1
|
Wang L, Chen G, Zhou C, Wu C, Jiang J. Expression and Significance of MTA2 and CPNE1 in Cervical Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:569-573. [PMID: 37399268 DOI: 10.1097/pai.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
The aim of this study was to investigate the expression and clinical significance of MTA2 and CPNE1 proteins in cervical squamous cell carcinoma. In this study, high-risk human papillomavirus (HPV) typing was performed on cervical cancer tissues. Reverse transcription polymerase chain reaction and immunochemical EliVision method were used to examine the expressions of MTA2 and CPNE1 in the cervix, and their relationship with clinicopathologic features. We found that it is mainly distributed in these types, namely HPV-16 (23.8%), HPV-18 (20.9%), HPV-53 (17.1%), HPV-52 (15.5%), HPV-82 (11.7%), HPV-56 (10.8%). The expressions of MTA2 and CPNE1 in cervical squamous cell carcinoma tissues were significantly higher than those in normal tissues ( P <0.01). The expressions of MTA2 and CPNE1 were correlated with FIGO stage, degree of differentiation, and lymph node metastasis of cervical cancer ( P <0.05), but not with the patient's age ( P >0.05). The rank correlation coefficient of MTA2 and CPNE1 protein expression in cervical squamous cell carcinoma was 0.668 ( P <0.01), and the 2 expressions were positively correlated. MTA2 and CPNE1 are closely related to the occurrence and development of cervical squamous cell carcinoma and may play a synergistic role in the evolution of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Pathology, Jinhu County People's Hospital, Huaian, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
2
|
Dai SL, Wei SS, Zhang C, Li XY, Liu YP, Ma M, Lv HL, Zhang Z, Zhao LM, Shan BE. MTA2 promotes the metastasis of esophageal squamous cell carcinoma via EIF4E-Twist feedback loop. Cancer Sci 2021; 112:1060-1074. [PMID: 33340431 PMCID: PMC7935808 DOI: 10.1111/cas.14778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis‐associated protein 2 (MTA2) is frequently amplified in many types of cancers; however, the role and underlying molecular mechanism of MTA2 in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we reported that MTA2 is highly expressed in ESCC tissue and cells, and is closely related to the malignant characteristics and poor prognosis of patients with ESCC. Through in vitro and in vivo experiments, we demonstrated that MTA2 significantly promoted ESCC growth, metastasis, and epithelial‐mesenchymal transition (EMT) progression. This integrative analysis combined with expression microarray showed that MTA2 could interact with eukaryotic initiation factor 4E (EIF4E), which positively regulates the expression of Twist, known as a master regulator of EMT. Moreover, the results of chromatin immunoprecipitation revealed that MTA2 was recruited to the E‐cadherin promoter by Twist, which reduced the acetylation level of the promoter region and thus inhibited expression of E‐cadherin, and subsequently promoted the aggressive progression of ESCC. Collectively, our study provided novel evidence that MTA2 plays an aggressive role in ESCC metastasis by a novel EIF4E‐Twist positive feedback loop, which may provide a potential therapeutic target for the management of ESCC.
Collapse
Affiliation(s)
- Su-Li Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Si-Si Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Ya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Ping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Ma
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui-Lai Lv
- Department of Fifth Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lian-Mei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-En Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Hsu WH, Chiou HL, Lin CL, Kao SH, Lee HL, Liu CJ, Hsieh YH. Metastasis-associated protein 2 regulates human hepatocellular carcinoma metastasis progression through modulating p38MAPK/MMP2 pathways. J Cancer 2019; 10:6716-6725. [PMID: 31777601 PMCID: PMC6856896 DOI: 10.7150/jca.35626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Studies have shown the overexpression of metastasis-associated protein 2 (MTA2) to be associated with hepatocellular carcinoma (HCC) progression. However, the molecular mechanism of MTA2 expression in HCC is unclear. In our study, we found a higher level of MTA2 in HCC tissues than in normal tissues and a significant correlation between tumor grade and overall survival of HCC patients. We also found that MTA2 inhibition reduced the migration and invasion capabilities of HCC cells, independent of cell proliferation. Mechanistic studies have suggested that MTA2 protein and mRNA are more highly expressed in SK-Hep-1 and Huh-7 cells compared with other HCC cells. MTA2 silencing drastically reduced migration and invasion capability and also inhibited matrix metalloproteinase 2 (MMP2) at the transcriptional and translation levels in both cells. In addition, treatment with the MMP2 antibody markedly impaired MTA2-knockdown-mediated inhibition of migration and invasion in SK-Hep-1 cells. Furthermore, MTA2 knockdown reduced the phosphorylation of the p38MAPK protein, whereas the inhibition of p38MAPK (SB203580 or si-p38) confirmed that blocking the p38MAPK pathway mediated MTA2-knockdown-inhibited migration and invasion in SK-Hep-1 cells. We demonstrated the molecular mechanism by which MTA2 inhibits human HCC cell metastasis through the p38MAPK/MMP2 pathways, which might be helpful in determining the diagnostic value of this protein in patients with HCC
Collapse
Affiliation(s)
- Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Zeng Z, Xu FY, Zheng H, Cheng P, Chen QY, Ye Z, Zhong JX, Deng SJ, Liu ML, Huang K, Li Q, Li W, Hu YH, Wang F, Wang CY, Zhao G. LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics 2019; 9:5298-5314. [PMID: 31410216 PMCID: PMC6691583 DOI: 10.7150/thno.34559] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Rationale: Hypoxia has been proved to contribute to aggressive phenotype of cancers, while functional and regulatory mechanism of long noncoding RNA (lncRNA) in the contribution of hypoxia on pancreatic cancer (PC) tumorigenesis is incompletely understood. The aim of this study was to uncover the regulatory and functional roles for hypoxia-induced lncRNA-MTA2TR (MTA2 transcriptional regulator RNA, AF083120.1) in the regulation of PC tumorigenesis. Methods: A lncRNA microarray confirmed MTA2TR expression in tissues of PC patients. The effects of MTA2TR on proliferation and metastasis of PC cells and xenograft models were determined, and the key mechanisms by which MTA2TR promotes PC were further dissected. Furthermore, the expression and regulation of MTA2TR under hypoxic conditions in PC cells were assessed. We also assessed the correlation between MTA2TR expression and PC patient clinical outcomes. Results: We found that metastasis associated protein 2 (MTA2) transcriptional regulator lncRNA (MTA2TR) was overexpressed in PC patient tissues relative to paired noncancerous tissues. Furthermore, we found that depletion of MTA2TR significantly inhibited PC cell proliferation and invasion both in vitro and in vivo. We further demonstrated that MTA2TR transcriptionally upregulates MTA2 expression by recruiting activating transcription factor 3 (ATF3) to the promoter area of MTA2. Consequentially, MTA2 can stabilize the HIF-1α protein via deacetylation, which further activates HIF-1α transcriptional activity. Interestingly, our results revealed that MTA2TR is transcriptionally regulated by HIF-1α under hypoxic conditions. Our clinical samples further indicated that the overexpression of MTA2TR was correlated with MTA2 upregulation, as well as with reduced overall survival (OS) in PC patients. Conclusions: These results suggest that feedback between MTA2TR and HIF-1α may play a key role in regulating PC tumorigenesis, thus potentially highlighting novel avenues PC treatment.
Collapse
|
5
|
Si W, Liu X, Wei R, Zhang Y, Zhao Y, Cui L, Hong T. MTA2-mediated inhibition of PTEN leads to pancreatic ductal adenocarcinoma carcinogenicity. Cell Death Dis 2019; 10:206. [PMID: 30814496 PMCID: PMC6393561 DOI: 10.1038/s41419-019-1424-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Metastasis-associated protein 2 (MTA2) is a core subunit of the nucleosome remodeling and deacetylating (NuRD) complex and functions by mediating chromatin remodeling and gene silencing. However, its biological actions and clinical significance in pancreatic ductal adenocarcinoma (PDAC) remain elusive. The aim of this study was to explore the function and regulation mechanism of MTA2 in PDAC. As shown in GEO, ICGC, and TCGA databases, a higher expression of MTA2 was noticed in the PDAC tissues than in the normal pancreatic tissues. Moreover, a higher expression level of MTA2 was associated with a shorter overall survival time in these public PDAC databases. We further investigated the underlying mechanisms of these observations by using a chromatin immunoprecipitation (ChIP)-based deep sequencing, luciferase reporter, and quantitative ChIP assays. We identified the repressive binding of MTA2 to the promoter of phosphatase and tensin homolog (PTEN). We also found that Snail recruited MTA2 and HDAC1 to suppress PTEN expression. Ectopic expression and knockdown of MTA2 were performed to evaluate the effects of this gene on PDAC cell proliferation, migration, and invasion. Using CCK-8, colony formation and transwell assays, and a xenograft tumor model, we revealed that MTA2 promoted PDAC cell proliferation, migration, and invasion in vitro and PDAC tumor growth in vivo by downregulation of PTEN. In benzyl isothiocyanate (BITC)-treated MIA Paca-2 cells and PANC-1 cells, MTA2 level decreased in a dose- and time-dependent manner with concomitant upregulation of PTEN level and downregulation of phosphorylated PI3K and AKT levels, providing evidence of the involvement of MTA2 and PTEN in the regulation of the PI3K/AKT pathway in BITC-mediated PDAC suppression. Collectively, these findings uncover a novel role for MTA2 in the regulation of PDAC progression and help to elucidate the mechanisms involved in this process.
Collapse
Affiliation(s)
- Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, 100191, Beijing, China
| | - Xujun Liu
- Department of Laboratory Medicine, Peking University Third Hospital, 100191, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 100191, Beijing, China
| | - Yuan Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, 100191, Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, 100191, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, 100191, Beijing, China.
| | - Tianpei Hong
- Department of Laboratory Medicine, Peking University Third Hospital, 100191, Beijing, China. .,Department of Endocrinology and Metabolism, Peking University Third Hospital, 100191, Beijing, China.
| |
Collapse
|
6
|
Zhu S, Deng S, He C, Liu M, Chen H, Zeng Z, Zhong J, Ye Z, Deng S, Wu H, Wang C, Zhao G. Reciprocal loop of hypoxia-inducible factor-1α (HIF-1α) and metastasis-associated protein 2 (MTA2) contributes to the progression of pancreatic carcinoma by suppressing E-cadherin transcription. J Pathol 2018; 245:349-360. [PMID: 29708271 DOI: 10.1002/path.5089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 03/17/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Metastasis-associated protein 2 (MTA2) is overexpressed in certain malignancies, and plays important roles in tumour metastasis and progression. The present study highlights the function of MTA2 in pancreatic carcinoma through its role as a deacetylator of hypoxia-inducible factor-1α (HIF-1α) and a cotranscriptional factor for E-cadherin expression. We found that overexpression of MTA2 promoted, and knockdown of MTA2 inhibited, the invasion and proliferation of pancreatic carcinoma cells both in vitro and in xenograft models in vivo. We also found that MTA2 is transcriptionally upregulated by HIF-1α through a hypoxia response element (HRE) of the MTA2 promoter in response to hypoxia. Reciprocally, MTA2 deacetylates HIF-1α and enhances its stability through interacting with histone deacetylase 1 (HDAC1). Consequently, HIF-1α recruits MTA2 and HDAC1 to the HRE of the E-cadherin promoter, by which E-cadherin transcription is repressed. In agreement with these experimental results, MTA2 is positively associated with HIF-1α, but inversely correlated with E-cadherin, in pancreatic carcinoma samples. Moreover, data from The Cancer Genome Atlas on 172 pancreatic carcinomas indicate an association between high expression of MTA2 and short overall survival. Taken together, our study identifies MTA2 as a critical hub and potential therapeutic target to inhibit the progression and metastasis of pancreatic carcinoma. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shijiang Deng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chi He
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Mingliang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zhu Zeng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Jianxin Zhong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Zeng Ye
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shichang Deng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Gang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| |
Collapse
|
7
|
An JX, Ma MH, Zhang CD, Shao S, Zhou NM, Dai DQ. miR-1236-3p inhibits invasion and metastasis in gastric cancer by targeting MTA2. Cancer Cell Int 2018; 18:66. [PMID: 29743816 PMCID: PMC5930941 DOI: 10.1186/s12935-018-0560-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background MicroRNAs deregulation are common in human tumor progression. miR-1236-3p has been reported to function as tumor suppressor microRNA in various malignancies. The aim of this study was to demonstrate the downregulated expression of miR-1236-3p in gastric cancer (GC) tissues and cell lines, and clarify its biological function in GC. Methods Real-time polymerase chain reaction was used to measure the mRNA level of miR-1236-3p in GC. Dual luciferase assay was used to demonstrate that MTA2 was one of the candidate target genes of miR-1236-3p. Western blots were utilized to detect the protein levels. Cell function assays were also performed to determine the function of miR-1236-3p in GC. Results miR-1236-3p expression, which was associated with lymph node metastasis, differentiation and clinical stage, was significantly reduced in GC tissues and cell lines. miR-1236-3p over-expression could inhibit GC cell proliferation, migration and invasion, and inhibition of miR-1236-3p expression had opposite effects. Furthermore, we demonstrated that MTA2 was a candidate target of miR-1236-3p, and miR-1236-3p over-expression significantly inhibited the process of epithelial-mesenchymal transition. We also found that miR-1236-3p could suppress the PI3K/Akt signaling pathway in GC cells. Conclusions Our results suggest that miR-1236-3p functions as a tumor suppressor in GC and could be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Jia-Xiang An
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Ming-Hui Ma
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Chun-Dong Zhang
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Shuai Shao
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Nuo-Ming Zhou
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 China
| |
Collapse
|
8
|
Jiang Z, Sun X, Zhang Q, Ji X, Yu Q, Huang T, Chen D, Chen H, Mei X, Wang L, He L, Fang J, Hou L, Wang L. Identification of candidate biomarkers that involved in the epigenetic transcriptional regulation for detection gastric cancer by iTRAQ based quantitative proteomic analysis. Clin Chim Acta 2017; 471:29-37. [PMID: 28502558 DOI: 10.1016/j.cca.2017.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND The sensitivities and specificities of biomarkers for gastric cancer are insufficient for clinical detection, and new diagnostics are therefore urgently required. METHODS A discovery set of gastric cancer tissues was labeled with iTRAQ reagents, separated using SCX chromatography, and identified using LC-ESI-MS/MS. A validation set of gastric cancer tissues was used to confirm the expression levels of potential markers. RESULTS The present study detected metastasis-associated protein 2 (MTA2) and Histone deacetylases 1 (HDAC1) proteins that were overexpressed in gastric cancer tissues compared with that in adjacent gastric tissue. The sensitivity and specificity of MTA2 in detecting 76 cases gastric cancers were 57.9% (95% CI: 46.5%-69.3%) and 55.3% (95% CI: 43.8%-66.7%), respectively. The sensitivity and specificity of HDAC1 were 61.8% (95% CI: 50.7%-73%) and 63.2% (95% CI: 52.1%-74.3%), respectively. The co-expression of MTA2 and HDAC1 in gastric cancer achieved 65.3% sensitivity (95% CI: 51.5%-79.1%) and 65.2% specificity (95% CI: 50.9%-79.5%), which was strongly associated with lymph node metastasis and TNM staging. CONCLUSION The present findings indicated a tight correlation between the MTA2 and HDAC1 expression level and lymph node metastasis and TNM staging in gastric cancers. Therefore, MTA2 and HDAC1 might be predictors of lymph node metastasis phenotype and possible target molecule for anticancer drug design in human gastric cancer.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Xingwang Sun
- Department of Pathology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Qiong Zhang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Xingli Ji
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Qin Yu
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Ting Huang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Daogang Chen
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Hui Chen
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Xiaohan Mei
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Linyu Wang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Linyan He
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Junhua Fang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Li Hou
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province 637100, PR China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| |
Collapse
|
9
|
Okugawa Y, Mohri Y, Tanaka K, Kawamura M, Saigusa S, Toiyama Y, Ohi M, Inoue Y, Miki C, Kusunoki M. Metastasis-associated protein is a predictive biomarker for metastasis and recurrence in gastric cancer. Oncol Rep 2016; 36:1893-900. [PMID: 27574100 DOI: 10.3892/or.2016.5054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022] Open
Abstract
The metastasis-associated (MTA) gene family is a critical component of the nucleosome remodeling and histone deacetylase complex, and plays an important role in metastatic processes. We systematically evaluated dysregulation of the MTA family to clarify their clinical significance in gastric cancer (GC). One hundred and forty-five patients who underwent surgery for GC were evaluated. We analyzed the expression levels of the MTA family (MTA1, 2 and 3) by qPCR in GC tissue, and the MTA1 protein expression in primary cancer and matched normal mucosa (NM) was measured using immunohistochemical analysis. The expression of all the MTA family members was significantly increased in a stage-dependent manner, and elevated expression of all of the MTA family members was correlated with metastatic factors and prognosis in GC patients. Multivariate analysis revealed that MTA1 overexpression was an independent risk factor for survival. Especially, elevated expression of MTA1 was significantly correlated with recurrence, and was an independent risk factor for lymph node metastasis. Immunohistochemical analysis demonstrated that MTA1 was predominantly expressed in the nuclei of primary GC cells but was not expressed in NM and in the cancer stroma. In conclusion, quantification of MTA expression may support the accurate diagnosis of disease staging and may help predict clinical outcomes.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Innovative Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Chikao Miki
- Department of surgery and medical oncology, Iga Municipal Ueno General Citizen's Hospital, Mie 518-0823, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
10
|
Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 2016; 18:652-63. [PMID: 27485059 PMCID: PMC4972371 DOI: 10.1016/j.hpb.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS A systematic review was performed (2004-2014) according to PRISMA guidelines. Studies were ranked using REMARK criteria and the following outcomes were examined: overall/disease free survival, nodal involvement, tumour characteristics, metastasis, recurrence and resectability. RESULTS 256 biomarkers were identified in 158 studies. 171 biomarkers were assessed with respect to overall survival: urokinase-type plasminogen activator receptor, atypical protein kinase C and HSP27 ranked the highest. 33 biomarkers were assessed for disease free survival: CD24 and S100A4 were the highest ranking. 17 biomarkers were identified for lymph node involvement: Smad4/Dpc4 and FOXC1 ranked highest. 13 biomarkers were examined for tumour grade: mesothelin and EGFR were the highest ranking biomarkers. 10 biomarkers were identified for metastasis: p16 and sCD40L were the highest ranking. 4 biomarkers were assessed resectability: sCD40L, s100a2, Ca 19-9, CEA. CONCLUSION This review has identified and ranked specific biomarkers that should be a primary focus of ongoing validation and clinical translational work in PDAC.
Collapse
|
11
|
Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma. Gene 2016; 580:134-143. [DOI: 10.1016/j.gene.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
|
12
|
Wu M, Ye X, Deng X, Wu Y, Li X, Zhang L. Upregulation of metastasis-associated gene 2 promotes cell proliferation and invasion in nasopharyngeal carcinoma. Onco Targets Ther 2016; 9:1647-56. [PMID: 27051300 PMCID: PMC4807934 DOI: 10.2147/ott.s96518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aims Metastasis-associated gene 2 (MTA2) is reported to play an important role in tumor progression, but little is known about the role of MTA2 in nasopharyngeal carcinoma (NPC). The aim of the study was to explore the expression and function of MTA2 in NPC. Methods Expression of MTA2 in NPC tissues and cell lines was detected by immunohistochemistry and Western blotting. Relationship between MTA2 expression and clinicopathological features was analyzed. Stable MTA2-overexpressing and MTA2-siliencing NPC cells were established by transfection with plasmids encoding MTA2 cDNA and lentivirus-mediated short hairpin RNA, respectively. Cell viability was determined by Cell Counting Kit-8 and colony formation assay. Cell migration ability was evaluated by wound healing and transwell invasion assay. The impact of MTA2 knockdown on growth and metastasis of CNE2 cells in vivo was determined by nude mouse xenograft models. Expression of several Akt pathway proteins was detected by Western blotting. Results MTA2 was upregulated in NPC tissues and three NPC cell lines detected (CNE1, CNE2, and HNE1). MTA2 expression was related to clinical stage and lymph node metastasis of patients with NPC. MTA2 upregulation promoted proliferation and invasion of CNE1 cells, while MTA2 depletion had opposite effects on CNE2 cells. Moreover, MTA2 depletion suppressed growth and metastasis of CNE2 cells in vivo. MTA2 overexpression activated Akt and upregulated the expression of matrix metalloproteinase 7 and cyclin D1. Conclusion We conclude that MTA2 acts as an oncogene in tumorigenesis of NPC. MTA2 may be a potential target for gene therapy in NPC.
Collapse
Affiliation(s)
- Minhua Wu
- Department of Histology and Embryology, Southern Medical University, Guangzhou, People's Republic of China; Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xiaoxia Ye
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xubin Deng
- Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanxia Wu
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xiaofang Li
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Lin Zhang
- Department of Histology and Embryology, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Abstract
Since the initial recognition of the metastasis-associated protein 1 (MTA1) as a metastasis-relevant gene approximately 20 years ago, our appreciation for the complex role of the MTA family of coregulatory proteins in human cancer has profoundly grown. MTA proteins consist of six family members with similar structural units and act as central signaling nodes for integrating upstream signals into regulatory chromatin-remodeling networks, leading to regulation of gene expression in cancer cells. Substantial experimental and clinical evidence demonstrates that MTA proteins, particularly MTA1, are frequently deregulated in a wide range of human cancers. The MTA family governs cell survival, the invasive and metastatic phenotypes of cancer cells, and the aggressiveness of cancer and the prognosis of patients with MTA1 overexpressing cancers. Our discussion here highlights our current understanding of the regulatory mechanisms and functional roles of MTA proteins in cancer progression and expands upon the potential implications of MTA proteins in cancer biology and cancer therapeutics.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
14
|
Zhou C, Ji J, Cai Q, Shi M, Chen X, Yu Y, Zhu Z, Zhang J. MTA2 enhances colony formation and tumor growth of gastric cancer cells through IL-11. BMC Cancer 2015; 15:343. [PMID: 25929737 PMCID: PMC4419442 DOI: 10.1186/s12885-015-1366-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/24/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We have preliminarily reported MTA2 expression in gastric cancer and its biological functions by using knockdown cell models, while the molecular mechanisms of MTA2 in regulating malignant behaviors are still unclear. METHODS MTA2 overexpression models were established by transfection assay in gastric cancer cells BGC-823 and MKN28. Cell proliferation assay, colony formation in soft agar, wound-healing assay and transwell migration assay were performed with MTA2 overexpression and negative control (NC) cells. Subcutaneous xenografts and pulmonary metastasis models by BGC-823/MTA2 and BGC-823/NC cells were used to observe the capacity of growth and metastasis in vivo. Differential gene expression in MTA2 knockdown and overexpression cells was analyzed by microarrays. IL-11, which demonstrated as differential expression in microarray, was detected by real-time PCR, western blot, ELISA and immunohistochemistry staining. Recombinant human IL-11 (rhIL-11) was administrated in cell proliferation and colony formation as rescue assay. RESULTS The numbers of colonies in soft agar were significantly more in BGC-823/MTA2 and MKN28/MTA2 cells, comparing with those in their NC cells. Capabilities of cell proliferation, wound-healing and cell migration were not significantly changed in MTA2 overexpression cells. The sizes of subcutaneous xenografts and pulmonary metastases of BGC-832/MTA2 cells were significantly larger than those in BGC-823/NC group. Differential expression of IL-11 was identified by genome expression microarray both in MTA2 knockdown and overexpression cells. IL-11 expression was elevated in BGC-823/MTA2 cells, whereas reduced in SGC-7901/shMTA2 cells. Administration of rhIL-11 recovered colony formation capacity of SGC-7901/shMTA2 cells. CONCLUSIONS MTA2 overexpression enhances colony formation and tumor growth of gastric cancer cells, but not plays important role in cancer cell migration and metastasis. IL-11 is one of the downstream effectors of MTA2 in regulating gastric cancer cells growth.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Jun Ji
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Qu Cai
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Min Shi
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Xuehua Chen
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Yingyan Yu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.
| |
Collapse
|
15
|
Ning Z, Gan J, Chen C, Zhang D, Zhang H. Molecular functions and significance of the MTA family in hormone-independent cancer. Cancer Metastasis Rev 2014; 33:901-19. [PMID: 25341508 DOI: 10.1007/s10555-014-9517-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The members of the metastasis-associated protein (MTA) family play pivotal roles in both physiological and pathophysiological processes, especially in cancer development and metastasis, and their role as master regulators has come to light. Due to the fact that they were first identified as crucial factors in estrogen receptor-mediated breast cancer metastasis, most of the early studies focused on their hormone-dependent functions. However, the accumulating evidence shows that the members of MTA family are deregulated in most, if not all, the cancers studied so far. Therefore, the levels as well as the activities of the MTA family members are widely accepted as potential biomarkers for diagnosis, prognosis, and predictors of overall survival. They function differently in different cancers with specific mechanisms. p53 and HIF-1α appear to be the respectively common upstream and downstream regulator of the MTA family in both development and metastasis of a wide spectrum of cancers. Here, we review the expression and clinical significance of the MTA family, focusing on hormone-independent cancers. To illustrate the molecular mechanisms, we analyze the MTA family-related signaling pathways in different cancers. Finally, targeting the MTA family directly or the pathways involved in the MTA family indirectly could be invaluable strategies in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Zhifeng Ning
- Laboratory for Translational Oncology, Basic Medicine College, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| | | | | | | | | |
Collapse
|
16
|
Abstract
The subcellular localization of a protein is closely linked to and indicates its function. The metastatic tumor antigen (MTA) family has been under continuous investigation since its identification two decades ago. MTA1, MTA2, and MTA3 are the main members of the MTA family. MTA1, as the representative member of this family, has been shown to be widely expressed in both embryonic and adult tissues, as well as in normal and cancerous conditions, indicating that MTA1 has functions both in physiological and pathological contexts. MTA1 is expressed at a higher level in most cancers than in their normal tissue counterparts. Even in normal cells, MTA1 levels vary a great deal from tissue to tissue. Importantly, MTA1 shows a multiple localization pattern in the cell, as do MTA2 and MTA3. Different MTA components in different subcellular compartments may exert different molecular functions in the cell. Previous studies revealed that MTA1 and MTA2 are predominately localized to the nucleus, while MTA3 is observed in both the nucleus and cytoplasm. Recent studies have reported that MTA1 is located in the nucleus, cytoplasm, and the nuclear envelope. In the nucleus, MTA1 dynamically interacts with chromatin in a MTA1-K532 methylation-dependent manner, whereas cytoplasmic MTA1 binds to the microtubule skeleton. MTA1 also shows a dynamic distribution during the cell cycle. Further investigations are needed to identify the exact subcellular localizations of MTA proteins. We review the sub-cellular localization patterns of the MTA family members and give a comprehensive overview of their respective molecular activities in multiple contexts.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | | | | | | |
Collapse
|
17
|
Marengo E, Robotti E. Biomarkers for pancreatic cancer: Recent achievements in proteomics and genomics through classical and multivariate statistical methods. World J Gastroenterol 2014; 20:13325-13342. [PMID: 25309068 PMCID: PMC4188889 DOI: 10.3748/wjg.v20.i37.13325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 06/04/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive and lethal neoplastic diseases. A valid alternative to the usual invasive diagnostic tools would certainly be the determination of biomarkers in peripheral fluids to provide less invasive tools for early diagnosis. Nowadays, biomarkers are generally investigated mainly in peripheral blood and tissues through high-throughput omics techniques comparing control vs pathological samples. The results can be evaluated by two main strategies: (1) classical methods in which the identification of significant biomarkers is accomplished by monovariate statistical tests where each biomarker is considered as independent from the others; and (2) multivariate methods, taking into consideration the correlations existing among the biomarkers themselves. This last approach is very powerful since it allows the identification of pools of biomarkers with diagnostic and prognostic performances which are superior to single markers in terms of sensitivity, specificity and robustness. Multivariate techniques are usually applied with variable selection procedures to provide a restricted set of biomarkers with the best predictive ability; however, standard selection methods are usually aimed at the identification of the smallest set of variables with the best predictive ability and exhaustivity is usually neglected. The exhaustive search for biomarkers is instead an important alternative to standard variable selection since it can provide information about the etiology of the pathology by producing a comprehensive set of markers. In this review, the most recent applications of the omics techniques (proteomics, genomics and metabolomics) to the identification of exploratory biomarkers for PC will be presented with particular regard to the statistical methods adopted for their identification. The basic theory related to classical and multivariate methods for identification of biomarkers is presented and then, the most recent applications in this field are discussed.
Collapse
|
18
|
Metastasis tumor-associated protein-2 knockdown suppresses the proliferation and invasion of human glioma cells in vitro and in vivo. J Neurooncol 2014; 120:273-81. [PMID: 25048531 DOI: 10.1007/s11060-014-1558-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Metastasis tumor-associated protein 2 (MTA2) is a member of the MTA family that is closely associated with tumor progression and metastasis. However, the role of MTA2 in glioma cells remains unclear. The expression of MTA2 was measured using immunohistochemistry and western blotting in the human brain tumor tissue array and human glioma cell lines. The impact of MTA2 knockdown on GBM8401 and Hs683 cell growth was evaluated by MTT assay and flow cytometry. Cell migration and invasion were analyzed by cell-migration assay and Matrigel invasion assay. In addition, we used subcutaneous tumor models to study the effect of MTA2 on the growth of glioma cells in vivo. We found that MTA2 protein and mRNA expression are higher in GBM8401 and Hs683 cells than in other glioma cells (M059 J, M059 K and U-87 MG), and glioma tumor tissue correlated significantly with tumor grade (P < 0.001). Knockdown of MTA2 expression significantly inhibited cell growth, cell migration and invasion, and induced G0/G1 phase arrest in human GBM8401 and Hs683 cells in vitro. Moreover, in vivo studies using subcutaneous xenografts in mice models indicate that MTA2 knockdown significantly inhibited tumorigenicity. These results indicate that MTA2 plays an important oncogenic role in the development and progression of gliomas.
Collapse
|
19
|
Xu C, Wallace MB, Yang J, Jiang L, Zhai Q, Zhang Y, Hong C, Chen Y, Frank TS, Stauffer JA, Asbun HJ, Raimondo M, Woodward TA, Li Z, Guha S, Zheng L, Li M. ZIP4 is a novel diagnostic and prognostic marker in human pancreatic cancer: a systemic comparison between EUS-FNA and surgical specimens. Curr Mol Med 2014; 14:309-315. [PMID: 24345208 PMCID: PMC6870177 DOI: 10.2174/1566524013666131217112921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
Aberrant expression of a zinc transporter ZIP4 in pancreatic ductal adenocarcinoma (PDAC) has been shown to contribute to tumor progression and is a potential target for individualized therapy. The overall objective of this study was to determine whether ZIP4 could serve as a novel diagnostic and prognostic marker in human PDAC, and if it can be assessed by minimally invasive sampling using endoscopic ultrasound guided fine needle aspiration (EUS-FNA). Immunohistochemistry was performed to compare ZIP4 expression in the PDAC samples obtained from EUS-FNA and matched surgical tumors (parallel control). Samples were reported by sensitivity, specificity, and predictive values, all with 95% confidence intervals (CI). A total of 23 cases with both FNA and surgical specimens were evaluated. We found that ZIP4 was significantly overexpressed in tumor cells from both sets of samples. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of ZIP4 for the diagnosis of PDAC were 72.9%, 72.5%, 76.1%, and 69.0% in EUS-FNA samples, and were 97.9%, 65.4%, 83.9%, and 94.4% in surgical specimens, respectively. The association between the positive rate of ZIP4 expression in FNA and surgical samples is statistically significant (P=0.0216). Both the intensity and percentage of ZIP4 positive cells from the surgical samples correlated significantly with tumor stage (P=0.0025 and P=0.0002). ZIP4 intensity level in FNA samples was significantly associated with tumor differentiation and patient survival. These results indicate that EUS-FNA is capable of non-operative detection of ZIP4, thus offering the potential to direct pre-operative detection and targeted therapy of PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - M Li
- Vivian L. Smith Department of Neurosurgery, the University of Texas Medical School at Houston, 6431 Fannin Street, MSE R131, Houston, TX 77030, USA.
| |
Collapse
|