1
|
Samelis J, Tsanasidou C, Bosnea L, Ntziadima C, Gatzias I, Kakouri A, Pappas D. Pilot-Scale Production of Traditional Galotyri PDO Cheese from Boiled Ewes’ Milk Fermented with the Aid of Greek Indigenous Lactococcus lactis subsp. cremoris Starter and Lactiplantibacillus plantarum Adjunct Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The performance of a mixed thermophilic and mesophilic starter culture consisting of Streptococcus thermophilus ST1 and the Greek indigenous nisin-A-producing Lactococcus lactis subsp. cremoris M78 was evaluated in the absence (A: ST1+M78) or presence (B: ST1+M78+H25) of Lactiplantibacillus plantarum H25—another indigenous ripening strain—under real cheesemaking conditions. Three pilot-scale trials of fresh (6-day-old) Galotyri PDO cheese were made from boiled milk by an artisanal method using simple equipment, followed by cold ripening of the A1–A3 and B1–B3 cheeses at 4 °C for 30 days. All of the cheeses were analyzed microbiologically and for pH, gross composition, proteolysis, sugar and organic acid contents, and sensorial attributes before and after ripening. The artisanal (PDO) Galotyri manufacturing method did not ensure optimal growth of the ST1+M78 starter as regards the constant ability of the thermophilic strain ST1 to act as the primary milk acidifier under ambient (20–30 °C) fermentation conditions. Consequently, major trial-dependent microbial and biochemical differences between the Acheeses, and generally extended to the Bcheeses, were found. However, high-quality Galotyri was produced when either starter strain predominated in the fresh cheeses; only trial A1 had microbiological and sensory defects due to an outgrowth of post-thermal Gram-negative bacterial contaminants in the acidified curd. The H25 adjunct strain, which grew above 7 to 9 log CFU/g depending on the trial, had minor effects on the cheese’s pH, gross composition, and proteolysis, but it improved the texture, flavor, and the bacteriological quality of the Bcheeses during processing, and it exerted antifungal effects in the ripened cheeses.
Collapse
|
2
|
Saraiva MAF, Birri DJ, Brede DA, Baracat-Pereira MC, de Queiroz MV, Nes IF, de Moraes CA. Nisin Z Production by Wild Strains of Lactococcus lactis Isolated from Brazilian (Italian Type) Fermented Sausage. Int J Microbiol 2020; 2020:9309628. [PMID: 32351575 PMCID: PMC7178509 DOI: 10.1155/2020/9309628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, five bacteriocin-producing Lactococcus lactis strains were identified from different naturally fermented Brazilian sausages. Ion exchange and reversed-phase chromatographies were used to purify the bacteriocins from culture supernatant of the five strains. Mass spectrometry (MALDI-TOF/TOF) showed that the molecular masses of the bactericoins from L. lactis ID1.5, ID3.1, ID8.5, PD4.7, and PR3.1 were 3330.567 Da, 3330.514 Da, 3329.985 Da, 3329.561 Da, and 3329.591 Da, respectively. PCR product sequence analysis confirmed that the structural genes of bacteriocins produced by the five isolates are identical to the lantibiotic nisin Z. Optimal nisin Z production was achieved in tryptone and casein peptone, at pH 6.0 or 6.5. The most favorable temperatures for nisin Z production were 25°C and 30°C, and its production was better under aerobic than anaerobic condition. The type of carbon source appeared to be an important factor for nisin Z production. While sucrose was found to be the most efficient carbon source for nisin Z production by four L. lactis isolates, fructose was the best for one isolate. Lactose was also a good energy source for nisin Z production. Surprisingly, glucose was clearly the poorest carbon source for nisin Z production. The five isolates produced different amounts of the bacteriocin, L. lactis ID1.5 and ID8.5 isolates being the best nisin Z producers. DNA sequence analysis did not reveal any sequence differences in the nisZ and nisF promoter regions that could explain the differences in nisin Z production, suggesting that there should be other factors responsible for differential nisin Z production by the isolates.
Collapse
Affiliation(s)
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dag Anders Brede
- Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Ingolf F Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
3
|
Samelis J, Kakouri A. Cell Growth Density and Nisin A Activity of the Indigenous Lactococcus lactis subsp. cremoris M78 Costarter Depend Strongly on Inoculation Levels of a Commercial Streptococcus thermophilus Starter in Milk: Practical Aspects for Traditional Greek Cheese Processors. J Food Prot 2020; 83:542-551. [PMID: 32084256 DOI: 10.4315/0362-028x.jfp-19-430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mixed thermophilic and mesophilic commercial starter cultures (CSCs), particularly those including Streptococcus thermophilus as a primary milk acidifier, have been found to reduce growth and counteract in situ nisin A (NisA+) antilisterial effects by the novel, indigenous Lactococcus lactis subsp. cremoris M78 costarter in traditional Graviera thermized milk cheese curds. Therefore, this model challenge study evaluated growth and in situ NisA+ activity of strain M78 in coculture with S. thermophilus ST1 singly in sterilized raw milk (SRM). Strain ST1, derived from a CSC for cheese, was challenged at two inoculation levels (5 and 7 log CFU/mL) in SRM against 6 and 3 log CFU/mL of strain M78 and Listeria monocytogenes, respectively. Pure cultures of each strain and cocultures of strain ST1 with the CSC L. lactis LL2, in replacement of strain M78, served as controls. At the high (7-log) inoculation level, the rapid, competitive growth (>9.3 log CFU/mL) of S. thermophilus ST1 reduced growth of both L. lactis by at least 10-fold; the industrial strain LL2 retained slightly higher relative population densities (7.4 to 9.1%) than the wild NisA+ strain M78 (3.8 to 5.6%) after 6 h at 37°C, followed by an additional 66 h of incubation at 22°C. In full contrast, at the low (5-log) inoculation level, S. thermophilus ST1 failed to predominate in SRM at 6 h; thus, the starter lactic acid bacteria populations were reversed in favor of L. lactis. Notably, strain M78 retained higher relative population densities (83.0 to 90.1%) than the CSC strain LL2 (80.3 to 85.2%) at 22°C. Moreover, at the 5-log ST1 level, the direct and deferred in situ NisA+ activities of strain M78 were at similar levels with its pure culture with L. monocytogenes in SRM, whereas at the 7-log ST1 level, the respective NisA+ effects were counteracted. Hence, 10- to 100-fold lowered inoculation levels of CSC S. thermophilus are required to enhance the performance of the M78 costarter in traditional Greek cheese technologies. HIGHLIGHTS
Collapse
Affiliation(s)
- John Samelis
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | - Athanasia Kakouri
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| |
Collapse
|
4
|
Noutsopoulos D, Kakouri A, Kartezini E, Pappas D, Hatziloukas E, Samelis J. Growth, nisA Gene Expression, and In Situ Activity of Novel Lactococcus lactis subsp. cremoris Costarter Culture in Commercial Hard Cheese Production. J Food Prot 2017; 80:2137-2146. [PMID: 29182362 DOI: 10.4315/0362-028x.jfp-17-245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study evaluated in situ expression of the nisA gene by an indigenous, nisin A-producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A-mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.
Collapse
Affiliation(s)
- Dimitrios Noutsopoulos
- 1 Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Ethnikis Antistaseos 3, Katsikas, 45221 Ioannina, Greece.,2 Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; and
| | - Athanasia Kakouri
- 1 Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Ethnikis Antistaseos 3, Katsikas, 45221 Ioannina, Greece
| | - Eleftheria Kartezini
- 3 Skarfi EPE-Pappas Bros. Traditional Dairy, 4km Nat. Rd Filippiada-Ioannina, 48200 Filippiada, Greece
| | - Dimitrios Pappas
- 3 Skarfi EPE-Pappas Bros. Traditional Dairy, 4km Nat. Rd Filippiada-Ioannina, 48200 Filippiada, Greece
| | - Efstathios Hatziloukas
- 2 Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; and
| | - John Samelis
- 1 Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Ethnikis Antistaseos 3, Katsikas, 45221 Ioannina, Greece
| |
Collapse
|
5
|
Park JE, Kim HR, Park SY, Choi SK, Park SH. Identification of the biosynthesis gene cluster for the novel lantibiotic paenilan fromPaenibacillus polymyxaE681 and characterization of its product. J Appl Microbiol 2017; 123:1133-1147. [DOI: 10.1111/jam.13580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/12/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Affiliation(s)
- J.-E. Park
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
- Department of Biosystems and Bioengineering; KRIBB School of Biotechnology; Korea University of Science and Technology (UST); Yuseong-gu Daejeon Korea
| | - H.-R. Kim
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
| | - S.-Y. Park
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
| | - S.-K. Choi
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
- Department of Biosystems and Bioengineering; KRIBB School of Biotechnology; Korea University of Science and Technology (UST); Yuseong-gu Daejeon Korea
| | - S.-H. Park
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
- Department of Biosystems and Bioengineering; KRIBB School of Biotechnology; Korea University of Science and Technology (UST); Yuseong-gu Daejeon Korea
| |
Collapse
|
6
|
Samelis J, Giannou E, Pappa EC, Bogović-Matijašić B, Lianou A, Parapouli M, Drainas C. Behavior of artificial listerial contamination in model Greek Graviera cheeses manufactured with the indigenous nisin A-producing strainLactococcus lactissubsp.cremorisM104 as costarter culture. J Food Saf 2016. [DOI: 10.1111/jfs.12326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Samelis
- Hellenic Agricultural Organization DEMETER; Dairy Research Institute, General Directorate of Agricultural Research; Katsikas, Ioannina 45221 Greece
| | - Eleni Giannou
- Hellenic Agricultural Organization DEMETER; Dairy Research Institute, General Directorate of Agricultural Research; Katsikas, Ioannina 45221 Greece
- Department of Chemistry, Laboratory of Biochemistry; University of Ioannina; Ioannina 45110 Greece
| | - Eleni C. Pappa
- Hellenic Agricultural Organization DEMETER; Dairy Research Institute, General Directorate of Agricultural Research; Katsikas, Ioannina 45221 Greece
| | | | - Alexandra Lianou
- Hellenic Agricultural Organization DEMETER; Dairy Research Institute, General Directorate of Agricultural Research; Katsikas, Ioannina 45221 Greece
| | - Maria Parapouli
- Hellenic Agricultural Organization DEMETER; Dairy Research Institute, General Directorate of Agricultural Research; Katsikas, Ioannina 45221 Greece
- Department of Chemistry, Laboratory of Biochemistry; University of Ioannina; Ioannina 45110 Greece
| | - Constantin Drainas
- Department of Chemistry, Laboratory of Biochemistry; University of Ioannina; Ioannina 45110 Greece
| |
Collapse
|
7
|
Araújo C, Muñoz-Atienza E, Pérez-Sánchez T, Poeta P, Igrejas G, Hernández PE, Herranz C, Ruiz-Zarzuela I, Cintas LM. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:820-830. [PMID: 26307018 DOI: 10.1007/s10126-015-9660-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.
Collapse
Affiliation(s)
- Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
- Centre for Animal Science and Veterinary, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Tania Pérez-Sánchez
- Laboratory of Fish Pathology, Faculty of Veterinary, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Patrícia Poeta
- Centre for Animal Science and Veterinary, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Imanol Ruiz-Zarzuela
- Laboratory of Fish Pathology, Faculty of Veterinary, Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Av/ Puerta de Hierro s/n, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2493-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Samelis J, Lianou A, Pappa EC, Bogovič-Matijašić B, Parapouli M, Kakouri A, Rogelj I. Behavior of Staphylococcus aureus in culture broth, in raw and thermized milk, and during processing and storage of traditional Greek Graviera cheese in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel nisin A-producing raw milk isolate. J Food Prot 2014; 77:1703-14. [PMID: 25285487 DOI: 10.4315/0362-028x.jfp-14-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to evaluate the behavior of Staphylococcus aureus during processing, ripening, and storage of traditional Greek Graviera cheese in accordance with European Union Regulation 1441/2007 for coagulase-positive staphylococci in thermized milk cheeses. Lactococcus lactis subsp. cremoris M104, a wild, novel nisin A-producing (NisA+) strain, also was evaluated as an antistaphylococcal adjunct. A three-strain cocktail of enterotoxigenic (Ent+) S. aureus increased by approximately 2 log CFU/ml when co-inoculated (at approximately 3 log CFU/ml) in thermized Graviera cheese milk (TGCM; 63°C for 30 s) with commercial starter culture (CSC) and/or strain M104 at approximately 6 log CFU/ml and then incubated at 37°C for 3 h. However, after 6 h at 37°C, significant retarding effects on S. aureus growth were noted in the order TGCM + M104 > TGCM + CSC = TGCM + CSC + M104 > TGCM. Additional incubation of TGCM cultures at 18°C for 66 h resulted in a 1.2-log reduction (P < 0.05) of S. aureus populations in TGCM + M104. The Ent + S. aureus cocktail did not grow but survived during ripening and storage when inoculated (at approximately 3 log CFU/g) postcooking into Graviera mini cheeses prepared from TGCM + CSC or TGCM + CSC + M104, ripened at 18°C and 90% relative humidity for 20 days, and stored at 4°C in vacuum packages for 2 months. A rapid 10-fold decrease (P < 0.05) in S. aureus populations occurred within the first 24 h of cheese fermentation. Reductions of S. aureus were greater by approximately 0.4 log CFU/g in CSC + M104 than in CSC only cheeses, concomitantly with the presence of NisA + M104 colonies and nisin-encoding genes in the CSC plus M104 cheeses and their corresponding microbial consortia only. A high level of selective survival of a naturally nisin-resistant EntC z S. aureus strain from the cocktail was noted in CSC + M104 cheeses and in coculture with the NisA + M104 strain in M-17 broth. In conclusion, although S. aureus growth inhibition is assured during Graviera cheese ripening, early growth of the pathogen during milk curdling and curd cooking operations may occur. Nisin-resistant S. aureus strains that may contaminate Graviera cheese milks postthermally may be difficult to control even by the application of the NisA + L. lactis subsp. cremoris strain M104 as a bioprotective adjunct culture.
Collapse
Affiliation(s)
- John Samelis
- Dairy Research Institute, Directorate General of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece.
| | - Alexandra Lianou
- Dairy Research Institute, Directorate General of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Eleni C Pappa
- Dairy Research Institute, Directorate General of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | | | - Maria Parapouli
- Dairy Research Institute, Directorate General of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece; Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasia Kakouri
- Dairy Research Institute, Directorate General of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | - Irena Rogelj
- Biotechnical Faculty, University of Ljubljana, SI-1230 DomŽale, Slovenia
| |
Collapse
|
10
|
Lianou A, Samelis J. Addition to thermized milk of Lactococcus lactis subsp. cremoris M104, a wild, novel nisin a-producing strain, replaces the natural antilisterial activity of the autochthonous raw milk microbiota reduced by thermization. J Food Prot 2014; 77:1289-97. [PMID: 25198589 DOI: 10.4315/0362-028x.jfp-13-521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent research has shown that mild milk thermization treatments routinely used in traditional Greek cheese production are efficient to inactivate Listeria monocytogenes and other pathogenic or undesirable bacteria, but they also inactivate a great part of the autochthonous antagonistic microbiota of raw milk. Therefore, in this study, the antilisterial activity of raw or thermized (63°C, 30 s) milk in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel, nisin A-producing (Nis-A+) raw milk isolate, was assessed. Bulk milk samples were taken from a local cheese plant before or after thermization and were inoculated with a five-strain cocktail of L. monocytogenes (approximately 4 log CFU/ml) or with the cocktail, as above, plus the Nis-A+ strain (approximately 6 log CFU/ml) as a bioprotective culture. Heat-sterilized (121°C, 5 min) raw milk inoculated with L. monocytogenes was used as a control treatment. All milk samples were incubated at 37°C for 6 h and then at 18°C for an additional 66 h. L. monocytogenes grew abundantly (>8 log CFU/ml) in heat-sterilized milk, whereas its growth was completely inhibited in all raw milk samples. Conversely, in thermized milk, L. monocytogenes increased by 2 log CFU/ml in the absence of strain M104, whereas its growth was completely inhibited in the presence of strain M104. Furthermore, nisin activity was detected only in milk samples inoculated with strain M104. Thus, postthermal supplementation of thermized bulk milk with bioprotective L. lactis subsp. cremoris cultures replaces the natural antilisterial activity of raw milk reduced by thermization.
Collapse
Affiliation(s)
- Alexandra Lianou
- Dairy Research Institute, Hellenic Agricultural Organization - DEMETER, Directorate General of Agricultural Research (formerly NAGREF), Katsikas, Ioannina 45221, Greece; Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - John Samelis
- Dairy Research Institute, Hellenic Agricultural Organization - DEMETER, Directorate General of Agricultural Research (formerly NAGREF), Katsikas, Ioannina 45221, Greece.
| |
Collapse
|
11
|
Parapouli M, Delbès-Paus C, Kakouri A, Koukkou AI, Montel MC, Samelis J. Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk. Appl Environ Microbiol 2013; 79:3476-84. [PMID: 23542625 PMCID: PMC3648029 DOI: 10.1128/aem.00436-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 11/20/2022] Open
Abstract
Several molecular taxonomic studies have revealed that many natural (wild) Lactococcus lactis strains of dairy origin which are phenotypically representative of the L. lactis subspecies lactis cluster genotypically within subspecies cremoris and vice versa. Recently, we isolated two wild nisin-producing (Nis(+)) L. lactis strains, M78 and M104, of the lactis phenotype from Greek raw milk (J. Samelis, A. Lianou, A. Kakouri, C. Delbès, I. Rogelj, B. B. Matijašic, and M. C. Montel, J. Food Prot. 72:783-790, 2009); strain M78 possess a novel nisin A sequence (GenBank accession number HM219853). In this study, the actual subspecies identity of M78 and M104 isolates was elucidated, using 16S rRNA and acmA (encoding lactococcal N-acetylmuramidase) gene and histidine biosynthesis operon polymorphisms and 16S rRNA and ldh (encoding lactate dehydrogenase) gene phylogenies. Except the acmA gene analysis, molecular tools revealed that isolates M78 and M104 clustered with strains of the cremoris genotype, including the LMG 6897(T) strain, while they were distant from strains of the lactis genotype, including the LMG 6890(T) strain. The two wild isolates had identical repetitive sequence-based PCR (rep-PCR), randomly amplified polymorphic DNA (RAPD), plasmid, and whole-cell protein profiles and shared high 16S rRNA (99.9%) and ldh (100%) gene sequence homologies. In contrast, they exhibited identical sugar fermentation and enzymatic patterns which were similar to those of the subspecies lactis LMG 6890(T) strain. To our knowledge, this is the first complete identification report on a wild L. lactis subsp. cremoris genotype of the lactis phenotype which is capable of nisin A production and, thus, has strong potential for use as a novel dairy starter and/or protective culture.
Collapse
Affiliation(s)
- Maria Parapouli
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
- Dairy Research Institure, Katsikas, Ioannina, Greece
| | | | | | - Anna-Irini Koukkou
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | | | - John Samelis
- Dairy Research Institure, Katsikas, Ioannina, Greece
| |
Collapse
|