1
|
Balboa E, Saud F, Parra-Ruiz C, de la Fuente M, Landskron G, Zanlungo S. Exploring the lutein therapeutic potential in steatotic liver disease: mechanistic insights and future directions. Front Pharmacol 2024; 15:1406784. [PMID: 38978979 PMCID: PMC11228318 DOI: 10.3389/fphar.2024.1406784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.
Collapse
Affiliation(s)
- Elisa Balboa
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Faride Saud
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Glauben Landskron
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Zhang Y, Xiao W, He S, Xia X, Yang W, Yang Z, Hu H, Wang Y, Wang X, Li H, Huang Y, Gao H. Lipid-mediated protein corona regulation with increased apolipoprotein A-I recruitment for glioma targeting. J Control Release 2024; 368:42-51. [PMID: 38365180 DOI: 10.1016/j.jconrel.2024.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Protein corona has long been a source of concern, as it might impair the targeting efficacy of targeted drug delivery systems. However, engineered up-regulating the adsorption of certain functional serum proteins could provide nanoparticles with specific targeting drug delivery capacity. Herein, apolipoprotein A-I absorption increased nanoparticles (SPC-PLGA NPs), composed with the Food and Drug Administration approved intravenously injectable soybean phosphatidylcholine (SPC) and poly (DL-lactide-co-glycolide) (PLGA), were fabricated for enhanced glioma targeting. Due to the high affinity of SPC and apolipoprotein A-I, the percentage of apolipoprotein A-I in the protein corona of SPC-PLGA NPs was 2.19-fold higher than that of nanoparticles without SPC, which made SPC-PLGA NPs have superior glioma targeting ability through binding to scavenger receptor class BI on blood-brain barrier and glioma cells both in vitro and in vivo. SPC-PLGA NPs loaded with paclitaxel could effectively reduce glioma invasion and prolong the survival time of glioma-bearing mice. In conclusion, we provided a good example of the direction of achieving targeting drug delivery based on protein corona regulation.
Collapse
Affiliation(s)
- Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Almarhoun M, Biswas L, Alhasani RH, Wong A, Tchivelekete GM, Zhou X, Patterson S, Bartholomew C, Shu X. Overexpression of STARD3 attenuates oxidized LDL-induced oxidative stress and inflammation in retinal pigment epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158927. [PMID: 33771709 DOI: 10.1016/j.bbalip.2021.158927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/20/2021] [Indexed: 01/23/2023]
Abstract
Age-related macular degeneration (AMD) is the most common cause of visual disorder in aged people and may lead to complete blindness with ageing. The major clinical feature of AMD is the presence of cholesterol enriched deposits underneath the retinal pigment epithelium (RPE) cells. The deposits can induce oxidative stress and inflammation. It has been suggested that abnormal cholesterol homeostasis contributes to the pathogenesis of AMD. However, the functional role of defective cholesterol homeostasis in AMD remains elusive. STARD proteins are a family of proteins that contain a steroidogenic acute regulatory protein-related lipid transfer domain. There are fifteen STARD proteins in mammals and some, such as STARD3, are responsible for cholesterol trafficking. Previously there was no study of STARD proteins in retinal cholesterol metabolism and trafficking. Here we examined expression of the Stard3 gene in mouse retinal and RPE cells at ages of 2 and 20 months. We found that expression of Stard 3 gene transcripts in both mouse RPE and retina was significantly decreased at age of 20 months when compared to that of age 2 months old. We created a stable ARPE-19 cell line overexpressing STARD3 and found this resulted in increased cholesterol efflux, reduced accumulation of intracellular oxidized LDL, increased antioxidant capacity and lower levels of inflammatory cytokines. The data suggested that STARD3 is a potential target for AMD through promoting the removal of intracellular cholesterol and slowing the disease progression.
Collapse
Affiliation(s)
- Mohammad Almarhoun
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aileen Wong
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Gabriel Mbuta Tchivelekete
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Steven Patterson
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Chris Bartholomew
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, PR China.
| |
Collapse
|
4
|
Caridis AM, Lightbody RJ, Tarlton JMR, Dolan S, Graham A. Genetic obesity increases pancreatic expression of mitochondrial proteins which regulate cholesterol efflux in BRIN-BD11 insulinoma cells. Biosci Rep 2019; 39:BSR20181155. [PMID: 30819824 PMCID: PMC6430727 DOI: 10.1042/bsr20181155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 11/24/2022] Open
Abstract
Pancreatic β-cells are sensitive to fluctuations in cholesterol content, which can damage the insulin secretion pathway, contributing to the aetiology of type 2 diabetes mellitus. Cholesterol efflux to (apo)lipoproteins, via ATP-binding cassette (ABC) transporter A1 (ABCA1), can prevent intracellular cholesterol accumulation; in some peripheral cells, ABCA1-dependent efflux is enhanced by promotion of cholesterol trafficking to, and generation of Liver X receptor (LXR) ligands by, mitochondrial sterol 27-hydroxylase (Cyp27A1 (cytochrome P450 27 A1/sterol 27-hydroxylase)) and its redox partners, adrenodoxin (ADX) and ADX reductase (ADXR). Despite this, the roles of mitochondrial cholesterol trafficking (steroidogenic acute regulatory protein [StAR] and 18-kDa translocator protein [TSPO]) and metabolising proteins in insulin-secreting cells remain wholly uncharacterised. Here, we demonstrate an increase in pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, but not ADX or StAR, in obese (fa/fa) rodents compared with lean (Fa/?) controls. Overexpression of Cyp27A1 alone in BRIN-BD11 cells increased INS2 expression, without affecting lipid metabolism; however, after exposure to low-density lipoprotein (LDL), cholesterol efflux to (apo)lipoprotein acceptors was enhanced in Cyp27A1-overexpressing cells. Co-transfection of Cyp27A1, ADX and ADXR, at a ratio approximating that in pancreatic tissue, stimulated cholesterol efflux to apolipoprotein A-I (apoA-I) in both basal and cholesterol-loaded cells; insulin release was stimulated equally by all acceptors in cholesterol-loaded cells. Thus, genetic obesity increases pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, while modulation of Cyp27A1 and its redox partners promotes cholesterol efflux from insulin-secreting cells to acceptor (apo)lipoproteins; this response may help guard against loss of insulin secretion caused by accumulation of excess intracellular cholesterol.
Collapse
Affiliation(s)
- Anna-Maria Caridis
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Richard J Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jamie M R Tarlton
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
5
|
Lei C, Xueming H, Ruihang D. MLN64 deletion suppresses RANKL-induced osteoclastic differentiation and attenuates diabetic osteoporosis in streptozotocin (STZ)-induced mice. Biochem Biophys Res Commun 2018; 505:1228-1235. [DOI: 10.1016/j.bbrc.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
|
6
|
Knocking down Stard3 decreases adipogenesis with decreased mitochondrial ROS in 3T3-L1 cells. Biochem Biophys Res Commun 2018; 504:387-392. [PMID: 29908180 DOI: 10.1016/j.bbrc.2018.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Start domain-containing protein 3 (Stard3) plays roles in intracellular cholesterol distribution, however, the role of Stard3 in the adipogenesis of 3T3-L1 preadipocytes remains unclear. We demonstrated that Stard3 expression was significantly increased during the adipogenesis of 3T3-L1 preadipocytes, accompanied by an increase of mitochondrial Reactive oxygen species (ROS). Stard3 knocking-down inhibited 3T3-L1 preadipocyte adipogenesis with decreased mitochondrial ROS levels, while ROS inducer rescued the stard3 silencing 3T3 cells with increased ROS. Moreover, Stard3 silencing reduced the expression of peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP)α in 3T3- L1 cells. In conclusion, Stard3 enhanced the adipogenesis of preadipocytes by enhancement of cholesterol redistribution to the mitochondrial, increasing mitochondrial ROS production. These results suggest that Stard3 is an essential factor for the 3T3-L1 cells' differentiation.
Collapse
|