1
|
Li Y, Zhang C, Feng L, Shen Q, Liu F, Jiang X, Pang B. Application of natural polysaccharides and their novel dosage forms in gynecological cancers: therapeutic implications from the diversity potential of natural compounds. Front Pharmacol 2023; 14:1195104. [PMID: 37383719 PMCID: PMC10293794 DOI: 10.3389/fphar.2023.1195104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is one of the most lethal diseases. Globally, the number of cancers is nearly 10 million per year. Gynecological cancers (for instance, ovarian, cervical, and endometrial), relying on hidden diseases, misdiagnoses, and high recurrence rates, have seriously affected women's health. Traditional chemotherapy, hormone therapy, targeted therapy, and immunotherapy effectively improve the prognosis of gynecological cancer patients. However, with the emergence of adverse reactions and drug resistance, leading to the occurrence of complications and poor compliance of patients, we have to focus on the new treatment direction of gynecological cancers. Because of the potential effects of natural drugs in regulating immune function, protecting against oxidative damage, and improving the energy metabolism of the body, natural compounds represented by polysaccharides have also attracted extensive attention in recent years. More and more studies have shown that polysaccharides are effective in the treatment of various tumors and in reducing the burden of metastasis. In this review, we focus on the positive role of natural polysaccharides in the treatment of gynecologic cancer, the molecular mechanisms, and the available evidence, and discuss the potential use of new dosage forms derived from polysaccharides in gynecologic cancer. This study covers the most comprehensive discussion on applying natural polysaccharides and their novel preparations in gynecological cancers. By providing complete and valuable sources of information, we hope to promote more effective treatment solutions for clinical diagnosis and treatment of gynecological cancers.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- International Medical Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Li HY, Yi YL, Guo S, Zhang F, Yan H, Zhan ZL, Zhu Y, Duan JA. Isolation, structural characterization and bioactivities of polysaccharides from Laminaria japonica: A review. Food Chem 2022; 370:131010. [PMID: 34530347 DOI: 10.1016/j.foodchem.2021.131010] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/12/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
Laminaria japonica is a familiar marine plant and is often used as food due to its abundant carbohydrates, vitamins and minerals. As one of the main types of active substances in L. japonica, polysaccharides are widely used in the food and chemical industries and in medicine and healthcare due to their health benefits, such as immunoregulatory, antioxidant, and antidiabetic effects. However, there has been no systematic summary of the isolation, structural characterization and bioactivities of L. japonica polysaccharides (LJPs). Therefore, the present review includes a survey of extraction and purification methods for these bioactive molecules, along with a dissertation on the structural characterization of the carbohydrate components. Moreover, an overview of the most recent results related to LJP biological activities is provided. This review provides a useful reference for further research, production, and application of LJPs in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Hai-Yang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan-Ling Yi
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Lai Zhan
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Zhu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Zheng J, Zhang T, Fan J, Zhuang Y, Sun L. Protective effects of a polysaccharide from Boletus aereus on S180 tumor-bearing mice and its structural characteristics. Int J Biol Macromol 2021; 188:1-10. [PMID: 34358595 DOI: 10.1016/j.ijbiomac.2021.07.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
A polysaccharide from the aqueous extract of Boletus aereus fruit (BAP) was isolated. The antitumor activities of BAP and/or cyclophosphamide (CTX) were investigated using the model of S180 tumor-bearing mice. Results indicated that BAP could effectively inhibit the growth of S180 solid tumors and protect the immune organs. Hematoxylin and eosin staining, Annexin V-FITC/PI staining, and mitochondrial membrane potential analysis demonstrated that BAP could induce the apoptosis of S180 tumor cells. In combination with CTX, BAP exhibited a significant synergistic antitumor effect on S180 cells. Furthermore, a novel polysaccharide, namely, BAPF, was purified from BAP by using DEAE Cellulose-52 column and Sephadex G-100 gel column. Structural characterization revealed that BAPF was primarily composed of mannose, glucuronic acid, glucose, galactose, arabinose, and fucose at a proportion of 12.98:1:16.8:16.48:1.08:9.1. Its average molecular weight was 1.79 × 106 Da. FTIR and NMR analyses demonstrated that BAPF was a pyranose with α-type and β-type glycosidic residues.
Collapse
Affiliation(s)
- Jinling Zheng
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Tingting Zhang
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Jian Fan
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yongliang Zhuang
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Liping Sun
- Institute of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Luan F, Zou J, Rao Z, Ji Y, Lei Z, Peng L, Yang Y, He X, Zeng N. Polysaccharides from Laminaria japonica: an insight into the current research on structural features and biological properties. Food Funct 2021; 12:4254-4283. [PMID: 33904556 DOI: 10.1039/d1fo00311a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Laminaria japonica, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for treating weight loss, phlegm elimination, and detumescence for more than 2000 years. Numerous studies have found that the polysaccharides play an indispensable role in the nutritional and medicinal value of L. japonica. Water extraction and alcohol precipitation method is the most used method. Approximately 56 LJPs were successfully isolated and purified from L. japonica, whereas only few of them were well characterized. Modern pharmacological studies have shown that L. japonica polysaccharides (LJPs) have high-order structural features and multiple biological activities, including anti-tumor, anti-thrombotic, anti-atherosclerosis, hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, renoprotective, and immunomodulatory. In addition, the structural characteristics of LJPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, and structure-activity relationships of LJPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of LJPs were also outlined. Furthermore, the clinical settings and structure-activity functions of LJPs were highlighted. Some research perspectives and challenges in the study of LJPs were also proposed.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Involvement of p53-dependent apoptosis signal in antitumor effect of Colchicine on human papilloma virus (HPV)-positive human cervical cancer cells. Biosci Rep 2021; 40:222342. [PMID: 32163135 PMCID: PMC7098170 DOI: 10.1042/bsr20194065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Colchicine, a plant-derived alkaloid with relatively low toxicity on normal human epidermal keratinocytes (HEKn), has selective inhibitory effect on the growth of CaSki (HPV16-positive) and HeLa (HPV18-positive) human cervical cancer cell lines via the induction of apoptosis. Colchicine (2.5, 5.0 and 10.0 ng/ml) significantly reduced the expression of human papilloma virus (HPV) 16 E6/E7 mRNA and protein in CaSki and HeLa cells. Moreover, reduced expression of E6 and E7 induced by Colchicine resulted in the up-regulation of tumor suppressor proteins, p53 and Rb, as well as down-regulation of phospho Rb (pRb) protein. In addition, Bax, cytosolic cytochrome c and cleaved caspase-3 protein were increased while Bcl-2 protein was decreased significantly by 48 h of Colchicine treatment. These results implied that Colchicine could be explored as a potent candidate agent for the treatment and prevention of HPV-associated cervical cancer without deleterious effects.
Collapse
|
6
|
Vlaisavljević S, Rašeta M, Berežni S, Passamonti S, Tramer F. Four selected commercial seaweeds: biologically active compounds, antioxidant and cytotoxic properties. Int J Food Sci Nutr 2021; 72:757-766. [PMID: 33386060 DOI: 10.1080/09637486.2020.1866503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this research work was to study the chemical characterisation, antioxidant and cytotoxic activity of ethanolic extracts of four commercial algae species Arame, Kombu, Hijiki and Wakame. The highest scavenging activity has been observed in Arame extract. Antioxidant potential of all extracts was in correlation with total phenol content (Arame extract: 319.15 ± 0.56 mg GAE/g d.w) and it was not in correlation with total carotenoids content (Wakame: 75.15 ± 0.20 mg/g). Polyphenols were quantified using LC-MS/MS technique. Baicalein and amentoflavone were identified in higher amount in relation to other phenols. Intracellular antioxidant activity and cytotoxicity of algae extracts were evaluated on the human prostate cancer cell line PC3. Although presented biomolecules in the extracts have demonstrated in vitro antioxidant activity, they did not show a significant effect on PC3 cells. However, this study opens up broad perspective for the further comprehensive investigation of these, commercial, seaweed's biopotential.
Collapse
Affiliation(s)
- Sanja Vlaisavljević
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Berežni
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Federica Tramer
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Li Y, Qin G, Cheng C, Yuan B, Huang D, Cheng S, Cao C, Chen G. Purification, characterization and anti-tumor activities of polysaccharides from Ecklonia kurome obtained by three different extraction methods. Int J Biol Macromol 2020; 150:1000-1010. [PMID: 31751739 DOI: 10.1016/j.ijbiomac.2019.10.216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
To investigate and compare the effects of different extraction methods on the structure and anti-tumor activity of Ecklonia kurome polysaccharides (EP), three techniques, namely hot water extraction (HW), ultrasonic-assisted extraction (UA) and enzyme-assisted extraction (EA), were used to extract EP, and three crude EPs were purified by DEAE-cellulose and gel filtration chromatography. The significant antitumor active components in each method were screened by MTT assay and named as HW-EP5, UA-EP4 and EA-EP3, respectively. The molecular weight, FT-IR assay and NMR showed that HW-EP5, UA-EP4 and EA-EP3 were pyran polysaccharides with a molecular weight of 14,466, 15,922 and 16,947 Da, respectively. HW-EP5 contained the most monosaccharides and the highest content of sulfate and uronic acid. HW-EP5 had an even and smooth sheet-like appearance, while UA-EP4 and EA-EP3 exhibited irregular and rough fragments. All three polysaccharides can inhibit the migration of human breast cancer cells (MCF-7) and promote its apoptosis. All three polysaccharides promoted caspase activity during apoptosis. HW-EP5 and UA-EP4 up-regulated the expression of proapoptotic proteins Bax and p53, while EA-EP3 only up-regulated the expression of p53. These experimental results indicate that Ecklonia kurome polysaccharides, especially HW-EP5, have great potential as a natural medicine for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Gaoyixin Qin
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Chen Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Dechun Huang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Guitang Chen
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China.
| |
Collapse
|
8
|
Kong M, Yao Y, Zhang H. Antitumor activity of enzymatically hydrolyzed Ganoderma lucidum polysaccharide on U14 cervical carcinoma-bearing mice. Int J Immunopathol Pharmacol 2020; 33:2058738419869489. [PMID: 31462112 PMCID: PMC6716173 DOI: 10.1177/2058738419869489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Polysaccharides from Ganoderma lucidum have been demonstrated to
possess diverse biological activities. Despite lots of studies on the biological
activities of Ganoderma lucidum polysaccharide (GLP), little is
known regarding the medicinal potential of low–molecular weight enzymatically
hydrolyzed Ganoderma lucidum polysaccharide (EGLP). EGLP was
prepared by enzymatic degradation and its potential effects in U14 cervical
tumor–bearing mice were evaluated. Both GLP and EGLP delayed tumor growth of the
tumor xenograft. The EGLP was superior to native polysaccharide. Moreover, EGLP
treatment could effectively protect the immune organs of U14 cervical
carcinoma–bearing mice. In addition, the EGLP treatment ameliorated oxidative
stress as compared with cyclophosphamide (CTX). Compared with the MC group, the
expression of Bcl-2 and COX-2 was obviously decreased by EGLP treatment, whereas
the expression of Bax and cleaved caspase-3 was obviously increased. These
results indicated that EGLP showed stronger antitumor activity with lower toxic
effects and had the potential to be a novel antitumor agent.
Collapse
Affiliation(s)
- Min Kong
- Department of Gynecology, Jining First People's Hospital, Jining, China
| | - Yao Yao
- Department of Gynecology, Jining First People's Hospital, Jining, China
| | - Hongmei Zhang
- Department of Gynecology, Jining First People's Hospital, Jining, China
| |
Collapse
|
9
|
Effects of Laminaria Japonica Polysaccharides on the Survival of Non-Small-Cell Lung Cancer A549 Cells. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7929535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective. To investigate the effect of Laminaria japonica polysaccharides (LJP) on the survival of non-small-cell lung cancer (NSCLC) A549 cells and its mechanism. Methods. In vitro: the cells were randomly divided into control group, LJP (5 mg/ml) group, LJP (10 mg/ml) group, and LJP (20 mg/ml) group. After corresponding treatment, the survival rate and the expression of proteins related to proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and signaling pathway were detected by CCK8 assay and Western blot, respectively. In vivo: a xenograft model was established to detect the tumor volume and mass and the expression of the above pathway proteins. Results. Compared with the control group, LJP decreased the survival rate of A549 cells (P<0.05), inhibited the protein expression of Ki67 and PCNA (P<0.05), downregulated the expression of Bcl-2 while upregulated the expression of Bax, cl-caspase-3, and cl-caspase-9 (P<0.05), upregulated the expression of E-cadherin, downregulated the expression of vascular endothelial growth factor (VEGF) and N-cadherin (P<0.05), and downregulated β-catenin, transcription factor-4 (TCF4), and c-Myc protein expression levels (P<0.05). In vivo: LJP decreased the volume and mass of the xenograft tumors and downregulated β-catenin, TCF4, and c-Myc protein expression levels compared with the control group (P<0.05). Conclusion. LJP can inhibit the survival of non-small-cell lung cancer A549 cells in vitro, and its mechanism is related to the inhibition of activation of β-catenin/TCF4 pathway activation.
Collapse
|
10
|
Usoltseva RV, Shevchenko NM, Malyarenko OS, Anastyuk SD, Kasprik AE, Zvyagintsev NV, Ermakova SP. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr Polym 2019; 221:157-165. [PMID: 31227154 DOI: 10.1016/j.carbpol.2019.05.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 01/17/2023]
Abstract
The sulfated α-l-fucans ScF and LlF were obtained from brown algae of the Laminariaceae family (Saccharina cichorioides and Laminaria longipes). According to spectroscopy NMR, the LlF fucan predominantly contained the →3)-α-l-Fucp-(2SO3-)-(1→4)-α-l-Fucp-(1→2)-α-l-Fucp-(4SO3-)-(1→ repeating units, with small amounts of disaccharide 1,4-linked fragments and 3-sulfated fucose residues. Mass spectrometric analysis revealed the presence of the following fragments in the fucan structure: α-l-Fucp-(2SO3-)-(1→4)-α-l-Fucp-(2SO3-)-(1→3)-α-l-Fucp-(4SO3-); α-l-Fucp-(2,4SO3-)-(1→3)-α-l-Fucp-(1→3)-α-l-Fucp-(4SO3-); α-l-Fucp-(2SO3-)-(1→2)-α-l-Fucp; α-l-Fucp-(2SO3-)-(1→2)-α-l-Fucp-(4SO3-); α-l-Fucp-(2SO3-)-(1→3)-α-l-Fucp; α-l-Fucp-(2,4SO3-)-(1→3)-α-l-Fucp; α-l-Fucp-(4SO3-)-(1→4)-α-l-Fucp; and α-l-Fucp-(4SO3-)-(1→4)-α-l-Fucp-(2SO3-). Both ScF and LlF fucoidans inhibited colony formation and growth of melanoma and colon cancer cells and sensitize-tested cancer cells to X-ray radiation to a comparable degree.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Stanislav D Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Anna E Kasprik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Nikolay V Zvyagintsev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| |
Collapse
|
11
|
Patanapongpibul M, Chen QH. Immune Modulation of Asian Folk Herbal Medicines and Related Chemical Components for Cancer Management. Curr Med Chem 2019; 26:3042-3067. [DOI: 10.2174/0929867324666170705112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023]
Abstract
Various exciting immunotherapies aiming to address immune deficiency induced
by tumor and treatment hold promise in improving the quality of life and survival
rate of cancer patients. It is thus becoming an important and rewarding arena to develop
some appropriate immune modulators for cancer prevention and/or treatment. Exploitation
of natural products-based immune modulators is of particular imperative because the
potential of numerous traditional herbal medicines and edible mushrooms in boosting
human immune system has long been verified by folklore practices. This review summarizes
the immune modulations of various herbal medicines and edible mushrooms, their
crude extracts, and/or key chemical components that have been, at least partly, associated
with their cancer management. This article also tabulates the origin of species, key
chemical components, and clinical studies of these herbal medicines and edible mushrooms.
Collapse
Affiliation(s)
- Manee Patanapongpibul
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, United States
| | - Qiao-Hong Chen
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, United States
| |
Collapse
|
12
|
Abdala Díaz RT, Casas Arrojo V, Arrojo Agudo MA, Cárdenas C, Dobretsov S, Figueroa FL. Immunomodulatory and Antioxidant Activities of Sulfated Polysaccharides from Laminaria ochroleuca, Porphyra umbilicalis, and Gelidium corneum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:577-587. [PMID: 31250232 DOI: 10.1007/s10126-019-09905-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Seaweeds of the genera Laminaria, Gelidium, and Porphyra have been used in both food and non-food industries due to their unique properties and characteristic biological activity. This study assesses the antioxidant activity and immunomodulatory properties of the acidic polysaccharides extracted from Laminaria ochroleuca, Porphyra umbilicalis, and Gelidium corneum collected in the Atlantic coast of Tarifa (Cadiz, Spain). The proliferation of murine cell line RAW 264 decreased with increasing concentration of polysaccharides of the three algal species. The highest both antioxidant (25.69 μmol TE g-1 DW) and immunomodulatory activities were observed in the sulfated polysaccharides of L. ochroleuca compared to that of P. umbilicalis and G. corneum. Sulfated polysaccharides of L. ochroleuca presented high potential anticancer activity in cell lines of human colon cancer HTC-116 (IC50 = 0.44 mg mL-1), human malignant melanoma G-361 (IC50 = 5.42 mg mL-1), breast adenocarcinoma human MCF-7 (IC50 = 8.32 mg mL-1), and human leukemia U-937 (IC50 = 3.72 mg mL-1). It is concluded that metabolites of L. ochroleuca can offer significant advantages for the pharmaceutical industry, particularly when macrophage activation is required.
Collapse
Affiliation(s)
- Roberto T Abdala Díaz
- Ecology Department, Faculty of Sciences, Malaga University, Campus de Teatinos s/n, CP 29071, Malaga, Spain.
| | - V Casas Arrojo
- Ecology Department, Faculty of Sciences, Malaga University, Campus de Teatinos s/n, CP 29071, Malaga, Spain
| | - M A Arrojo Agudo
- Ecology Department, Faculty of Sciences, Malaga University, Campus de Teatinos s/n, CP 29071, Malaga, Spain
| | - C Cárdenas
- Biochemistry Department, Faculty of Sciences, Malaga University, Campus de Teatinos s/n, CP 29071, Malaga, Spain
| | - S Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, 123, Al Khoud, Muscat, Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, PO Box 50, 123, Al Khoud, Muscat, Oman
| | - F L Figueroa
- Ecology Department, Faculty of Sciences, Malaga University, Campus de Teatinos s/n, CP 29071, Malaga, Spain
| |
Collapse
|
13
|
Zhu J, Xu J, Jiang LL, Huang JQ, Yan JY, Chen YW, Yang Q. Improved antitumor activity of cisplatin combined with Ganoderma lucidum polysaccharides in U14 cervical carcinoma-bearing mice. Kaohsiung J Med Sci 2019; 35:222-229. [PMID: 30958641 DOI: 10.1002/kjm2.12020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/20/2019] [Indexed: 02/01/2023] Open
Abstract
Research on anticervical cancer is urgently required to enhance clinical outcomes. As a main anticancer drug for cervical carcinoma, cisplatin (CIS) has been used for a lot of years in clinical therapy. However, serious adverse effects including nephrotoxicity and neurotoxicity limit its long-term treatment. Our main goal of this study is to investigate the improvement of Ganoderma lucidum polysaccharides (GPS) on CIS-induced antitumor effect of in U14 cervical carcinoma-bearing mice. The results showed that GPS + CIS could not only inhibit the growth of the tumor but also improve the spleen and thymus indexes. Moreover, little toxicological effects were observed on hepatic function and renal function in GPS + CIS treated mice bearing U14 tumor cells. Further analysis of the tumor inhibition mechanism indicated that the number of apoptotic tumor cells increased significantly, the expression of Bax increased and the expression of Bcl-2 decreased dramatically in cervical cancer sections after oral administration of GPS + CIS for 14 days. This GPS/CIS combined therapy represents intriguing therapeutic strategy for U14 cervical carcinoma providing not only superior efficacy but also a higher safety level.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Jia Xu
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Ling-Ling Jiang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Jin-Qun Huang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Jin-Yu Yan
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Yi-Wan Chen
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Qian Yang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
14
|
Kim SY, Kim JY, Shin WS, Lee SJ, Chi SG, Lee JY, Park MJ. Saccharina japonica Extract Suppresses Stemness of Glioma Stem Cells by Degrading Epidermal Growth Factor Receptor/Epidermal Growth Factor Receptor Variant III. J Med Food 2018; 21:496-505. [PMID: 29648968 DOI: 10.1089/jmf.2017.3992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells, a small subpopulation of cells with stem cell-like characteristics found within most solid tumors, are widely reported to be responsible for the malignancy of aggressive cancer cells, and targeting these cells presents a sound therapeutic strategy for reducing the risk of tumor relapse. In the present study, we examined the effects of an extract of Saccharina japonica (ESJ) on glioblastoma stem cells (GSCs). Saccharina japonica is a member of the Phaeophyceae (brown algae) family, which displays biological activities, including antitumor effects. ESJ inhibited the sphere-forming ability of GSCs in vitro as evidenced by neurosphere formation and limiting dilution assays. Treatment with ESJ partially induced apoptosis, reduced cell invasiveness, and sensitized GSCs to ionizing radiation. In addition, ESJ inhibited the maintenance of stemness in GSCs by suppressing the expression of epidermal growth factor receptor (EGFR)/EGFR variant III (EGFRvIII) and Notch intracellular domain. Intriguingly, the observed ESJ-induced suppression also appeared to induce the proteasomal degradation of EGFR/EGFRvIII. Our results indicate that ESJ could be considered a potent therapeutic adjuvant that targets GSCs.
Collapse
Affiliation(s)
- So Yeon Kim
- 1 Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences , Research Center for Radio-Senescence, Seoul, Korea
- 2 School of Life Sciences and Biotechnology, Korea University , Seoul, Korea
| | - Jeong-Yub Kim
- 1 Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences , Research Center for Radio-Senescence, Seoul, Korea
- 3 Department of Pathology, College of Medicine, Korea University , Seoul, Korea
| | - Woon-Seob Shin
- 4 Department of Microbiology, Catholic Kwandong University College of Medicine , Gangneung, Korea
| | - Seok Joon Lee
- 5 Department of Pharmacology, Catholic Kwandong University College of Medicine , Gangneung, Korea
| | - Sung-Gil Chi
- 2 School of Life Sciences and Biotechnology, Korea University , Seoul, Korea
| | - Ji-Yun Lee
- 3 Department of Pathology, College of Medicine, Korea University , Seoul, Korea
| | - Myung-Jin Park
- 1 Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences , Research Center for Radio-Senescence, Seoul, Korea
| |
Collapse
|
15
|
Bonfim-Mendonça PDS, Capoci IRG, Tobaldini-Valerio FK, Negri M, Svidzinski TIE. Overview of β-Glucans from Laminaria spp.: Immunomodulation Properties and Applications on Biologic Models. Int J Mol Sci 2017; 18:E1629. [PMID: 28878139 PMCID: PMC5618472 DOI: 10.3390/ijms18091629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Glucans are a group of glucose polymers that are found in bacteria, algae, fungi, and plants. While their properties are well known, their biochemical and solubility characteristics vary considerably, and glucans obtained from different sources can have different applications. Research has described the bioactivity of β-glucans extracted from the algae of the Laminaria genus, including in vivo and in vitro studies assessing pro- and anti-inflammatory cytokines, vaccine production, inhibition of cell proliferation, and anti- and pro-oxidant activity. Thus, the objective of this article was to review the potential application of β-glucans from Laminaria spp. in terms of their immunomodulatory properties, microorganism host interaction, anti-cancer activity and vaccine development.
Collapse
Affiliation(s)
- Patrícia de Souza Bonfim-Mendonça
- Graduate Program in Health Sciences, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Isis Regina Grenier Capoci
- Graduate Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Flávia Kelly Tobaldini-Valerio
- Graduate Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | - Melyssa Negri
- Department of Clinical Analysis and Biomedicine, State University of Maringa, Paraná 87020-900, Brazil.
| | | |
Collapse
|
16
|
Murad H, Hawat M, Ekhtiar A, AlJapawe A, Abbas A, Darwish H, Sbenati O, Ghannam A. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int 2016; 16:39. [PMID: 27231438 PMCID: PMC4881178 DOI: 10.1186/s12935-016-0315-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Background Marine algae consumption is linked to law cancer incidences in countries that traditionally consume marine products. Hence, Phytochemicals are considered as potential chemo-preventive and chemotherapeutic agents against cancer. We investigated the effects of the algal sulfated polysaccharide extract (ASPE) from the red marine alga L. papillosa on MDA-MB-231 human breast cancer cell line. Methods Flow cytometry analysis was performed to study the cell viability, cell cycle arrest and apoptosis. Changes in the expression of certain genes associated with cell cycle regulation was conducted by PCR real time analyses. Further investigations on apoptotic molecules was performed by ROS measurement and protein profiling. Results ASPE at low doses (10 µg/ml), inhibited cell proliferation, and arrested proliferating MDA-MB-231 cells at G1-phase. However, higher doses (50 µg/ml), triggered apoptosis in those cells. The low dose of ASPE also caused up-regulation of Cip1/p21 and Kip1/p27 and down-regulation of cyclins D1, D2, and E1 transcripts and their related cyclin dependent kinases: Cdk2, Cdk4, and Cdk6. The higher doses of ASPE initiated a dose-dependent apoptotic death in MDA-MB-231 by induction of Bax transcripts, inhibition of Bcl-2 and cleavage of Caspase-3 protein. Over-generation of reactive oxygen species (ROS) were also observed in MDA-MB-231 treated cells. Conclusions These findings indicated that ASPE induces G1-phase arrest and apoptosis in MDA-MB-231 cells. ASPE may serve as a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Hossam Murad
- Division of Human Genetics, Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus, Syria
| | - Mohammad Hawat
- Division of Biochemistry & Toxicology, Department of Molecular Biology and Biotechnology, Damascus, Syria
| | - Adnan Ekhtiar
- Division of Mammalian Biology, Department of Molecular Biology and Biotechnology, Damascus, Syria
| | - Abdulmunim AlJapawe
- Division of Mammalian Biology, Department of Molecular Biology and Biotechnology, Damascus, Syria
| | - Assef Abbas
- Laboratory of Marine biology, Faculty of Sciences, Tishreen University, Lattakia, Syria
| | - Hussein Darwish
- Division of Human Genetics, Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus, Syria
| | - Oula Sbenati
- Laboratory of plant functional genomics, Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus, Syria
| | - Ahmed Ghannam
- Laboratory of plant functional genomics, Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus, Syria
| |
Collapse
|
17
|
Lin R, Liu X, Meng Y, Xu M, Guo J. Effects of Laminaria japonica polysaccharides on airway inflammation of lungs in an asthma mouse model. Multidiscip Respir Med 2015; 10:20. [PMID: 26110056 PMCID: PMC4479343 DOI: 10.1186/s40248-015-0017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background Asthma is a serious chronic inflammatory disease affecting 300 million people worldwide. This aim of this study to investigate the anti-inflammatory and anti-asthmatic effects of Laminaria japonica extract in the ovalbumin (OVA)-induced mouse asthma model. Methods A mouse asthma model was established in SPF Kunming mice by OVA-sensitization followed by inhalation of aerosol allergen for two weeks. Laminaria japonica polysaccharides (LJPS) were given by gavage feeding at 50 mg/kg/day during OVA inhalation challenge period, and their effect on asthma was compared with the standard treatment of Budesonide inhalation. The total inflammatory cells and eosinophils in bronchoalveolar lavage fluid (BALF) were determined. Histopathological changes in lung tissue were studied and scored to determine the degree of inflammation. Levels of IL-12, IL-13, and TGF-β1 in BALF as well as serum levels of IgE were measured. Expressions of IL-12, IL-13, and TGF-β1 in lung tissues were assessed. Results Highly inflammatory lungs infiltrated with significant increased eosinophils were observed in OVA-induced asthmatic mice. The OVA treated mice presented with a lower level of IL-12 and higher levels of IL-13 and TGF-β1 in BALF and lung tissues, as well as an increased level of the serum IgE. Treatment with LJPS (Group B) significantly decreased the numbers of eosinophils in the BALF (P < 0.05) and alleviated lung inflammation compared to the untreated asthma mice (Group A). It also reduced the serum IgE levels, increased expression of IL-12, and decreased the expression of IL-13 and TGF-β1 in BALF and lung (Both P < 0.05) compared with the group A. Conclusions LJPS can significantly inhibit airway inflammation of asthmatic mice, adjust the balance of cytokines, and improve the pulmonary histopathological condition. Our data suggested that LJPS might be a potential therapeutic reagent for allergic asthma.
Collapse
Affiliation(s)
- Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003 China
| | - Xiaomei Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003 China
| | - Yan Meng
- Department of Pediatrics, People's hospital of Zoucheng city, Jining, 273500 China
| | - Mei Xu
- Department of Pediatrics, People's Hospital of Central District, Zaozhuang, 277101 China
| | - Jianping Guo
- Department of Pediatrics, Women and Children's Hospital of Qingdao, Qingdao, 266011 China
| |
Collapse
|
18
|
Zhao X, Ma S, Liu N, Liu J, Wang W. A polysaccharide from Trametes robiniophila inhibits human osteosarcoma xenograft tumor growth in vivo. Carbohydr Polym 2015; 124:157-63. [DOI: 10.1016/j.carbpol.2015.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022]
|
19
|
Yuan HL, Liu XL, Dai QC, Song H. Exogenous natural glycoprotein multiple mechanisms of anti-tumor activity. Asian Pac J Cancer Prev 2015; 16:1331-6. [PMID: 25743794 DOI: 10.7314/apjcp.2015.16.4.1331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Natural glycoproteins can induce apoptosis of tumor cells and exert anti-tumor activity by immunomodulatory functions, cytotoxic and anti-inflammation effects, and inhibition of endothelial growth factor. Given their prospects as novel agents, sources of natural antitumor glycoproteins have attracted attention and new research directions in glycoprotein biology are gradually shifting to the direction of cancer treatment and prevention of neoplastic disease. In this review, we summarize the latest findings with regard to the tumor suppressor signature of glycoproteins and underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Hong-Liang Yuan
- Harbin Commercial University Life Science and Environmental Science Research Center, Harbin, China E-mail :
| | | | | | | |
Collapse
|
20
|
Wang H, Zhang X, Li Y, Chen R, Ouyang S, Sun P, Pan L, Ren H, Yang B. Antitumor activity of a polysaccharide from longan seed on lung cancer cell line A549 in vitro and in vivo. Tumour Biol 2014; 35:7259-66. [DOI: 10.1007/s13277-014-1927-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022] Open
|