1
|
Xu X, Wang J, Chen T, Wang S, Wang F, He J, Meng XY, Shen Y. Deciphering novel mitochondrial signatures: multi-omics analysis uncovers cross-disease markers and oligodendrocyte pathways in Alzheimer's disease and glioblastoma. Front Aging Neurosci 2025; 17:1536142. [PMID: 40018519 PMCID: PMC11865232 DOI: 10.3389/fnagi.2025.1536142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Alzheimer's disease (AD) and glioblastoma (GBM) are severe neurological disorders that pose significant global healthcare challenges. Despite extensive research, the molecular mechanisms, particularly those involving mitochondrial dysfunction, remain poorly understood. A major limitation in current studies is the lack of cell-specific markers that effectively represent mitochondrial dynamics in AD and GBM. Methods In this study, we analyzed single-cell transcriptomic data using 10 machine learning algorithms to identify mitochondria-associated cell-specific markers. We validated these markers through the integration of gene expression and methylation data across diverse cell types. Our dataset comprised single-nucleus RNA sequencing (snRNA-seq) from AD patients, single-cell RNA sequencing (scRNA-seq) from GBM patients, and additional DNA methylation and transcriptomic data from the ROSMAP, ADNI, TCGA, and CGGA cohorts. Results Our analysis identified four significant cross-disease mitochondrial markers: EFHD1, SASH1, FAM110B, and SLC25A18. These markers showed both shared and unique expression profiles in AD and GBM, suggesting a common mitochondrial mechanism contributing to both diseases. Additionally, oligodendrocytes and their interactions with astrocytes were implicated in disease progression, particularly through the APP signaling pathway. Key hub genes, such as HS6ST3 and TUBB2B, were identified across different cellular subpopulations, highlighting a cell-specific co-expression network linked to mitochondrial function.
Collapse
Affiliation(s)
- Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqi Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Shuaibin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Fei Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Junwen He
- College of Informatics, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Xiang-Yu Meng
- School of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, Hubei, China
| | - Yin Shen
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Ding Y, Chen Q, Shan H, Liu J, Lv C, Wang Y, Yuan L, Chen Y, Wang Z, Yin Y, Xiao K, Li J, Liu W. SASH1: A Novel Eph Receptor Partner and Insights into SAM-SAM Interactions. J Mol Biol 2023; 435:168243. [PMID: 37619706 DOI: 10.1016/j.jmb.2023.168243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
The Eph (erythropoietin-producing human hepatocellular) receptor family, the largest subclass of receptor tyrosine kinases (RTKs), plays essential roles in embryonic development and neurogenesis. The intracellular Sterile Alpha Motif (SAM) domain presents a critical structural feature that distinguishes Eph receptors from other RTKs and participates in recruiting and binding downstream molecules. This study identified SASH1 (SAM and SH3 domain containing 1) as a novel Eph receptor-binding partner through SAM-SAM domain interactions. Our comprehensive biochemical analyses revealed that SASH1 selectively interacts with Eph receptors via its SAM1 domain, displaying the highest affinity for EphA8. The high-resolution crystal structure of the EphA8-SASH1 complex provided insights into the specific intermolecular interactions between these proteins. Cellular assays confirmed that EphA8 and SASH1 co-localize and co-precipitate in mammalian cells, with cancer mutations (EphA8 R942H or G978D) impairing this interaction. We demonstrated that SAM-SAM interaction is critical for SASH1-mediated regulation of EphA8 kinase activity, shedding new light on the Eph signaling pathway and expanding our understanding of the molecular basis of the tumor suppressor gene SASH1.
Collapse
Affiliation(s)
- Yuzhen Ding
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China. https://twitter.com/dingyuzhen8
| | - Qiangou Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jia Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Chunyu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yanhui Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Ziyi Wang
- Innovative Institute of Basic Medical Sciences of Zhejiang University, Hangzhou 310058, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
3
|
Clements CM, Henen MA, Vögeli B, Shellman YG. The Structural Dynamics, Complexity of Interactions, and Functions in Cancer of Multi-SAM Containing Proteins. Cancers (Basel) 2023; 15:3019. [PMID: 37296980 PMCID: PMC10252437 DOI: 10.3390/cancers15113019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
SAM domains are crucial mediators of diverse interactions, including those important for tumorigenesis or metastasis of cancers, and thus SAM domains can be attractive targets for developing cancer therapies. This review aims to explore the literature, especially on the recent findings of the structural dynamics, regulation, and functions of SAM domains in proteins containing more than one SAM (multi-SAM containing proteins, MSCPs). The topics here include how intrinsic disorder of some SAMs and an additional SAM domain in MSCPs increase the complexity of their interactions and oligomerization arrangements. Many similarities exist among these MSCPs, including their effects on cancer cell adhesion, migration, and metastasis. In addition, they are all involved in some types of receptor-mediated signaling and neurology-related functions or diseases, although the specific receptors and functions vary. This review also provides a simple outline of methods for studying protein domains, which may help non-structural biologists to reach out and build new collaborations to study their favorite protein domains/regions. Overall, this review aims to provide representative examples of various scenarios that may provide clues to better understand the roles of SAM domains and MSCPs in cancer in general.
Collapse
Affiliation(s)
- Christopher M. Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Chen X, Yuan Y, Ren W, Zhou F, Huang X, Pu J, Niu X, Jiang X. Pan-Cancer Integrated Analysis Identification of SASH3, a Potential Biomarker That Inhibits Lung Adenocarcinoma Progression. Front Oncol 2022; 12:927988. [PMID: 35756681 PMCID: PMC9232268 DOI: 10.3389/fonc.2022.927988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3) is an adaptor protein expressed mainly in lymphocytes, and plays significant roles in T-cell proliferation and cell survival. However, its expression level, clinical significance, and correlation with tumor-infiltrating immune cells across cancers remain unclear. In this study, we comprehensively examined the expression, dysregulation, and prognostic significance of SASH3, and the correlation with clinicopathological parameters and immune infiltration in pan-cancer. The mRNA and protein expression status of SASH3 were determined by TCGA, GTEx, and UALCAN. Kaplan–Meier analysis utilized the prognostic values of SASH3 in diverse cancers. The association between SASH3 expression and gene mutation, DNA methylation, immune cells infiltration, immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI) were analyzed using data from the TCGA database. High expression of SASH3 was not only linked to poor OS in ESCC, LAML, LGG, and UVM, but also associated with better OS in CESC, HNSC, LUAD, SARC, SKCM, THYM, and UCEC. As for DSS, a high level of SASH3 correlated with adverse DSS in ESCC, LGG, and UVM, and lowly expressed SASH3 was associated with shorter OS in CESC, HNSC, LUAD, SARC, SKCM, and UCEC. The results of Cox regression and nomogram analyses confirmed that SASH3 was an independent factor for LUAD prognosis. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) results showed that SASH3 was involved in natural killer cell-mediated cytotoxicity, Th17 cell differentiation, PD-L1 expression and PD-1 checkpoint pathway in cancer, NF-kappa B signaling pathway, B-cell receptor signaling pathway, and Toll-like receptor signaling pathway. SASH3 expression was correlated with TMB in 28 cancer types and associated with MSI in 22 cancer types, while there was a negative correlation between SASH3 expression and DNA methylation in diverse human cancer. The high DNA methylation level of SASH3 was correlated with better OS in KIRC and UVM, and associated with poor OS in SKCM. Moreover, we uncover that SASH3 expression was positively associated with the stroma score in 27 cancer types, the microenvironment score, and immune score in 32 cancer types, 38 types of immune cells in 32 cancer types, the 45 immune stimulators, 24 immune inhibitors, 41 chemokines, 18 receptors, and 21 major histocompatibility complex (MHC) molecules in 33 cancer types. Finally, forced SASH3 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and cell migration. Our findings confirmed that SASH3 may be a biomarker for the prognosis and diagnosis of human cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjun Ren
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Jaufmann J, Franke FC, Sperlich A, Blumendeller C, Kloos I, Schneider B, Sasaki D, Janssen KP, Beer-Hammer S. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J 2021; 35:e21470. [PMID: 33710696 DOI: 10.1096/fj.202002495r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Intracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1). Based on their pronounced sequence similarity, they were subsequently classified as one family of intracellular scaffold proteins. Despite their obvious homology, the three SLy/SASH1-members fundamentally differ with regard to their expression and function in intracellular signaling. On the contrary, growing evidence clearly demonstrates an important role of all three proteins in human health and disease. In this review, we systematically summarize what is known about the SLy/SASH1-adaptors in the field of molecular cell biology and immunology. To this end, we recapitulate current research about SLy1/SASH3, SLy2/HACS1, and SASH1/SLy3, with an emphasis on their similarities and differences.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fabian Christoph Franke
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Sperlich
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Carolin Blumendeller
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Isabel Kloos
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Barbara Schneider
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daisuke Sasaki
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Medical SC New Technology Strategy Office, General Research Institute, Nitto Boseki, Co., Ltd, Tokyo, Japan
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Burgess JT, Bolderson E, Adams MN, Duijf PHG, Zhang SD, Gray SG, Wright G, Richard DJ, O'Byrne KJ. SASH1 is a prognostic indicator and potential therapeutic target in non-small cell lung cancer. Sci Rep 2020; 10:18605. [PMID: 33122723 PMCID: PMC7596716 DOI: 10.1038/s41598-020-75625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor protein that has roles in key cellular processes including apoptosis and cellular proliferation. As these cellular processes are frequently disrupted in human tumours and little is known about the role of SASH1 in the pathogenesis of the disease, we analysed the prognostic value of SASH1 in non-small cell lung cancers using publicly available datasets. Here, we show that low SASH1 mRNA expression is associated with poor survival in adenocarcinoma. Supporting this, modulation of SASH1 levels in a panel of lung cancer cell lines mediated changes in cellular proliferation and sensitivity to cisplatin. The treatment of lung cancer cells with chloropyramine, a compound that increases SASH1 protein concentrations, reduced cellular proliferation and increased sensitivity to cisplatin in a SASH1-dependent manner. In summary, compounds that increase SASH1 protein levels could represent a novel approach to treat NSCLC and warrant further study.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Queensland University of Technology, 37 Kent Street Woolloongabba, Brisbane, 4102, Australia.
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Queensland University of Technology, 37 Kent Street Woolloongabba, Brisbane, 4102, Australia.
- Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia.
| | - Mark N Adams
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Queensland University of Technology, 37 Kent Street Woolloongabba, Brisbane, 4102, Australia
| | - Pascal H G Duijf
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Queensland University of Technology, 37 Kent Street Woolloongabba, Brisbane, 4102, Australia
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute (TRI), Brisbane, Australia
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, University of Ulster, C-TRIC Building, Altnagelvin Hospital Campus, Glenshane Road, Londonderry, BT47 6SB, UK
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Steven G Gray
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- HOPE Directorate, St. James Hospital, Dublin 8, Ireland
| | - Gavin Wright
- Department of Surgery, St Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC, Australia
| | - Derek J Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Queensland University of Technology, 37 Kent Street Woolloongabba, Brisbane, 4102, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health at the Translational Research Institute (TRI), Queensland University of Technology, 37 Kent Street Woolloongabba, Brisbane, 4102, Australia.
- Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
7
|
Expression of SASH1 in Preeclampsia and Its Effects on Human Trophoblast. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5058260. [PMID: 33134379 PMCID: PMC7593751 DOI: 10.1155/2020/5058260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
Aim To explore the involvement of SASH1 in preeclampsia. Methods Expression of SASH1 was determined by qPCR, WB, and immunohistochemistry in the placenta of both normal and preeclamptic pregnancies. The SASH1 gene of human HTR-8/SVneo cells was overexpressed by transfection of pEZ-Lv206-SASH1. After that, the CCK-8 assay, EdU assay, transwell assay, and flow cytometry were used to examine the cell proliferation, migration, invasion, and apoptosis. Results Higher expression of SASH1 was detected in placental tissues collected from patients with preeclampsia, compared with those from gestational age-matched control samples. The expression of SASH1 was significantly enhanced by transfection with pEZ-Lv206-SASH1 in HTR-8/SVneo cells. In addition, the HTR-8/SVneo cells transfected with pEZ-Lv206-SASH1 exhibited significantly reduced proliferation, migration, and invasion ability compared to the cells in the empty vector group and normal group. Flow cytometry analysis demonstrated that the apoptosis rate of cells transfected with pEZ-Lv206-SASH1 was significantly higher than that of cells transfected with empty vector and untreated cells. Conclusions SASH1 is significantly upregulated in the placenta of preeclampsia, and overexpression of SASH1 can inhibit the proliferation, migration, and invasion, but induce apoptosis of trophoblast cells in vitro.
Collapse
|
8
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
9
|
Tao W, Ma J, Zheng J, Liu X, Liu Y, Ruan X, Shen S, Shao L, Chen J, Xue Y. Silencing SCAMP1-TV2 Inhibited the Malignant Biological Behaviors of Breast Cancer Cells by Interaction With PUM2 to Facilitate INSM1 mRNA Degradation. Front Oncol 2020; 10:613. [PMID: 32670859 PMCID: PMC7326047 DOI: 10.3389/fonc.2020.00613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Molecular-targeted therapy plays an important role in the combined treatment of breast cancer. Long noncoding RNA (LncRNA) plays a significant role in regulating breast cancer progression. The present study is to reveal the potential roles and molecular mechanism that the secretory carrier-associated membrane protein 1-transcript variant 2 (SCAMP1-TV2) has in breast. Methods: Cell Counting Kit-8 (CCK-8), RNA Immunoprecipitation (RIP), and RNA pull-down assays were employed to determine the interactions between SCAMP1-TV2 and Pumilio RNA binding family member 2 (PUM2). The luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were used to get to know the effect of human insulinoma-associated 1 (INSM1) directly on the SAM and SH3 domain containing 1 (SASH1) promoter. Results: Silenced SCAMP1-TV2 inhibited the proliferation, migration, and invasion of breast cancer cells, and promoted cell apoptosis. Meanwhile, SCAMP1-TV2 downregulation decreased its binding to PUM2 and increased the binding of PUM2 to INSM1 messenger RNA (mRNA), thus promoting the degradation of INSM1 mRNA. Silencing INSM1 decreased its inhibitory effect on SASH1 transcription and inhibited the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. The xenograft tumor growth in a nude mice was significantly inhibited by the silencing of SCAMP1-TV2 in combination with the overexpression of PUM2. Conclusions: SCAMP1-TV2/PUM2/INSM1 pathway plays an important role in regulating the biological behavior of breast cancer cells.
Collapse
Affiliation(s)
- Wei Tao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jiajia Chen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Cui H, Guo S, He H, Guo H, Zhang Y, Wang B. SASH1 promotes melanin synthesis and migration via suppression of TGF-β1 secretion in melanocytes resulting in pathologic hyperpigmentation. Int J Biol Sci 2020; 16:1264-1273. [PMID: 32174800 PMCID: PMC7053321 DOI: 10.7150/ijbs.38415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/14/2019] [Indexed: 01/14/2023] Open
Abstract
Dyschromatosis universalis hereditaria (DUH) is an autosomal dominant pigmentary genodermatosis characterized by the presence of patches of hyperpigmentation and hypopigmented macules distributed over the body, with most cases reported in Asia. DUH is a heterogeneous disease and a small portion of patients carry the ABCB6 variant. In the present study, exome sequencing of four generations of a Chinese family with DUH identified a c.1761C>G (p.Ser587Arg) mutation in exon 15 of SAM and SH3 domain containing 1 (SASH1) that was found to co-segregate in some family members. Immunohistological analysis of biopsy specimens showed that SASH1 was diffusely distributed in all layers of the epidermis, suggesting increased transepithelial migration of melanocytes (MCs). The point mutation c.1761C>G of SASH1 was successfully induced in immortalized human melanocyte (PIG1) cells, which resulted in the downregulation of SASH1 expression. Bioinformatics analysis showed that mutated SASH1 downregulated thrombospondin 1 (THBS1) expression and inactivated transforming growth factor beta 1 (TGF-β1) signaling. TGF-β1 expression by PIG1cells was found to negatively regulate SASH1 protein expression. Transwell migration and wound-healing assays showed an increase in the migration and invasion capabilities of the cells carrying the mutation. Further, SASH1 mutations induced downregulation of melanin content. The study results suggest cross-talking between SASH1-TGF-β1 signaling, demonstrating the proposed MC migration modulation models and affecting melanin trafficking in the epithelium.
Collapse
Affiliation(s)
- Hongzhou Cui
- Department of Dermatology, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, China
| | - Shuping Guo
- Department of Dermatology, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongxia He
- Department of Dermatology, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, China
| | - Binquan Wang
- Department of Dermatology, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, China
| |
Collapse
|
11
|
HMGB1 contributes to SASH1 methylation to attenuate astrocyte adhesion. Cell Death Dis 2019; 10:417. [PMID: 31138780 PMCID: PMC6538612 DOI: 10.1038/s41419-019-1645-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
SAM and SH3 domain-containing 1 (SASH1), a scaffold protein, is regarded as a tumor suppressor. Recent studies have verified the decreased expression of SASH1 in many tumors. Our previous clinical investigation found that SASH1 was widely expressed in normal brain tissues but reduced or absent in glioma tissues. However, the functions of SASH1 in normal astrocytes and the reasons for the reductions in SASH1 levels in glioma tissues are unclear. In this study, we found that in astrocytes, SASH1 functions in cell adhesion. We observed that knockdown of SASH1 expression in cultured astrocytes significantly decreased cell adhesion and increased invasion. Conversely, overexpression of SASH1 in C6 cells markedly promoted cell adhesion and decreased cell invasion. In addition, we found that the expression level of one member of the integrin family, integrin β8, was significantly reduced in SASH1-downregulated astrocytes and elevated in SASH1-upregulated C6 cells. Furthermore, the results of methylation and ChIP assays showed that the methylation level of the SASH1 gene was markedly higher in C6 cells than in astrocytes and that HMGB1 could bind to the CpG islands of the SASH1 gene. HMGB1 overexpression in astrocytes significantly increased the methylation level of the SASH1 gene. This study reveals, for the first time, that HMGB1 contributes to the methylation of the SASH1 gene, and our findings suggest that methylation downregulates the expression of the SASH1 gene and later reduces integrin β8 expression, thereby reducing cell adhesion and promoting cell migration.
Collapse
|
12
|
Santos PKF, de Souza Araujo N, Françoso E, Zuntini AR, Arias MC. Diapause in a tropical oil-collecting bee: molecular basis unveiled by RNA-Seq. BMC Genomics 2018; 19:305. [PMID: 29703143 PMCID: PMC5923013 DOI: 10.1186/s12864-018-4694-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diapause is a natural phenomenon characterized by an arrest in development that ensures the survival of organisms under extreme environmental conditions. The process has been well documented in arthropods. However, its molecular basis has been mainly studied in species from temperate zones, leaving a knowledge gap of this phenomenon in tropical species. In the present study, the Neotropical and solitary bee Tetrapedia diversipes was employed as a model for investigating diapause in species from tropical zones. Being a bivoltine insect, Tetrapedia diversipes produce two generations of offspring per year. The first generation, normally born during the wet season, develops faster than individuals from the second generation, born after the dry season. Furthermore, it has been shown that the development of the progeny, of the second generation, is halted at the 5th larval instar, and remains in larval diapause during the dry season. Towards the goal of gaining a better understanding of the diapause phenomenon we compared the global gene expression pattern, in larvae, from both reproductive generations and during diapause. The results demonstrate that there are similarities in the observed gene expression patterns to those already described for temperate climate models, and also identify diapause-related genes that have not been previously reported in the literature. RESULTS The RNA-Seq analysis identified 2275 differentially expressed transcripts, of which 1167 were annotated. Of these genes, during diapause, 352 were upregulated and 815 were downregulated. According to their biological functions, these genes were categorized into the following groups: cellular detoxification, cytoskeleton, cuticle, sterol and lipid metabolism, cell cycle, heat shock proteins, immune response, circadian clock, and epigenetic control. CONCLUSION Many of the identified genes have already been described as being related to diapause; however, new genes were discovered, for the first time, in this study. Among those, we highlight: Niemann-Pick type C1, NPC2 and Acyl-CoA binding protein homolog (all involved in ecdysteroid synthesis); RhoBTB2 and SASH1 (associated with cell cycle regulation) and Histone acetyltransferase KAT7 (related to epigenetic transcriptional regulation). The results presented here add important findings to the understanding of diapause in tropical species, thus increasing the comprehension of diapause-related molecular mechanisms.
Collapse
Affiliation(s)
- Priscila Karla F. Santos
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Natalia de Souza Araujo
- 0000 0001 0805 7253grid.4861.bCurrent address: GIGA – Medical Genomics, Unit of Animal Genomics, University of Liege, Quartier Hopital, Avenue de I’Hopital, 11, 4000 Liege, Belgium
| | - Elaine Françoso
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| | - Alexandre Rizzo Zuntini
- 0000 0001 0723 2494grid.411087.bDepartamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, Campinas, SP CEP 13083-970 Brazil
| | - Maria Cristina Arias
- 0000 0004 1937 0722grid.11899.38Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Room 320, São Paulo, SP CEP 05508-090 Brazil
| |
Collapse
|
13
|
Downregulated SASH1 expression indicates poor clinical prognosis in gastric cancer. Hum Pathol 2018; 74:83-91. [DOI: 10.1016/j.humpath.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
|
14
|
Suenaga M, Tomiyasu H, Watanabe M, Ogawa K, Motegi T, Goto-Koshino Y, Ohno K, Sugano S, Skorupski KA, Tsujimoto H. Comprehensive analysis of gene expression profiles reveals novel candidates of chemotherapy resistant factors in canine lymphoma. Vet J 2017; 228:18-21. [DOI: 10.1016/j.tvjl.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
|
15
|
Involvement of PI3K/Akt pathway in the inhibition of hepatocarcinoma cell invasion and metastasis induced by SASH1 through downregulating Shh-Gli1 signaling. Int J Biochem Cell Biol 2017; 89:95-100. [DOI: 10.1016/j.biocel.2017.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/18/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
|
16
|
Abstract
The epithelial–mesenchymal transition (EMT) is considered to be one of the critical steps in gastric cancer cell invasion and metastasis. SAM- and SH3-domain containing 1 (SASH1), a member of the SLY family of signal adapter proteins, is a candidate for tumor suppression in several cancers. However, the biological role of SASH1 in gastric cancer remains largely unknown. Therefore, the purpose of this study was to investigate the impact of SASH1 on the biological behavior of gastric cancer cells treated with transforming growth factor (TGF)-β1. In the current study, we provide evidence that SASH1 was lowly expressed in human gastric cancer cells, and TGF-β1 also inhibited the expression of SASH1 in TSGH cells. We found that SASH1 inhibited TGF-β1-mediated EMT in TSGH cells, as well as cell migration and invasion. Furthermore, SASH1 obviously inhibited the phosphorylation of PI3K and Akt in TGF-β1-stimulated TSGH cells. In summary, our study is the first to show that overexpression of SASH1 inhibits TGF-β1-induced EMT in gastric cancer cells through the PI3K/Akt signaling pathway. These results suggest that SASH1 may be a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Zong
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, the Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
17
|
He P, Zhang HX, Sun CY, Chen CY, Jiang HQ. Overexpression of SASH1 Inhibits the Proliferation, Invasion, and EMT in Hepatocarcinoma Cells. Oncol Res 2017; 24:25-32. [PMID: 27178819 PMCID: PMC7838664 DOI: 10.3727/096504016x14575597858609] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY (SH3 domain containing expressed in lymphocytes) family of signal adapter proteins, has been implicated in tumorigenesis of many types of cancers. However, the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma are largely unknown. In this study, we investigated the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma. Our results showed that SASH1 was lowly expressed in hepatocarcinoma cell lines. The in vitro experiments showed that overexpression of SASH1 inhibited the proliferation and migration/invasion of hepatocarcinoma cells, as well as the epithelial-mesenchymal transition (EMT) progress. Furthermore, overexpression of SASH1 suppressed the expression of Shh as well as Smo, Ptc, and Gli-1 in hepatocarcinoma cells. Taken together, these results suggest that overexpression of SASH1 inhibited the proliferation and invasion of hepatocarcinoma cells through the inactivation of Shh signaling pathway. Therefore, these findings reveal that SASH1 may be a potential therapeutic target for the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Ping He
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
18
|
Gong X, Wu J, Wu J, Liu J, Gu H, Shen H. Correlation of SASH1 expression and ultrasonographic features in breast cancer. Onco Targets Ther 2017; 10:271-276. [PMID: 28138250 PMCID: PMC5237597 DOI: 10.2147/ott.s119244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective SASH1 is a member of the SH3/SAM adapter molecules family and has been identified as a new tumor suppressor and critical protein in signal transduction. An ectopic expression of SASH1 is associated with decreased cell viability of breast cancer. The aim of this study was to explore the association between SASH1 expression and the ultrasonographic features in breast cancer. Patients and methods A total of 186 patients diagnosed with breast cancer were included in this study. The patients received preoperative ultrasound examination, and the expression of SASH1 was determined using immunohistochemistry methods. Spearman’s rank correlation analysis was used to analyze the correlation between SASH1-positive expression and the ultrasonographic features. Results The positive expression of SASH1 was observed in 63 (33.9%) patients. The positive expression rate of SASH1 was significantly decreased in patients with breast cancer (63/186, 33.9%) compared with controls (P<0.001). The positive expression rate of SASH1 was significantly decreased in patients with edge burr sign (P=0.025), lymph node metastasis (P=0.007), and a blood flow grade of III (P=0.013) compared with patients without those adverse ultrasonographic features. The expression of SASH1 was negatively correlated with edge burr sign (P=0.025), lymph node metastasis (P=0.007), and blood flow grade (P=0.003) of the patients with breast cancer. Conclusion The expression of SASH1 was inversely correlated with some critical ultrasonographic features, including edge burr sign, lymph node metastasis, and blood flow grade in breast cancer, and decreased SASH1 expression appears to be associated with adverse clinical and imaging features in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Shen
- Department of Doppler Ultrasonic, Traditional Chinese Medicine Hospital of Nantong City, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Synthetic Isoliquiritigenin Inhibits Human Tongue Squamous Carcinoma Cells through Its Antioxidant Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1379430. [PMID: 28203317 PMCID: PMC5292127 DOI: 10.1155/2017/1379430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Isoliquiritigenin (ISL), a natural antioxidant, has antitumor activity in different types of cancer cells. However the antitumor effect of ISL on human tongue squamous carcinoma cells (TSCC) is not clear. Here we aimed to investigate the effects of synthetic isoliquiritigenin (S-ISL) on TSCC and elucidate the underlying mechanisms. S-ISL was synthesized and elucidated from its nuclear magnetic resonance spectrum and examined using high performance liquid chromatography. The effects of S-ISL on TSCC cells (Tca8113) were evaluated in relation to cell proliferation, apoptosis and adhesion, migration, and invasion using sulforhodamine B assay, fluorescence microscopy technique, flow cytometry (FCM) analysis, and Boyden chamber assay. The associated regulatory mechanisms were examined using FCM and fluorescence microscopy for intracellular reactive oxygen species (ROS) generation, Gelatin zymography assay for matrix metalloproteinase (MMP) activities, and Western blot for apoptosis regulatory proteins (Bcl-2 and Bax). Our data indicated that S-ISL inhibited Tca8113 cell proliferation, adhesion, migration, and invasion while promoting the cell apoptosis. Such effects were accompanied by downregulation of Bcl-2 and upregulation of Bax, reduction of MMP-2 and MMP-9 activities, and decreased ROS production. We conclude that S-ISL is a promising agent targeting TSCC through multiple anticancer effects, regulated by its antioxidant mechanism.
Collapse
|
20
|
Burgess JT, Bolderson E, Adams MN, Baird AM, Zhang SD, Gately KA, Umezawa K, O'Byrne KJ, Richard DJ. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response. Cell Death Dis 2016; 7:e2469. [PMID: 27831555 PMCID: PMC5260870 DOI: 10.1038/cddis.2016.364] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/08/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022]
Abstract
Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer and Ageing Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT) and Princess Alexandra Hospital, Level 6, Translational Research Institute, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT) and Princess Alexandra Hospital, Level 6, Translational Research Institute, Brisbane, QLD, Australia.,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Mark N Adams
- Cancer and Ageing Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT) and Princess Alexandra Hospital, Level 6, Translational Research Institute, Brisbane, QLD, Australia
| | - Anne-Marie Baird
- Cancer and Ageing Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT) and Princess Alexandra Hospital, Level 6, Translational Research Institute, Brisbane, QLD, Australia
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, University of Ulster, C-TRIC Building, Altnagelvin Hospital Campus, Glenshane Road, Londonderry BT47 6SB, UK.,Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Kathy A Gately
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Republic of Ireland
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University, Nagakute, Japan
| | - Kenneth J O'Byrne
- Cancer and Ageing Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT) and Princess Alexandra Hospital, Level 6, Translational Research Institute, Brisbane, QLD, Australia.,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Derek J Richard
- Cancer and Ageing Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT) and Princess Alexandra Hospital, Level 6, Translational Research Institute, Brisbane, QLD, Australia.,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
21
|
Burgess JT, Bolderson E, Saunus JM, Zhang SD, Reid LE, McNicol AM, Lakhani SR, Cuff K, Richard K, Richard DJ, O'Byrne KJ. SASH1 mediates sensitivity of breast cancer cells to chloropyramine and is associated with prognosis in breast cancer. Oncotarget 2016; 7:72807-72818. [PMID: 27637080 PMCID: PMC5341945 DOI: 10.18632/oncotarget.12020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Expression of the SASH1 protein is reduced in a range of human cancers and has been implicated in apoptotic cancer cell death. This study investigated whether increasing SASH1 expression could be a useful therapeutic strategy in breast cancer. Ectopic SASH1 expression increased apoptosis in 7/8 breast cancer cell lines. Subsequent in silico connectivity screening demonstrated that the clinically approved antihistamine drug, chloropyramine, increased SASH1 mRNA levels. Chloropyramine has previously been shown to have anti-tumour activity in breast cancer in part through modulation of FAK signalling, a pathway also regulated by SASH1. This study demonstrated that chloropyramine increased SASH1 protein levels in breast cancer cells. Consistent with this the agent reduced cell confluency in 7/8 cell lines treated irrespective of their ER status but not apoptosis incompetent MCF7 cells. In contrast SASH1 siRNA-transfected breast cancer cells exhibited reduced chloropyramine sensitivity. The prognostic significance of SASH1 expression was also investigated in two breast cancer cohorts. Expression was associated with favourable outcome in ER-positive cases, but only those of low histological grade/proliferative status. Conversely, we found a very strong inverse association in HER2+ disease irrespective of ER status, and in triple-negative, basal-like cases. Overall, the data suggest that SASH1 is prognostic in breast cancer and could have subtype-dependent effects on breast cancer progression. Pharmacologic induction of SASH1 by chloropyramine treatment of breast cancer warrants further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Joshua T. Burgess
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | - Jodi M. Saunus
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, University of Ulster, Altnagelvin Hospital Campus, Londonderry, UK
- Center for Cancer Research and Cell Biology, Queen's University Belfast, United Kingdom
| | - Lynne E. Reid
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Anne Marie McNicol
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Sunil R. Lakhani
- The University of Queensland (UQ), UQ Centre for Clinical Research, Herston, Queensland, Australia
- Pathology Queensland, Royal Brisbane Women's Hospital, Herston, Queensland, Australia
- UQ School of Medicine, Herston, Queensland, Australia
| | - Katharine Cuff
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | - Kerry Richard
- UQ School of Medicine, Herston, Queensland, Australia
- Conjoint Endocrine Laboratory, Pathology Queensland, Queensland Health, Herston, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
- Translational Cell Imaging Queensland, Translational Research Institute, Queensland, Australia
| | - Kenneth J. O'Byrne
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology, Brisbane, Australia
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
- Translational Cell Imaging Queensland, Translational Research Institute, Queensland, Australia
| |
Collapse
|
22
|
Ren X, Liu Y, Tao Y, Zhu G, Pei M, Zhang J, Liu J. Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma. Oncol Lett 2016; 11:3123-3130. [PMID: 27123075 DOI: 10.3892/ol.2016.4345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/24/2016] [Indexed: 01/23/2023] Open
Abstract
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Department of Pathology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yumei Tao
- Department of Pathology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Guoxiang Zhu
- Department of Pathology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Meilan Pei
- Department of Obstetrics, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, P.R. China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
23
|
Clinical Significance of SASH1 Expression in Glioma. DISEASE MARKERS 2015; 2015:383046. [PMID: 26424902 PMCID: PMC4575719 DOI: 10.1155/2015/383046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. METHODS We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. RESULTS SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. CONCLUSIONS SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma.
Collapse
|
24
|
Weidmann H, Touat-Hamici Z, Durand H, Mueller C, Chardonnet S, Pionneau C, Charlotte F, Janssen KP, Verdugo R, Cambien F, Blankenberg S, Tiret L, Zeller T, Ninio E. SASH1, a new potential link between smoking and atherosclerosis. Atherosclerosis 2015; 242:571-9. [PMID: 26318107 DOI: 10.1016/j.atherosclerosis.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We have previously reported that SASH1 expression is increased in circulating human monocytes from smokers and was positively correlated with the number of carotid atherosclerotic plaques. The aim of this study was to further validate the link between smoking, SASH1 and atherosclerosis within the vascular wall and to assess the impact of SASH1 expression on endothelial cell functions. METHOD Human carotids with atherosclerotic plaques were obtained from 58 patients (45 of them with known smoking status: smoker, non-smoker, ex-smokers), and were processed for gene expression analyses and immunostaining. To investigate its function, SASH1 was silenced in human aortic endothelial cells (HAECs) using two different siRNA and subcellular localization of SASH1 was determined by immunostaining and subcellular fractionation. Subsequently the transcriptomic analyses and functional experiments (wound healing, WST-1 proliferation or Matrigel assays) were performed to characterize SASH1 function. RESULTS SASH1 was expressed in human vascular cells (HAECs, smooth muscle cells) and in monocytes/macrophages. Its tissue expression was significantly higher in the atherosclerotic carotids of smokers compared to non-smokers (p < 0.01). In HAECs, SASH1 was expressed mostly in the cytoplasm and SASH1 knockdown resulted in an increased cell migration, proliferation and angiogenesis. Transcriptomic and pathway analyses showed that SASH1 silencing results in a decreased CYP1A1 expression possibly through the inhibition of TP53 activity. CONCLUSION We showed that SASH1 expression is increased in atherosclerotic carotids in smokers and its silencing affects endothelial angiogenic functions; therefore we provide a potential link between smoking and atherosclerosis through SASH1 expression.
Collapse
Affiliation(s)
- Henri Weidmann
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013, Paris, France; University Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK e.V.) Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany.
| | - Zahia Touat-Hamici
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Herve Durand
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Christian Mueller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK e.V.) Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Solenne Chardonnet
- Sorbonne Universités, UPMC, UMS_2 Omique, Plateforme P3S, F-75005, Paris, France; INSERM, UMS 29 Omique, Plateforme P3S, F-75005, Paris, France
| | - Cedric Pionneau
- Sorbonne Universités, UPMC, UMS_2 Omique, Plateforme P3S, F-75005, Paris, France; INSERM, UMS 29 Omique, Plateforme P3S, F-75005, Paris, France
| | - Frédéric Charlotte
- Department of Pathology, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, IsmaningerStrasse 22, Munich, Germany
| | - Ricardo Verdugo
- Programa de Genetica Humana ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Francois Cambien
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Stefan Blankenberg
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK e.V.) Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Laurence Tiret
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Tanja Zeller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, Hamburg, Germany; German Center for Cardiovascular Research (DZHK e.V.) Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Ewa Ninio
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, Genomics and Pathophysiology of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| |
Collapse
|
25
|
|
26
|
Doloff JC, Waxman DJ. Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts. BMC Cancer 2015; 15:375. [PMID: 25952672 PMCID: PMC4523019 DOI: 10.1186/s12885-015-1358-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. Methods Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. Results Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. Conclusions Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA-induced, immune-based regression. These factors may include useful biomarkers that facilitate discovery of clinically effective immunogenic metronomic drugs and treatment schedules, and the selection of patients most likely to be responsive to immunogenic drug scheduling. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Doloff
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, USA.
| |
Collapse
|
27
|
Autosomal-recessive SASH1 variants associated with a new genodermatosis with pigmentation defects, palmoplantar keratoderma and skin carcinoma. Eur J Hum Genet 2014; 23:957-62. [PMID: 25315659 DOI: 10.1038/ejhg.2014.213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022] Open
Abstract
SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor gene involved in the tumorigenesis of a spectrum of solid cancers. Heterozygous SASH1 variants are known to cause autosomal-dominant dyschromatosis. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous Moroccan family with two affected siblings presenting an unclassified phenotype associating an abnormal pigmentation pattern (hypo- and hyperpigmented macules of the trunk and face and areas of reticular hypo- and hyperpigmentation of the extremities), alopecia, palmoplantar keratoderma, ungueal dystrophy and recurrent spinocellular carcinoma. We identified a homozygous variant in SASH1 (c.1849G>A; p.Glu617Lys) in both affected individuals. Wound-healing assay showed that the patient's fibroblasts were better able than control fibroblasts to migrate. Following the identification of SASH1 heterozygous variants in dyschromatosis, we used reverse phenotyping to show that autosomal-recessive variants of this gene could be responsible for an overlapping but more complex phenotype that affected skin appendages. SASH1 should be added to the list of genes responsible for autosomal-dominant and -recessive genodermatosis, with no phenotype in heterozygous patients in the recessive form, and to the list of genes responsible for a predisposition to skin cancer.
Collapse
|
28
|
Abstract
Recently, single-minded homolog 2-short form (SIM2-s) was reported to be related to tumor development and progression and to be elevated in many human cancer cells. In this study, we investigated the factors that contribute to the regulation of SIM2-s expression in gliomas. The results showed that SIM2-s was elevated in gliomas. In addition, inhibition of SIM2-s reduced glioma cell growth, migration, and invasion. Next, we demonstrated that SIM2-s is a functional target of miR-200a. Further, miR-200a is downregulated in human glioma and inhibition of miR-200a caused upregulation of SIM2-s in T98G cells and promoted their motility. Finally, blockage of miR-200a expression in a mouse model of human glioma resulted in significant promotion of tumor growth. These findings suggest that miR-200a could serve as a therapeutic tool for glioma.
Collapse
|
29
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
30
|
Liu QJ, He YL, Liu HY, Wei HJ, Xu L, Wang Q. Clinical significance of expression of SASH1 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:2198-2201. [DOI: 10.11569/wcjd.v21.i22.2198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of SAM- and SH3-domain containing 1 (SASH1) in human esophageal squamous cell carcinoma (ESCC), and to analyze the relationship between SASH1 expression and clinical and pathological parameters of ESCC.
METHODS: The expression of SASH1 was detected by immunohistochemistry in 72 ESCC specimens and 40 tumor-adjacent specimens.
RESULTS: The positive rate of SASH1 protein expression in ESCC was significantly lower than that in tumor-adjacent non-carcinoma tissue (41.67% vs 80.00%, P < 0.001). The positive rate of SASH1 protein expression was significantly higher in patients without lymph node metastasis than in those with lymph node metastasis (χ2 = 6.583, P < 0.05). Expression of SASH1 was associated with tumor differentiation and TNM stage in ESCC (both P < 0.05).
CONCLUSION: Down-regulation of SASH1 expression occurs in ESCC. SASH1 may be a novel tumor suppressor in ESCC and can be used as a molecular maker for the diagnosis and treatment of ESCC.
Collapse
|
31
|
Feng X, Miao G, Han Y, Xu Y. CARMA3 is overexpressed in human glioma and promotes cell invasion through MMP9 regulation in A172 cell line. Tumour Biol 2013; 35:149-54. [PMID: 23893382 DOI: 10.1007/s13277-013-1018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022] Open
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein 10 or CARMA3 (CARD10) is a recently characterized oncoprotein involved in the progression of several human malignancies. The present study aims to investigate the expression pattern and biological roles of CARMA3 protein in human glioma. CARMA3 expression was analyzed in 97 glioma specimens using immunohistochemistry. We observed negative staining in normal astrocytes and positive staining of CARMA3 in 25 out of 97 (25.8%) glioma samples. Overexpression of CARMA3 correlated with tumor grade (p < 0.001). Small interfering RNA knockdown was performed in A172 cell line with relatively high CARMA3 expression. Using colony formation assay and Matrigel invasion assay, we showed that CARMA3 depletion in A172 cell line inhibited cell proliferation and cell invasion. In addition, mRNA and protein levels of matrix metallopeptidase 9 (MMP9) were downregulated, indicating CARMA3 might regulate invasion through MMP9. In conclusion, CARMA3 serves as an oncoprotein in human glioma by regulating cell invasion, possibly through MMP9 regulation.
Collapse
Affiliation(s)
- Xingjun Feng
- Department of Neurosurgery, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China,
| | | | | | | |
Collapse
|