1
|
Zhang Q, Zhang Y, Cong P, Wu Q, Wan H, Huang X, Li X, Li Z, Li J, Wu H, Tian L, Xiong L. Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice. Cell Mol Life Sci 2025; 82:37. [PMID: 39762568 PMCID: PMC11703800 DOI: 10.1007/s00018-024-05530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function. Connexin 43 (Cx43) contributes to cognitive function by modulating the components of PNNs. This study was designed to investigate the specific regulatory mechanisms of Cx43 on PNNs and its pivotal role in the development of PND. METHODS Eighteen-month-old wild-type and Gja1fl/fl C57BL/6 mice were subjected to abdominal surgery under 1.4% isoflurane anesthesia. Cognitive functions, particularly learning and memory, were evaluated via the Y-maze test, Barnes maze (BM) and contextual fear conditioning test (CFT). The mRNA and protein expression levels of Cx43 were assessed by using quantitative reverse transcription polymerase chain reaction (qRT-PCR), fluorescent in situ hybridization (FISH), western blotting and flow cytometry. The quantity of PNNs was measured by Wisteria floribunda agglutinin (WFA) and Aggrecan staining. RESULTS Aged mice subjected to anesthesia and surgery exhibited deficits in hippocampus-dependent cognitive functions, which were accompanied by increased Cx43 mRNA and protein expression. Conditional knockout (cKO) of Cx43 in astrocytes alleviated cognitive deficits and promoted the number of PNNs and dendritic spines in the hippocampus by targeting Dmp1. Knockdown of Dmp1 attenuated the beneficial effects of Cx43 cKO on cognitive deficits induced by anesthesia and surgery. CONCLUSION Our findings indicate that anesthesia and surgery induce an increase in Cx43 expression, which inhibits the formation of PNNs and dendritic spines in hippocampus by suppressing Dmp1 transcription, leading to cognitive deficits in aged mice. These results offer new mechanistic insights into the pathogenesis of PND and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Yuxin Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Qianqian Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Xinyang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Zhouxiang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Jingxuan Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China
| | - Huanghui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.
| |
Collapse
|
2
|
Velmurugan GV, Vekaria HJ, Patel SP, Sullivan PG, Hubbard WB. Astrocytic mitochondrial transfer to brain endothelial cells and pericytes in vivo increases with aging. J Cereb Blood Flow Metab 2024:271678X241306054. [PMID: 39668588 PMCID: PMC11638933 DOI: 10.1177/0271678x241306054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Intercellular mitochondrial transfer (IMT) is an intriguing biological phenomenon where mitochondria are transferred between different cells and notably, cell types. IMT is physiological, occurring in normal conditions, but also is utilized to deliver healthy mitochondria to cells in distress. Transferred mitochondria can be integrated to improve cellular metabolism, and mitochondrial function. Research on the mitochondrial transfer axis between astrocytes and brain capillaries in vivo is limited by the cellular heterogeneity of the neurovascular unit. To this end, we developed an inducible mouse model that expresses mitochondrial Dendra2 only in astrocytes and then isolated brain capillaries to remove all intact astrocytes. This method allows the visualization of in vivo astrocyte- endothelial cell (EC) and astrocyte-pericyte IMT. We demonstrate evidence of astrocyte-EC and astrocyte-pericyte mitochondrial transfer within brain capillaries. We also show that healthy aging enhances mitochondrial transfer from astrocytes to brain capillaries, revealing a potential link between brain aging and cellular mitochondrial dynamics. Finally, we observe that astrocyte-derived extracellular vesicles transfer mitochondria to brain microvascular endothelial cells, showing the potential route of in vivo IMT. These results represent a breakthrough in our understanding of IMT in the brain and a new target in brain aging and neurovascular metabolism.
Collapse
Affiliation(s)
- Gopal V Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
| | - Samir P Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
| | - W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Qian YX, Rao SS, Tan YJ, Wang Z, Yin H, Wan TF, He ZH, Wang X, Hong CG, Zeng HJ, Luo Y, Duan YX, Zhu H, Hu XY, Zou L, Zhang Y, Liu BB, Wang ZX, Du W, Chen CY, Xie H. Intermittent Fasting Targets Osteocyte Neuropeptide Y to Relieve Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400196. [PMID: 38978353 PMCID: PMC11425897 DOI: 10.1002/advs.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Indexed: 07/10/2024]
Abstract
Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.
Collapse
Affiliation(s)
- Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Teng-Fei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hai-Jin Zeng
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yan-Xin Duan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin-Yue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ling Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yan Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing-Bing Liu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
5
|
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J. Regulation of blood-brain barrier integrity by Dmp1-expressing astrocytes through mitochondrial transfer. SCIENCE ADVANCES 2024; 10:eadk2913. [PMID: 38941455 PMCID: PMC11212732 DOI: 10.1126/sciadv.adk2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.
Collapse
Affiliation(s)
- Delin Liu
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Linjing Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - John Papadimitriou
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Pathology, Pathwest, Nedlands, Western Australia 6009, Australia
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jun Yuan
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Peilin Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| |
Collapse
|
6
|
Yang S, Bao J, Shi R, Liu L, Wang Y, Hong X, Wu X. Bioinformatics-based diagnosis and evaluation of several pivotal genes and pathways associated with immune infiltration at different time points in spinal cord injury. Biotechnol Genet Eng Rev 2024; 40:65-91. [PMID: 36841940 DOI: 10.1080/02648725.2023.2178970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023]
Abstract
Spinal Cord Injury (SCI) is a devastating neurological event. To assess the degree of spinal cord damage and classify the injury, it is recommended to use the 2019 version of the AIS standard. The severity of trauma was evaluated using the Trauma Severity Score, and various classification systems have been proposed for injuries at different parts and segments of the spine. Understanding the regulated signaling pathways and immune processes following SCI can lead to a better understanding of SCI-induced biomarkers and their underlying mechanisms. In this study, two gene expression datasets (GSE464 and GSE45006) from the Gene Expression Omnibus database were utilized. Differential gene expression and co-expression network analysis were performed, revealing 370 shared genes in the 3-day group and 111 shared genes in the 14-day group after SCI. The study used functional enrichment analysis methods such as Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. The ssGSEA method was used to assess the levels and composition of immune infiltration in both the sham (control) and SCI groups. The single-cell transcriptomics dataset GSE182803 was analyzed to identify genes associated with immune marker cells. Four key genes (Ptgs2, Fn1, Ccl2, and Icam1) were identified in the 3-day group, while only one gene (Cyp51) was identified in the 14-day group after SCI. The findings offer significant insights into the immune-related genes and signaling pathways involved in secondary SCI at different time points and hold potential for the development of intervention strategies for acute and chronic post-SCI.
Collapse
Affiliation(s)
- Shu Yang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Junping Bao
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Shi
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuntao Wang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xin Hong
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaotao Wu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
8
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
9
|
Yang W, Tian E, Chernish A, McCluggage P, Dalal K, Lara A, Ten Hagen KG, Tabak LA. Quantitative mapping of the in vivo O-GalNAc glycoproteome in mouse tissues identifies GalNAc-T2 O-glycosites in metabolic disorder. Proc Natl Acad Sci U S A 2023; 120:e2303703120. [PMID: 37862385 PMCID: PMC10614836 DOI: 10.1073/pnas.2303703120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/03/2023] [Indexed: 10/22/2023] Open
Abstract
The family of GalNAc-Ts (GalNAcpolypeptide:N-Acetylgalactosaminyl transferases) catalyzes the first committed step in the synthesis of O-glycans, which is an abundant and biologically important protein modification. Abnormalities in the activity of individual GalNAc-Ts can result in congenital disorders of O-glycosylation (CDG) and influence a broad array of biological functions. How site-specific O-glycans regulate biology is unclear. Compiling in vivo O-glycosites would be an invaluable step in determining the function of site-specific O-glycans. We integrated chemical and enzymatic conditions that cleave O-glycosites, a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation mass spectrometry (MS) workflow and software to study nine mouse tissues and whole blood. We identified 2,154 O-glycosites from 595 glycoproteins. The O-glycosites and glycoproteins displayed consensus motifs and shared functions as classified by Gene Ontology terms. Limited overlap of O-glycosites was observed with protein O-GlcNAcylation and phosphorylation sites. Quantitative glycoproteomics and proteomics revealed a tissue-specific regulation of O-glycosites that the differential expression of Galnt isoenzymes in tissues partly contributes to. We examined the Galnt2-null mouse model, which phenocopies congenital disorder of glycosylation involving GALNT2 and revealed a network of glycoproteins that lack GalNAc-T2-specific O-glycans. The known direct and indirect functions of these glycoproteins appear consistent with the complex metabolic phenotypes observed in the Galnt2-null animals. Through this study and interrogation of databases and the literature, we have compiled an atlas of experimentally identified mouse O-glycosites consisting of 2,925 O-glycosites from 758 glycoproteins.
Collapse
Affiliation(s)
- Weiming Yang
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - E. Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Aliona Chernish
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Peggy McCluggage
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Kruti Dalal
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Alexander Lara
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| |
Collapse
|
10
|
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B. The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 2023; 191:106726. [PMID: 36907285 DOI: 10.1016/j.phrs.2023.106726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Acute ischemic stroke (AIS) is a serious and life-threatening disease worldwide. Despite thrombolysis or endovascular thrombectomy, a sizeable fraction of patients with AIS have adverse clinical outcomes. In addition, existing secondary prevention strategies with antiplatelet and anticoagulant drugs therapy are not able to adequately decrease the risk of ischemic stroke recurrence. Thus, exploring novel mechanisms for doing so represents an urgent need for the prevention and treatment of AIS. Recent studies have discovered that protein glycosylation plays a critical role in the occurrence and outcome of AIS. As a common co- and post-translational modification, protein glycosylation participates in a wide variety of physiological and pathological processes by regulating the activity and function of proteins or enzymes. Protein glycosylation is involved in two causes of cerebral emboli in ischemic stroke: atherosclerosis and atrial fibrillation. Following ischemic stroke, the level of brain protein glycosylation becomes dynamically regulated, which significantly affects stroke outcome through influencing inflammatory response, excitotoxicity, neuronal apoptosis, and blood-brain barrier disruption. Drugs targeting glycosylation in the occurrence and progression of stroke may represent a novel therapeutic idea. In this review, we focus on possible perspectives about how glycosylation affects the occurrence and outcome of AIS. We then propose the potential of glycosylation as a therapeutic drug target and prognostic marker for AIS patients in the future.
Collapse
Affiliation(s)
- Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Wang Y, Lyu J, Qian X, Chen B, Sun H, Luo W, Chi F, Li H, Ren D. Involvement of Dmp1 in the Precise Regulation of Hair Bundle Formation in the Developing Cochlea. BIOLOGY 2023; 12:biology12040625. [PMID: 37106825 PMCID: PMC10135853 DOI: 10.3390/biology12040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.
Collapse
Affiliation(s)
- Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jihan Lyu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Haojie Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou 510080, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92350, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
12
|
Yang H, Zhang Y, Zhou R, Wu T, Zhu P, Liu Y, Zhou J, Xiong Y, Xiong Y, Zhou H, Zhang W, Shu Y, Li X, Li Q. Antibiotics-Induced Depletion of Rat Microbiota Induces Changes in the Expression of Host Drug-Processing Genes and Pharmacokinetic Behaviors of CYPs Probe Drugs. Drug Metab Dispos 2023; 51:509-520. [PMID: 36623881 DOI: 10.1124/dmd.122.001173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
The metabolism of exogenous substances is affected by the gut microbiota, and the relationship between them has become a hot topic. However, the mechanisms by which the microbiota regulates drug metabolism have not been clearly defined. This study characterizes the expression profiles of host drug-processing genes (DPGs) in antibiotics-treated rats by using an unbias quantitative RNA-sequencing method and investigates the effects of antibiotics-induced depletion of rat microbiota on the pharmacokinetic behaviors of cytochrome P450s (CYPs) probe drugs, and bile acids metabolism by ultra-performance liquid chromatography-tandem mass spectrometry. Our results show that antibiotics treatments altered the mRNA expressions of 112 DPGs in the liver and jejunum of rats. The mRNA levels of CYP2A1, CYP2C11, CYP2C13, CYP2D, CYP2E1, and CYP3A of CYP family members were significantly downregulated in antibiotics-treated rats. Furthermore, antibiotics treatments also resulted in a significant decrease in the protein expressions and enzyme activities of CYP3A1 and CYP2E1 in rat liver. Pharmacokinetic results showed that, except for tolbutamide, antibiotics treatments significantly altered the pharmacokinetic behaviors of phenacetin, omeprazole, metoprolol, chlorzoxazone, and midazolam. In conclusion, the presence of stable, complex, and diverse gut microbiota plays a significant role in regulating the expression of host DPGs, which could contribute to some individual differences in pharmacokinetics. SIGNIFICANCE STATEMENT: This study investigated how the depletion of rat microbiota by antibiotics treatments influences the expression profiles of host DPGs and the pharmacokinetic behaviors of CYPs probe drugs. Combined with previous studies in germ-free mice, this study will improve the understanding of the role of gut microbiota in drug metabolism and contribute to the understanding of individual differences in the pharmacokinetics of some drugs.
Collapse
Affiliation(s)
- Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., X.L., Q.L.); National Clinical Research Center for Geriatric Disorders, Changsha, China (H.Y., Y.Z., R.Z., T.W., P.Z., Y.L., J.Z., Yalan X., Yanling X., H.Z., W.Z., Q.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
13
|
Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct Target Ther 2022; 7:65. [PMID: 35232960 PMCID: PMC8888618 DOI: 10.1038/s41392-022-00885-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) involves diverse injury responses in different cell types in a temporally and spatially specific manner. Here, using single-cell transcriptomic analyses combined with classic anatomical, behavioral, electrophysiological analyses, we report, with single-cell resolution, temporal molecular and cellular changes in crush-injured adult mouse spinal cord. Data revealed pathological changes of 12 different major cell types, three of which infiltrated into the spinal cord at distinct times post-injury. We discovered novel microglia and astrocyte subtypes in the uninjured spinal cord, and their dynamic conversions into additional stage-specific subtypes/states. Most dynamic changes occur at 3-days post-injury and by day-14 the second wave of microglial activation emerged, accompanied with changes in various cell types including neurons, indicative of the second round of attacks. By day-38, major cell types are still substantially deviated from uninjured states, demonstrating prolonged alterations. This study provides a comprehensive mapping of cellular/molecular pathological changes along the temporal axis after SCI, which may facilitate the development of novel therapeutic strategies, including those targeting microglia.
Collapse
|
14
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
15
|
Zhang Y, Chen C, Liu Y, Rao S, Tan Y, Qian Y, Xia K, Huang J, Liu X, Hong C, Yin H, Cao J, Feng S, He Z, Li Y, Luo Z, Wu B, Yan Z, Chen T, Chen M, Wang Y, Wang Z, Liu Z, Luo M, Hu X, Jin L, Wan T, Yue T, Tang S, Xie H. Neuronal Induction of Bone-Fat Imbalance through Osteocyte Neuropeptide Y. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100808. [PMID: 34719888 PMCID: PMC8693044 DOI: 10.1002/advs.202100808] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/24/2021] [Indexed: 05/08/2023]
Abstract
A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
17
|
Farkhondeh T, Samarghandian S, Roshanravan B, Peivasteh-Roudsari L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat Food Nutr Agric 2021; 11:137-144. [PMID: 31288732 DOI: 10.2174/2212798410666190617161523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury (TBI) is one of the main causes of mortality and morbidity worldwide with no suitable treatment. The present study was designed to review the present literature about the protective effects of curcumin and the underlying mechanism against TBI. All published English language papers from beginning to 2019 were selected in this study. The findings indicate that curcumin may be effective against TBI outcomes by modulating the molecular signaling pathways involved in oxidative stress, inflammation, apoptosis, and autophagy. However, more experimental studies should be done to identify all mechanisms involved in the pathogenesis of TBI. Patents for Curcumin and chronic inflammation and traumatic brain injury management (WO2017097805A1 and US9101580B2) were published. In conclusion, the present study confirmed the potential therapeutic impact of curcumin for treating TBI.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Peivasteh-Roudsari
- Devision of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
19
|
Ai LQY, Yuan RD, Chen X, Liu YJ, Liu WY, Zhu JY, Zhang Z, Yan J, Chen CL, Lin S, Ye J. Retinal blood vessel-origin yes-associated protein (YAP) governs astrocytic maturation via leukaemia inhibitory factor (LIF). Cell Prolif 2020; 53:e12757. [PMID: 31916327 PMCID: PMC7046482 DOI: 10.1111/cpr.12757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives To testify that endothelial cells (ECs) induce astrocyte maturation by leukaemia inhibitory factor (LIF) secretion. Materials and Methods In vivo experiments, mice bearing floxed alleles of YAP were crossed with mice expressing a Cre recombinase driven by the endothelial Tek promoter (Tek‐Cre) to finally obtain the following three genotypes: YAPf/f, Tek‐Cre; YAPf/w, Tek‐Cre; and YAPf/f. Retinal vascularization and astrocyte network were evaluated by whole‐mount fluorescence and Western blotting. In vitro, experiments were performed in an astrocyte and human microvascular endothelial cell (HMEC‐1) coculture model to analyse the mechanisms underlying the effect of endothelial YAP on astrocytes. Results In vivo, YAPf/f;Tek‐Cre mice showed delayed angiogenesis, sparse vessels and decreased glial fibrillary acidic protein (GFAP)+ astrocytes but aberrant growth of endothelial networks and immature astrocytes (platelet‐derived growth factor A, PDGFRA+ astrocytes) overgrowth. In vitro, Yap deletion attenuated the LIF release that delayed the maturation of retinal astrocyte which was consistent with the results of HMEC‐1—astrocyte coculture. The effect of YAP overexpression on LIF‐LIFR axis in HMEC‐1 interferes the GFAP expression of astrocyte. In contrast, LIF protein rescues the astrocytic GFAP expression when EC YAP was inhibited by siRNAs. Conclusions We show that EC yes‐associated protein (YAP) is not only a critical coactivator of Hippo signalling in retinal vessel development but also plays an essential role in retinal astrocyte maturation by regulating LIF production.
Collapse
Affiliation(s)
- Li-Qian-Yu Ai
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Rong-Di Yuan
- Department of Ophthalmology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Yun-Jia Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wen-Yi Liu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jing-Yi Zhu
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Zhou Zhang
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jun Yan
- Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Chun-Lin Chen
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Luo D, Ge W, Hu X, Li C, Lee CM, Zhou L, Wu Z, Yu J, Lin S, Yu J, Xu W, Chen L, Zhang C, Jiang K, Zhu X, Li H, Gao X, Geng Y, Jing B, Wang Z, Zheng C, Zhu R, Yan Q, Lin Q, Ye K, Sun YE, Cheng L. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury. Protein Cell 2019; 10:566-582. [PMID: 29956125 PMCID: PMC6626597 DOI: 10.1007/s13238-018-0559-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
Collapse
Affiliation(s)
- Dandan Luo
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weihong Ge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xiao Hu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chen Li
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chia-Ming Lee
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Liqiang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhourui Wu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Juehua Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Sheng Lin
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jing Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Xu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lei Chen
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chong Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kun Jiang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xingfei Zhu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Haotian Li
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xinpei Gao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yanan Geng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bo Jing
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Changhong Zheng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Rongrong Zhu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
| | - Qiao Yan
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Quan Lin
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Center for neurodegeneration disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yi E Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Liming Cheng
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
21
|
Xue H, Tao D, Weng Y, Fan Q, Zhou S, Zhang R, Zhang H, Yue R, Wang X, Wang Z, Sun Y. Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis. Front Med 2019; 13:575-589. [DOI: 10.1007/s11684-019-0693-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/25/2019] [Indexed: 10/26/2022]
|
22
|
Gugala Z, Olmsted-Davis EA, Xiong Y, Davis EL, Davis AR. Trauma-Induced Heterotopic Ossification Regulates the Blood-Nerve Barrier. Front Neurol 2018; 9:408. [PMID: 29922221 PMCID: PMC5996108 DOI: 10.3389/fneur.2018.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 01/12/2023] Open
Abstract
De novo bone formation can occur in soft tissues as a result of traumatic injury. This process, known as heterotopic ossification (HO), has recently been linked to the peripheral nervous system. Studies suggest that HO may resemble neural crest-derived bone formation and is activated through the release of key bone matrix proteins leading to opening of the blood-nerve barrier (BNB). One of the first steps in this process is the activation of a neuro-inflammatory cascade, which results in migration of chondro-osseous progenitors, and other cells from both the endoneurial and perineurial regions of the peripheral nerves. The perineurial cells undergo brown adipogenesis, to form essential support cells, which regulate expression and activation of matrix metallopeptidase 9 (MMP9) an essential regulatory protein involved in opening the BNB. However, recent studies suggest that, in mice, a key bone matrix protein, bone morphogenetic protein 2 (BMP2) is able to immediately cross the BNB to activate signaling in specific cells within the endoneurial compartment. BMP signaling correlates with bone formation and appears critical for the induction of HO. Surprisingly, several other bone matrix proteins have also been reported to regulate the BNB, leading us to question whether these matrix proteins are important in regulating the BNB. However, this temporary regulation of the BNB does not appear to result in degeneration of the peripheral nerve, but rather may represent one of the first steps in innervation of the newly forming bone.
Collapse
Affiliation(s)
- Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, United States
- Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Yuqing Xiong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Eleanor L. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, United States
- Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Zhang S, Wan H, Wang P, Liu M, Li G, Zhang C, Sun Y. Extracellular matrix protein DMP1 suppresses osteogenic differentiation of Mesenchymal Stem Cells. Biochem Biophys Res Commun 2018; 501:968-973. [PMID: 29775615 DOI: 10.1016/j.bbrc.2018.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are self-renewing and multipotent stem cells which was investigated for diverse clinical applications. However, complex mechanism of MSCs fate determination is still not fully disclosed. Extracellular matrix (ECM) proteins contribute to maintain MSCs stemness by providing extracellular microenvironment. Increasing evidences show that ECM proteins could also regulate the fate of MSCs directly. Dentin matrix protein 1 (DMP1) is an ECM protein enrich in bone tissue and terminal cells, which well-known in promoting osteoblasts and osteocytes maturation, and facilitate mineralization. Recently, our experiment indicated that DMP1 was also expressed in MSCs of long bone. In present study, it is found that DMP1 expressed in Prx1 positive MSCs. And, DMP1 is down-regulated in early osteoblasts and up-regulated again in mature osteoblasts. DMP1 conditional knockout mice model under Prx1cre was generated to explore whether DMP1 regulates MSCs osteogenic differentiation. Specific ablation of DMP1 in Prx1 positive MSCs increased bone mass in vivo and promoted osteoblasts activity in vitro. This study provides a new understanding of DMP1's function in regulation of osteogenesis: not only an enhancer of bone formation, but also a negative regulator of MSCs differentiation in bone.
Collapse
Affiliation(s)
- Shufan Zhang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Huixuan Wan
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Peng Wang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Mengmeng Liu
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Gongchen Li
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Chunxue Zhang
- Tongji University School of Medicine, Stem Cell Translational Research Center, Tongji Hospital, Shanghai, 200065, China
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|