi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arthur Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Flóra Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Pereira CD, Martins F, Wiltfang J, da Cruz e Silva OA, Rebelo S. ABC Transporters Are Key Players in Alzheimer’s Disease. J Alzheimers Dis 2017; 61:463-485. [DOI: 10.3233/jad-170639] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cátia D. Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Jens Wiltfang
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
16
|
Hopfner KP. Invited review: Architectures and mechanisms of ATP binding cassette proteins. Biopolymers 2017; 105:492-504. [PMID: 27037766 DOI: 10.1002/bip.22843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) ATPases form chemo-mechanical engines and switches that function in a broad range of biological processes. Most prominently, a very large family of integral membrane NTPases-ABC transporters-catalyzes the import or export of a diverse molecules across membranes. ABC proteins are also important components of the chromosome segregation, recombination, and DNA repair machineries and regulate or catalyze critical steps of ribosomal protein synthesis. Recent structural and mechanistic studies draw interesting architectural and mechanistic parallels between diverse ABC proteins. Here, I review this state of our understanding how NTP-dependent conformational changes of ABC proteins drive diverse biological processes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 492-504, 2016.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Center for Integrated Protein Science Munich, Ludwigs-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
17
|
Zhang XC, Feng W. Thermodynamic aspects of ATP hydrolysis of actomyosin complex. BIOPHYSICS REPORTS 2016; 2:87-94. [PMID: 28317011 PMCID: PMC5334417 DOI: 10.1007/s41048-016-0032-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/10/2016] [Indexed: 11/03/2022] Open
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Feng
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
18
|
Zhang XC, Liu M, Zhao Y. How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase? Protein Cell 2015; 6:784-91. [PMID: 26472431 PMCID: PMC4624678 DOI: 10.1007/s13238-015-0217-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While the field of ATP synthase research has a long history filled with landmark discoveries, recent structural works provide us with important insights into the mechanisms that links the proton movement with the rotation of the Fo motor. Here, we propose a mechanism of unidirectional rotation of the Fo complex, which is in agreement with these new structural insights as well as our more general ΔΨ-driving hypothesis of membrane proteins: A proton path in the rotor-stator interface is formed dynamically in concert with the rotation of the Fo rotor. The trajectory of the proton viewed in the reference system of the rotor (R-path) must lag behind that of the stator (S-path). The proton moves from a higher energy site to a lower site following both trajectories simultaneously. The two trajectories meet each other at the transient proton-binding site, resulting in a relative rotation between the rotor and stator. The kinetic energy of protons gained from ΔΨ is transferred to the c-ring as the protons are captured sequentially by the binding sites along the proton path, thus driving the unidirectional rotation of the c-ring. Our ΔΨ-driving hypothesis on Fo motor is an attempt to unveil the robust mechanism of energy conversion in the highly conserved, ubiquitously expressed rotary ATP synthases.
Collapse
Affiliation(s)
- Xuejun C. Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Min Liu
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yan Zhao
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|