1
|
Hentschel G, Doll-Nikutta K, Mueller M, Berg P, Glasmacher B. Development and characterization of a Dextran/CaCl 2-based blood-mimicking fluid: a comparative study of rheological and mechanical properties in artificial erythrocyte suspensions. SOFT MATTER 2025; 21:3101-3116. [PMID: 40165627 DOI: 10.1039/d4sm01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The development of accurate blood-mimicking fluids (BMFs) is essential for in vitro studies of blood contacting medical devices. Experimental data typically relies on single-phase glycerin/water solutions as substitutes to visualize simplified blood flow. These models are accurate only at high shear rates, limiting their applicability at lower shear rates. In this study, we investigated three potential BMFs, each composed of poly(sodium acrylate-co-acrylamide) hydrogel microparticles (beads) as artificial erythrocytes. Microbeads were produced using microfluidic systems (MFS) and were suspended in three plasma-like solutions: 10% and 50% (v/v) glycerol/water solutions and a Dextran40/CaCl2 solution. The BMFs were evaluated for their rheological and mechanical properties, including particle elasticity, sedimentation behavior, and shear flow analysis, to assess their suitability for mimicking blood. Rheometric measurements were performed at room temperature using a plate-plate configuration, measuring viscosity and shear stress for shear rates of 5-500 s-1. Atomic force microscopy (AFM) measurements were conducted to assess their mechanical response. The Dextran40/CaCl2-based BMF was identified as the most promising, demonstrating rheological and mechanical properties that closely align with those of human blood. This research offers a refined approach to developing blood analogs that better simulate the mechanical response and flow characteristics of blood for the validation and development of blood contacting medical devices.
Collapse
Affiliation(s)
- Gesine Hentschel
- Leibniz University Hannover, An der Universität 1, 30823 Garbsen, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Katharina Doll-Nikutta
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Marc Mueller
- Leibniz University Hannover, An der Universität 1, 30823 Garbsen, Germany.
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, Sandtorstraße 23, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Birgit Glasmacher
- Leibniz University Hannover, An der Universität 1, 30823 Garbsen, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
2
|
Palahnuk H, Su B, Harbaugh T, Gesenberg C, Zhou S, Rizk E, Bernstein J, Hazard SW, Manning KB. Fluid Dynamic and in Vitro Blood Study to Understand Catheter-Related Thrombosis. Cardiovasc Eng Technol 2025; 16:116-137. [PMID: 39621288 PMCID: PMC11904432 DOI: 10.1007/s13239-024-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/07/2024] [Indexed: 02/14/2025]
Abstract
PURPOSE Central venous catheters (CVCs) provide a direct route to the venous circulation but are prone to catheter-related thrombosis (CRT). A known CRT risk factor is a high catheter-to-vein ratio (CVR), or a large catheter diameter with respect to the indwelling vein size. In this study, the CVR's effect on CVC hemodynamics and its impact on CRT is investigated with in vitro and in silico experiments. METHODS An in vitro flow loop is used to characterize the hemodynamics around CVCs using particle image velocimetry. In addition, CRT is investigated using an in vitro flow loop with human blood and clinical catheters. The wall shear rate of flow around the CVC is computed numerically. CVRs of 0.20, 0.33, and 0.49 and Reynolds numbers of 200, 800, and 1300 are evaluated. No flow is used through CVC lumens to model chronic indwelling catheters. RESULTS Results show CVR ≥ 0.33 promotes platelet-rich clot growth at the device tip and at an increased rate compared to lower CVR cases. A high wall shear rate gradient on the CVC tip and an extended wake distal to the tip exists for higher CVR cases, promoting the aggregation of platelets and subsequent stagnation for clot formation. Further, the combination of the CVR and Reynolds number are crucial to CRT potential, not the CVR alone. Specifically, thrombosis risk is increased with low (stasis driven) and/or high (platelet activation driven) flow conditions, with the CVR and CVC's geometry playing an additional role in promoting fluid mechanic driven thrombus development. A high CVR (≥ 0.33) and high flow condition (≥ 1300) results in the highest risk for clot growth at the tip of the device; other locations of the device are at risk for thrombus development in lower flow conditions, regardless of the CVR. The importance of the device geometry and flow in promoting thrombus and fibrin sheath formation is also shown for the device investigated. CONCLUSIONS This work demonstrates that the CVR, flow, and device geometry affect CRT. For clinical cases with CVR ≥ 0.33 and/or Re ≥ 1300, the device tip may be monitored more consistently for clot formation. Thrombosis risks remain on the entire catheter, regardless of the flow condition, for a CVR = 0.49. Device placement should be chosen carefully with respect to the combination of the Reynolds number and CVR. Further study is needed on the effect of catheterization to confirm these findings.
Collapse
Affiliation(s)
- Hannah Palahnuk
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, USA
| | - Boyang Su
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, USA
| | - Thaddeus Harbaugh
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Cleo Gesenberg
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Shouhao Zhou
- Division of Biostatistics and Bioinformatics, Penn State College of Medicine, Hershey, PA, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Jonathan Bernstein
- Division of Pediatric Hematology/Oncology, Penn State Hershey Children's Hospital, Hershey, PA, USA
| | - S Will Hazard
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Anesthesiology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, USA.
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Huang YX, Li Q, Liu M, Zhao M, Chen Y. Numerical simulation and in vitro experimental study of the hemodynamic performance of vena cava filters with helical forms. Sci Rep 2024; 14:17903. [PMID: 39095447 PMCID: PMC11297021 DOI: 10.1038/s41598-024-68925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Inferior vena cava filter (IVCF) implantation is a common method of thrombus capture. By implanting a filter in the inferior vena cava (IVC), microemboli can be effectively blocked from entering the pulmonary circulation, thereby avoiding acute pulmonary embolism (PE). Inspired by the helical flow effect in the human arterial system, we propose a helical retrievable IVCF, which, due to the presence of a helical structure inducing a helical flow pattern of blood in the region near the IVCF, can effectively avoid the deposition of microemboli in the vicinity of the IVCF while promoting the cleavage of the captured thrombus clot. It also reduces the risk of IVCF dislodging and slipping in the vessel because its shape expands in the radial direction, allowing its distal end to fit closely to the IVC wall, and because its contact structure with the inner IVC wall is curved, increasing the contact area and reducing the risk of the vessel wall being punctured by the IVCF support structure. We used ANSYS 2023 software to conduct unidirectional fluid-structure coupling simulation of four different forms of IVCF, combined with microthrombus capture experiments in vitro, to explore the impact of these four forms of IVCF on blood flow patterns and to evaluate the risk of IVCF perforation and IVCF dislocation. It can be seen from the numerical simulation results that the helical structure does have the function of inducing blood flow to undergo helical flow dynamics, and the increase in wall shear stress (WSS) brought about by this function can improve the situation of thrombosis accumulation to a certain extent. Meanwhile, the placement of IVCF will change the flow state of blood flow and lead to the deformation of blood vessels. In in vitro experiments, we found that the density of the helical support rod is a key factor affecting the thrombus trapping efficiency, and in addition, the contact area between the IVCF and the vessel wall has a major influence on the risk of IVCF displacement.
Collapse
Affiliation(s)
- Yu Xiang Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qi Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ming Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Ming Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Ying Chen
- School of Artificial Intelligence, Beijing Institute of Economics and Management, Beijing, 100102, China.
| |
Collapse
|
4
|
Lee J, Chadalavada SC, Ghodadra A, Ali A, Arribas EM, Chepelev L, Ionita CN, Ravi P, Ryan JR, Santiago L, Wake N, Sheikh AM, Rybicki FJ, Ballard DH. Clinical situations for which 3D Printing is considered an appropriate representation or extension of data contained in a medical imaging examination: vascular conditions. 3D Print Med 2023; 9:34. [PMID: 38032479 PMCID: PMC10688120 DOI: 10.1186/s41205-023-00196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Medical three-dimensional (3D) printing has demonstrated utility and value in anatomic models for vascular conditions. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (3DPSIG) provides appropriateness recommendations for vascular 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with vascular indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for the following areas: aneurysm, dissection, extremity vascular disease, other arterial diseases, acute venous thromboembolic disease, venous disorders, lymphedema, congenital vascular malformations, vascular trauma, vascular tumors, visceral vasculature for surgical planning, dialysis access, vascular research/development and modeling, and other vasculopathy. Recommendations are provided in accordance with strength of evidence of publications corresponding to each vascular condition combined with expert opinion from members of the 3DPSIG. CONCLUSION This consensus appropriateness ratings document, created by the members of the 3DPSIG, provides an updated reference for clinical standards of 3D printing for the care of patients with vascular conditions.
Collapse
Affiliation(s)
- Joonhyuk Lee
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | - Anish Ghodadra
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arafat Ali
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - Elsa M Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonid Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ciprian N Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Justin R Ryan
- Webster Foundation 3D Innovations Lab, Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego Health, San Diego, CA, USA
| | - Lumarie Santiago
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Adnan M Sheikh
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Frank J Rybicki
- Department of Radiology, University of Arizona - Phoenix, Phoenix, AZ, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Feng H, Li C, Feng H. Numerical simulation and in vitro experimental study of thrombus capture efficiency of a new retrievable vena cava filter. Comput Methods Biomech Biomed Engin 2023; 26:2034-2046. [PMID: 36625716 DOI: 10.1080/10255842.2022.2163849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
The vena cava filter is a filtering device to prevent pulmonary embolism caused by thrombosis from lower limbs and pelvis. A new retrievable vena cava filter was evaluated in this paper. To evaluate the hemodynamic performance and thrombus capture efficiency after transplantation, numerical simulation of computational fluid dynamics was performed. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, filter wall shear stress, the ratio of area with wall shear stress, and the thrombus capture efficiency with the thrombus diameter of 5 mm, 10 mm, 15 mm and the thrombus content of 10%, 20%, 30%, respectively. Additionally, in vitro experimental test was performed to compare its thrombus capture efficiency with Denali and Aegisy Filters. The Denali Filter showed the least interference with the blood flow, followed by the new filter and the Aegisy Filter. The results indicated that the new filter had a higher capture rate in capturing 5mm small-diameter thrombus. This research certain theoretical significance and reference value for the research and development of the new vena cava filters as well as the evaluation of the thrombus capture efficiency of the filters.
Collapse
Affiliation(s)
- Haiquan Feng
- College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot, P.R. China
| | - Changsheng Li
- College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot, P.R. China
| | - Haoxiang Feng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
| |
Collapse
|
6
|
Bhardwaj S, Craven BA, Sever JE, Costanzo F, Simon SD, Manning KB. Modeling flow in an in vitro anatomical cerebrovascular model with experimental validation. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1130201. [PMID: 36908295 PMCID: PMC9996037 DOI: 10.3389/fmedt.2023.1130201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Acute ischemic stroke (AIS) is a leading cause of mortality that occurs when an embolus becomes lodged in the cerebral vasculature and obstructs blood flow in the brain. The severity of AIS is determined by the location and how extensively emboli become lodged, which are dictated in large part by the cerebral flow and the dynamics of embolus migration which are difficult to measure in vivo in AIS patients. Computational fluid dynamics (CFD) can be used to predict the patient-specific hemodynamics and embolus migration and lodging in the cerebral vasculature to better understand the underlying mechanics of AIS. To be relied upon, however, the computational simulations must be verified and validated. In this study, a realistic in vitro experimental model and a corresponding computational model of the cerebral vasculature are established that can be used to investigate flow and embolus migration and lodging in the brain. First, the in vitro anatomical model is described, including how the flow distribution in the model is tuned to match physiological measurements from the literature. Measurements of pressure and flow rate for both normal and stroke conditions were acquired and corresponding CFD simulations were performed and compared with the experiments to validate the flow predictions. Overall, the CFD simulations were in relatively close agreement with the experiments, to within ±7% of the mean experimental data with many of the CFD predictions within the uncertainty of the experimental measurement. This work provides an in vitro benchmark data set for flow in a realistic cerebrovascular model and is a first step towards validating a computational model of AIS.
Collapse
Affiliation(s)
- Saurabh Bhardwaj
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Brent A. Craven
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Jacob E. Sever
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Francesco Costanzo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Scott D. Simon
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Keefe B. Manning
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
7
|
Bhardwaj S, Craven BA, Sever JE, Costanzo F, Simon SD, Manning KB. Modeling Flow in an In Vitro Anatomical Cerebrovascular Model with Experimental Validation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523948. [PMID: 36711518 PMCID: PMC9882108 DOI: 10.1101/2023.01.13.523948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute ischemic stroke (AIS) is a leading cause of mortality that occurs when an embolus becomes lodged in the cerebral vasculature and obstructs blood flow in the brain. The severity of AIS is determined by the location and how extensively emboli become lodged, which are dictated in large part by the cerebral flow and the dynamics of embolus migration which are difficult to measure in vivo in AIS patients. Computational fluid dynamics (CFD) can be used to predict the patient-specific hemodynamics and embolus migration and lodging in the cerebral vasculature to better understand the underlying mechanics of AIS. To be relied upon, however, the computational simulations must be verified and validated. In this study, a realistic in vitro experimental model and a corresponding computational model of the cerebral vasculature are established that can be used to investigate flow and embolus migration and lodging in the brain. First, the in vitro anatomical model is described, including how the flow distribution in the model is tuned to match physiological measurements from the literature. Measurements of pressure and flow rate for both normal and stroke conditions were acquired and corresponding CFD simulations were performed and compared with the experiments to validate the flow predictions. Overall, the CFD simulations were in relatively close agreement with the experiments, to within ±7% of the mean experimental data with many of the CFD predictions within the uncertainty of the experimental measurement. This work provides an in vitro benchmark data set for flow in a realistic cerebrovascular model and is a first step towards validating a computational model of AIS.
Collapse
Affiliation(s)
- Saurabh Bhardwaj
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Brent A. Craven
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jacob E. Sever
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Francesco Costanzo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Scott D. Simon
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Keefe B. Manning
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
8
|
Ponnaluri S, Christensen E, Good B, Kubicki C, Deutsch S, Cysyk J, Weiss WJ, Manning KB. Experimental Hemodynamics within the Penn State Fontan Circulatory Assist Device. J Biomech Eng 2021; 144:1129243. [PMID: 34897373 DOI: 10.1115/1.4053210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/08/2022]
Abstract
For children born with a single functional ventricle, the Fontan operation bypasses the right ventricle by forming a four-way total cavopulmonary connection adapting the existing ventricle for the systemic circulation. However, upon adulthood, many Fontan patients exhibit low cardiac output and elevated venous pressure, eventually requiring a heart transplantation. Despite efforts to develop a Fontan pump or use an existing ventricular assist device for failing Fontan support, there is still no device designed or tested for subpulmonary support. Penn State University is developing a hydrodynamically levitated Fontan circulatory assist device (FCAD) for bridge-to-transplant or destination therapy. The FCAD hemodynamics, at both steady and pulsatile conditions for three pump operating conditions, were quantified using particle image velocimetry to determine the velocity magnitudes and Reynolds normal and shear stresses. Data were acquired at three planes (0 mm and ±25% of the radius) for the inferior and superior vena cavae inlets and the pulmonary artery outlet. The inlets had a blunt velocity profile that became skewed towards the collecting volute as fluid approached the rotor. At the outlet, regardless of the flow condition, a high-velocity jet exited the volute and moved downstream in a helical pattern. Turbulent stresses observed at the volute exit were influenced by the rotor's rotation. Regardless of inlet conditions, the pump demonstrated advantageous behavior for clinical use with a predictable flow field and a low risk of platelet adhesion and hemolysis based on calculated wall shear rates and turbulent stresses, respectively.
Collapse
Affiliation(s)
- Sailahari Ponnaluri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA; Suite 122 Chemical and Biomedical Engineering Building, Penn State University, University Park, PA
| | - Emma Christensen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA; Suite 122 Chemical and Biomedical Engineering Building, Penn State University, University Park, PA
| | - Bryan Good
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA; Suite 122 Chemical and Biomedical Engineering Building, Penn State University, University Park, PA
| | - Cody Kubicki
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA; Suite 122 Chemical and Biomedical Engineering Building, Penn State University, University Park, PA
| | - Steven Deutsch
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA; Suite 122 Chemical and Biomedical Engineering Building, Penn State University, University Park, PA
| | - Joshua Cysyk
- Department of Surgery, Penn State Hershey Medical Center, PA; H151 Surgery Hershey PA 17033, The Milton S. Hershey Medical Center
| | - William J Weiss
- Department of Surgery, Penn State Hershey Medical Center, PA; H151 Surgery Hershey PA 17033, The Milton S. Hershey Medical Center
| | - Keefe B Manning
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, Department of Surgery, Penn State Hershey Medical Center, PA; Suite 122 Chemical and Biomedical Engineering Building, Penn State University, University Park, PA
| |
Collapse
|
9
|
Kolahdouz EM, Bhalla A, Scotten L, Craven B, Griffith B. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. JOURNAL OF COMPUTATIONAL PHYSICS 2021; 443:110442. [PMID: 34149063 PMCID: PMC8211094 DOI: 10.1016/j.jcp.2021.110442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This paper introduces a sharp interface method to simulate fluid-structure interaction (FSI) involving rigid bodies immersed in viscous incompressible fluids. The capabilities of this methodology are benchmarked using a range of test cases and demonstrated using large-scale models of biomedical FSI. The numerical approach developed herein, which we refer to as an immersed Lagrangian-Eulerian (ILE) method, integrates aspects of partitioned and immersed FSI formulations by solving separate momentum equations for the fluid and solid subdomains, as in a partitioned formulation, while also using non-conforming discretizations of the dynamic fluid and structure regions, as in an immersed formulation. A simple Dirichlet-Neumann coupling scheme is used, in which the motion of the immersed solid is driven by fluid traction forces evaluated along the fluid-structure interface, and the motion of the fluid along that interface is constrained to match the solid velocity and thereby satisfy the no-slip condition. To develop a practical numerical method, we adopt a penalty approach that approximately imposes the no-slip condition along the fluid-structure interface. In the coupling strategy, a separate discretization of the fluid-structure interface is tethered to the volumetric solid mesh via stiff spring-like penalty forces. Our fluid-structure coupling scheme relies on an immersed interface method (IIM) for discrete geometries, which enables the accurate determination of both velocities and stresses along complex internal interfaces. Numerical methods for FSI can suffer from instabilities related to the added mass effect, but the computational tests indicate that the methodology introduced here remains stable for selected test cases across a range of solid-fluid density ratios, including extremely small, nearly equal, equal, and large density ratios. Biomedical FSI demonstration cases include results obtained using this method to simulate the dynamics of a bileaflet mechanical heart valve in a pulse duplicator, and to model transport of blood clots in a patient-averaged anatomical model of the inferior vena cava.
Collapse
Affiliation(s)
- E. M. Kolahdouz
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - A.P.S. Bhalla
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | | | - B.A. Craven
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - B.E. Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Rajan A, S Makary M, D Martyn T, D Dowell J. Computational evaluation of inferior vena cava filters through computational fluid dynamics methods. ACTA ACUST UNITED AC 2021; 27:116-121. [PMID: 33252333 DOI: 10.5152/dir.2020.19435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerical simulation is growing in its importance toward the design, testing and evaluation of medical devices. Computational fluid dynamics and finite element analysis allow improved calculation of stress, heat transfer, and flow to better understand the medical device environment. Current research focuses not only on improving medical devices, but also on improving the computational tools themselves. As methods and computer technology allow for faster simulation times, iterations and trials can be performed faster to collect more data. Given the adverse events associated with long-term inferior vena cava (IVC) filter placement, IVC filter design and device evaluation are of paramount importance. This work reviews computational methods used to develop, test, and improve IVC filters to ultimately serve the needs of the patient.
Collapse
Affiliation(s)
- Anand Rajan
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mina S Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Joshua D Dowell
- Northwest Radiology and St. Vincent Health, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Kim Y, Moon C, Nematollahi O, Kim HD, Kim KC. Time-Resolved PIV Measurements and Turbulence Characteristics of Flow Inside an Open-Cell Metal Foam. MATERIALS 2021; 14:ma14133566. [PMID: 34202204 PMCID: PMC8269601 DOI: 10.3390/ma14133566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Open-cell metal foams are porous medium for thermo-fluidic systems. However, their complex geometry makes it difficult to perform time-resolved (TR) measurements inside them. In this study, a TR particle image velocimetry (PIV) method is introduced for use inside open-cell metal foam structures. Stereolithography 3D printing methods and conventional post-processing methods cannot be applied to metal foam structures; therefore, PolyJet 3D printing and post-processing methods were employed to fabricate a transparent metal foam replica. The key to obtaining acceptable transparency in this method is the complete removal of the support material from the printing surfaces. The flow characteristics inside a 10-pore-per-inch (PPI) metal foam were analyzed in which porosity is 0.92 while laminar flow condition is applied to inlet. The flow inside the foam replica is randomly divided and combined by the interconnected pore network. Robust crosswise motion occurs inside foam with approximately 23% bulk speed. Strong influence on transverse motion by metal foam is evident. In addition, span-wise vorticity evolution is similar to the integral time length scale of the stream-wise center plane. The span-wise vorticity fluctuation through the foam arrangement is presented. It is believed that this turbulent characteristic is caused by the interaction of jets that have different flow directions inside the metal foam structure. The finite-time Lyapunov exponent method is employed to visualize the vortex ridges. Fluctuating attracting and repelling material lines are expected to enhance the heat and mass transfer. The results presented in this study could be useful for understanding the flow characteristics inside metal foams.
Collapse
Affiliation(s)
- Youngwoo Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea; (Y.K.); (C.M.); (O.N.)
| | - Chanhee Moon
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea; (Y.K.); (C.M.); (O.N.)
| | - Omid Nematollahi
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea; (Y.K.); (C.M.); (O.N.)
| | - Hyun Dong Kim
- Rolls-Royce and Pusan National University Technology Centre, Pusan National University, Busan 46241, Korea
- Correspondence: (H.D.K.); (K.C.K.); Tel.: +82-51-510-1536 (H.D.K.); +82-51-510-2324 (K.C.K.)
| | - Kyung Chun Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea; (Y.K.); (C.M.); (O.N.)
- Correspondence: (H.D.K.); (K.C.K.); Tel.: +82-51-510-1536 (H.D.K.); +82-51-510-2324 (K.C.K.)
| |
Collapse
|
12
|
Riley JM, Price NS, Saaid HM, Good BC, Aycock KI, Craven BA, Manning KB. In Vitro Clot Trapping Efficiency of the FDA Generic Inferior Vena Cava Filter in an Anatomical Model: An Experimental Fluid-Structure Interaction Benchmark. Cardiovasc Eng Technol 2021; 12:339-352. [PMID: 33683671 DOI: 10.1007/s13239-021-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Robust experimental data for performing validation of fluid-structure interaction (FSI) simulations of the transport of deformable solid bodies in internal flow are currently lacking. This in vitro experimental study characterizes the clot trapping efficiency of a new generic conical-type inferior vena cava (IVC) filter in a rigid anatomical model of the IVC with carefully characterized test conditions, fluid rheological properties, and clot mechanical properties. METHODS Various sizes of spherical and cylindrical clots made of synthetic materials (nylon and polyacrylamide gel) and bovine blood are serially injected into the anatomical IVC model under worst-case exercise flow conditions. Clot trapping efficiencies and their uncertainties are then quantified for each combination of clot shape, size, and material. RESULTS Experiments reveal the clot trapping efficiency increases with increasing clot diameter and length, with trapping efficiencies ranging from as low as approximately 42% for small 3.2 mm diameter spherical clots up to 100% for larger clot sizes. Because of the asymmetry of the anatomical IVC model, the data also reveal the iliac vein of clot origin influences the clot trapping efficiency, with the trapping efficiency for clots injected into the left iliac vein up to a factor of 7.5 times greater than that for clots injected into the right iliac (trapping efficiencies of approximately 10% versus 75%, respectively). CONCLUSION Overall, this data set provides a benchmark for validating simulations predicting IVC filter clot trapping efficiency and, more generally, low-Reynolds number FSI modeling.
Collapse
Affiliation(s)
- J M Riley
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - N S Price
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - H M Saaid
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - B C Good
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - K I Aycock
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - B A Craven
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - K B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA. .,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
13
|
López JM, Fortuny G, Puigjaner D, Herrero J, Marimon F. Hemodynamic effects of blood clots trapped by an inferior vena cava filter. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3343. [PMID: 32323487 DOI: 10.1002/cnm.3343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The alteration of blood flow around an OPTEASE inferior vena cava filter with one or two blood clots attached was investigated by means of computational fluid dynamics. We used a patient-specific vein wall geometry, and we generated different clot models with shapes adapted to the filter and vein wall geometries. A total of eight geometries, with one or two clots and a total clot volume of 0.5 or 1 cm3 , were considered. A non-Newtonian model for blood viscosity was adopted and the possible development of turbulence was accounted for by means of a three-equation model. Two blood flow rates were considered for each case, representative for rest and exercise conditions. In exercise conditions, flow unsteadiness and even turbulence was detected in some cases. Pressure and wall shear stress (WSS) distributions were modified in all cases. Clots attached to the filter downstream basket considerably increased averaged WSS values by up to almost 50%. In all the cases a flow recirculation region appeared downstream of the clot. The degree of flow stagnation in these regions, an indicator of propensity to thrombogenesis, was estimated in terms of mean residence times and mean blood viscosity. High levels of flow stagnation were detected in rest conditions in the wake of those clots that were placed upstream from the filter. Our results suggest that one downstream placed big clot, showing a higher tendency to induce flow instabilities and turbulence, might be more harmful than two small clots placed in tandem.
Collapse
Affiliation(s)
- Josep M López
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Gerard Fortuny
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Dolors Puigjaner
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Joan Herrero
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Francesc Marimon
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Catalunya, Spain
| |
Collapse
|
14
|
Park BG, Seo A, Lee SY, Cha JG, Hong J, Lee H, Heo J, Do YW. Over-the-wire deployment techniques of option elite inferior vena cava filter: 3D printing vena cava phantom study. Eur J Radiol Open 2020; 7:100227. [PMID: 32258247 PMCID: PMC7096752 DOI: 10.1016/j.ejro.2020.100227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/07/2022] Open
Abstract
Bent stiff-wire technique with transfemoral access had lower filter tilt ratio at Option IVC filter deployment. Original push wire with transjugular access had lower filter tilt ratio at Option IVC filter deployment. Filter jumping was common using the original push wire with transjugular access.
Purpose To compare filter tilt and filter jumping during Option inferior vena cava (IVC) filter deployment with 3 different wires techniques using a 3-dimensional (3D) printing vena cava phantom. Materials and methods An IVC 3D printed vena cava phantom was made from a healthy young male’s computed tomographic data. Option IVC filters were deployed with 3 different wires: i) original push wire, ii) hydrophilic stiff wire, and iii) bent stiff wire. Right internal jugular and right femoral access were used 5 times with each wire. Filter tilt angle, tilt ratio, jumping, and tip abutment to the IVC wall were analyzed. Results The transfemoral approach with original push wire had significantly higher tilt angle than did the transjugular approach (6.1˚ ± 1.9 vs. 3.5˚ ± 1.3, p = 0.04). Mean tilt ratio was significantly lower with the bent wire with transfemoral access (0.49 ± 0.13 vs. 0.78 ± 0.18 [original push-wire] and 0.67 ± 0.08 [stiff wire], p = 0.019). The ratio was lower also with original push wire with transjugular access (0.34 ± 0.19 vs. 0.57 ±0.11 [stiff wire] and 0.58 ±0.17 [bent wire], p = 0.045). Filter jumping occurred more often with the transjugular approach with original push wire than with stiff or bent-wire delivery. Filter tip abutment to the IVC wall occurred only with the transfemoral approach. Conclusions Bent wire with transfemoral access and original push wire with transjugular access had lower filter tilt ratio at Option IVC filter deployment. However, filter jumping was common using the original push wire with transjugular access.
Collapse
Affiliation(s)
- Byung Geon Park
- Department of Radiology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Anna Seo
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Sang Yub Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Guen Cha
- Department of Radiology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jihoon Hong
- Department of Radiology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hoseok Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Heo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Woo Do
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Kolahdouz EM, Bhalla APS, Craven BA, Griffith BE. An Immersed Interface Method for Discrete Surfaces. JOURNAL OF COMPUTATIONAL PHYSICS 2020; 400:108854. [PMID: 31802781 PMCID: PMC6892596 DOI: 10.1016/j.jcp.2019.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fluid-structure systems occur in a range of scientific and engineering applications. The immersed boundary (IB) method is a widely recognized and effective modeling paradigm for simulating fluid-structure interaction (FSI) in such systems, but a difficulty of the IB formulation of these problems is that the pressure and viscous stress are generally discontinuous at fluid-solid interfaces. The conventional IB method regularizes these discontinuities, which typically yields low-order accuracy at these interfaces. The immersed interface method (IIM) is an IB-like approach to FSI that sharply imposes stress jump conditions, enabling higher-order accuracy, but prior applications of the IIM have been largely restricted to numerical methods that rely on smooth representations of the interface geometry. This paper introduces an immersed interface formulation that uses only a C 0 representation of the immersed interface, such as those provided by standard nodal Lagrangian finite element methods. Verification examples for models with prescribed interface motion demonstrate that the method sharply resolves stress discontinuities along immersed boundaries while avoiding the need for analytic information about the interface geometry. Our results also demonstrate that only the lowest-order jump conditions for the pressure and velocity gradient are required to realize global second-order accuracy. Specifically, we demonstrate second-order global convergence rates along with nearly second-order local convergence in the Eulerian velocity field, and between first- and second-order global convergence rates along with approximately first-order local convergence for the Eulerian pressure field. We also demonstrate approximately second-order local convergence in the interfacial displacement and velocity along with first-order local convergence in the fluid traction along the interface. As a demonstration of the method's ability to tackle more complex geometries, the present approach is also used to simulate flow in a patient-averaged anatomical model of the inferior vena cava, which is the large vein that carries deoxygenated blood from the lower extremities back to the heart. Comparisons of the general hemodynamics and wall shear stress obtained by the present IIM and a body-fitted discretization approach show that the present method yields results that are in good agreement with those obtained by the body-fitted approach.
Collapse
Affiliation(s)
- Ebrahim M Kolahdouz
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | | | - Brent A Craven
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Boyce E Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
- Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Steinman DA, Migliavacca F. Editorial: Special Issue on Verification, Validation, and Uncertainty Quantification of Cardiovascular Models: Towards Effective VVUQ for Translating Cardiovascular Modelling to Clinical Utility. Cardiovasc Eng Technol 2019; 9:539-543. [PMID: 30421097 DOI: 10.1007/s13239-018-00393-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David A Steinman
- Biomedical Simulation Laboratory (BSL), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
17
|
Craven BA, Aycock KI, Manning KB. Steady Flow in a Patient-Averaged Inferior Vena Cava—Part II: Computational Fluid Dynamics Verification and Validation. Cardiovasc Eng Technol 2018; 9:654-673. [DOI: 10.1007/s13239-018-00392-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022]
|