1
|
Khan NU, Alqarni SS, Yousuf A, Shehzad I, Khan W, Gu W, Chen T. The influence of RAD51 (rs1801320) on breast cancer risk: an updated meta-analysis. Discov Oncol 2025; 16:289. [PMID: 40063134 PMCID: PMC11893934 DOI: 10.1007/s12672-025-02012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND DNA repair mechanisms, particularly RAD51-mediated homologous recombination repair, play a crucial role in breast cancer development, with the rs1801320 (135G > C) polymorphism showing conflicting associations across studies. This meta-analysis aimed to assess the relationship between RAD51 rs1801320 polymorphism and breast cancer susceptibility. METHOD We systematically searched PubMed and Web of Science databases through August 15, 2024, and included 16 case-control studies comprising 4743 breast cancer cases and 4448 controls, analyzing various genetic models using R Studio. RESULTS Our results revealed significant associations in several genetic models: the allele contrast model (C vs. G) showed an increased risk (OR = 1.37, 95% CI: 1.04-1.80, p = 0.0249. The recessive model (CC vs. CG + GG) demonstrated a strong risk association (OR = 2.68, 95% CI: 1.55-4.61, p = 0.00038), while the dominant model (CC + CG vs. GG) showed no significant association (OR = 1.12, 95% CI: 0.98-1.28, p = 0.1037). Pairwise comparisons revealed the CC genotype as a substantial risk factor, particularly in CC vs. GG (OR = 2.31, 95% CI: 1.58-3.37, p = 0.00001) and CC vs. CG (OR = 2.97, 95% CI: 1.53-5.77, p = 0.00128) comparisons. Most models showed moderate to high heterogeneity (I2 = 30-93%), though publication bias was detected in some analyses. CONCLUSION This comprehensive meta-analysis is larger than previous studies and provides robust evidence that the RAD51 rs1801320 CC genotype significantly increases breast cancer risk, particularly in recessive and homozygous comparison models, suggesting potential implications for cancer risk assessment and therapeutic strategies targeting DNA repair mechanisms.
Collapse
Affiliation(s)
- Najeeb Ullah Khan
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Sana S Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Amjad Yousuf
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, 41477, Madinah, Saudi Arabia
| | - Iqra Shehzad
- School of Mechanical and Manufacturing Engineering, NUST, Islamabad, 44000, Pakistan
| | - Waqas Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, PO Box 25130, Peshawar, Pakistan
| | - Wei Gu
- Wenzhou Medical University, Wenzhou, 325000, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Tianhui Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Gupta P, Sambyal V, Guleria K, Uppal MS, Sudan M. Association of RAD51, XRCC1, XRCC2, and XRCC3 Polymorphisms with Risk of Breast Cancer. Genet Test Mol Biomarkers 2023; 27:205-214. [PMID: 37522793 DOI: 10.1089/gtmb.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Background: DNA repair genes are among the low-penetrance genes implicated in breast cancer. However variants of DNA repair genes may alter their protein function thus leading to carcinogenesis. Breast cancer is the most common cancer among women in India. The aim of the present study was to identify association, if any, of single nucleotide polymorphisms (SNP's) in four genes involved in DNA repair pathways including, RAD51 rs1801320, XRCC1 rs25487, XRCC2 rs3218536, and XRCC3 rs861539 with the risk of breast cancer. Materials and Methods: In this case-control study 611 female subjects (311 breast cancer patients and 300 healthy controls) were screened for four SNPs using polymerase chain reaction-restriction fragment length polymorphism analyses. Multifactor dimensionality reduction (MDR) analysis was performed to estimate the gene-gene interaction. Protein-protein interaction network analysis were studied using the STRING database. Results: The GC genotype (p = 0.018) and the combined GC+CC (p = 0.03) genotypes of RAD51 rs1801320 were significantly associated with reduced risk of breast cancer. The CT genotype (p = 0.0001), the combined CT+TT genotypes (p = 0.0002), and the T allele (p = 0.0019) of XRCC3 rs861539 polymorphism were associated with reduced risk of the breast cancer. No association of XRCC1 rs25487 and XRCC2 rs3218536 polymorphisms with breast cancer was observed. MDR analysis indicated a positive interaction between XRCC3 and XRCC2. String network analysis showed that the RAD51, XRCC1, XRCC2, and XRCC3 proteins are in strong interaction with each other and other breast cancer-related proteins such as BRCA2. Conclusion: RAD51 rs1801320 and XRCC3 rs861539 polymorphisms were associated with reduced risk of breast cancer. There is evidence of positive interactions among XRCC1, XRCC2, XRCC3, and RAD51.
Collapse
Affiliation(s)
- Priyanka Gupta
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Vasudha Sambyal
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Kamlesh Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Manjit Singh Uppal
- Department of Surgery and Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, India
| | - Meena Sudan
- Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, India
| |
Collapse
|
3
|
El-Eshmawy MA, Shahin HE, El-Beltagy NS, Abdel Hamid D, Elfarargy OM, Elsayed DH, Elsaid AM, Elshazli RM, Mohamed NM. Association of CCND1 (c.723G > A, rs9344) variant with elevated risk of breast carcinoma: a retrospective case-control study. Mol Biol Rep 2023; 50:2015-2024. [PMID: 36534235 DOI: 10.1007/s11033-022-08202-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The prevalence rate of breast carcinoma (BC) among multiple ethnic populations required more explanations to understand the pathogenesis mechanisms for the development of this type of cancer. The principal purpose of this work is to validate the correlation of the CCND1 (c.723G > A; rs9344) variant with an increased risk of breast carcinoma. METHODS This retrospective case-controlled study was designed appertaining to 200 women including 100 BC patients and 100 unrelated cancer-free controls. The amplification of genomic DNA was genotyped utilizing the PCR-RFLP technique. RESULTS The frequencies of the CCND1 (c.723G > A; rs9344) variant revealed a significant association with increased risk of breast carcinoma under different genetic models including allelic (OR = 2.84, P-value < 0.001), recessive (OR = 4.83, P-value < 0.001), and dominant (OR = 3.19, P-value < 0.001) models. CONCLUSIONS Our findings concluded that the genetic biomarker of the CCND1 (c.723G > A; rs9344) variant is correlated with an elevated risk of breast carcinoma among Egyptian women.
Collapse
Affiliation(s)
- Mohamed Adel El-Eshmawy
- Clinical Pathology Department, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Hanaa Elsayed Shahin
- Nursing Department, College of Applied Medial Sciences, Jouf University, ElQurayyat, Saudi Arabia
- Department of Maternity and Newborn Health Nursing, Menoufia University, Menoufia, Egypt
| | - Nanis S El-Beltagy
- Faculty of Medicine, Children's University Hospital, Mansoura University, Mansoura, Egypt
| | - Dina Abdel Hamid
- Hematology and Bone Marrow Transplant Unit, Children's University Hospital, Mansoura University, Mansoura, Egypt
| | - Ola M Elfarargy
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia Hamouda Elsayed
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Afaf M Elsaid
- Genetic Unit, Children's University Hospital, Mansoura University, Mansoura, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt.
| | - Noura M Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Department of Science, Faculty of Preparatory Year of Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Sengupta D, Banerjee S, Mukhopadhyay P, Guha U, Ganguly K, Bhattacharjee S, Sengupta M. A meta-analysis and in silico analysis of polymorphic variants conferring breast cancer risk in the Indian subcontinent. Future Oncol 2020; 16:2121-2142. [PMID: 32744066 DOI: 10.2217/fon-2020-0333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Genetic association studies on breast cancer on the Indian subcontinent have yielded conflicting results, and the precise effect of these variants on breast cancer pathogenesis is not known. Methods: Genomic variants, as obtained from selected studies from the Indian subcontinent, were subjected to random-effects and fixed-effect meta-analysis. Functional annotation of the relevant variants was done through a tried and tested in silico pipeline. Results: We found rs4646903/CYP1A1, rs1799814/CYP1A1, rs61886492/GCPII, del2/GSTM1, rs4680/COMT and rs1801394/MTRR to be associated with breast cancer. The del2/GSTM1 holds the association in premenopausal women. Conclusions: This is the first study of its kind from the Indian subcontinent analysing the extent of association of variants across populations followed by their functional annotation in the disease pathway.
Collapse
Affiliation(s)
- Debmalya Sengupta
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Souradeep Banerjee
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Pramiti Mukhopadhyay
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Udayan Guha
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Kausik Ganguly
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Samsiddhi Bhattacharjee
- National Institute of Biomedical Genomics, Near Netaji Subhas Sanatorium Post Office, Kalyani, West Bengal 741251, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
5
|
Akhter N, Alzahrani FA, Dar SA, Wahid M, Sattar RSA, Hussain S, Haque S, Ansari SA, Jawed A, Mandal RK, Almalki S, Alharbi RA, Husain SA. AA genotype of cyclin D1 G870A polymorphism increases breast cancer risk: Findings of a case-control study and meta-analysis. J Cell Biochem 2019; 120:16452-16466. [PMID: 31243808 DOI: 10.1002/jcb.28800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cyclin D1 (CCND1) polymorphisms, a regulator of the cell cycle progress from G1 to the S phase, may lead to uncontrolled cell proliferation and lack of apoptosis. G870A, a common single-nucleotide polymorphism in CCND1 influences breast cancer risk. However, the association between G870A polymorphism and breast cancer risk is ambiguous so far. MATERIALS AND METHODS In this case-control study, we analyzed the role of G870A polymorphism with breast cancer risk in Indian women. A meta-analysis of 18 studies was also performed to elucidate this association by increasing statistical power. RESULTS In our case-control study, significant risk association of the CCND1 G870A AA genotype with breast cancer in total cohort (odds ratio [OR], 2.98; 95% confidence interval [CI], 1.64-5.42; P value, 4.96e-04) and premenopausal women (OR, 3.31; 95% CI, 1.54-7.08; P value, .003) was found. The results of the meta-analysis showed that AA genotype of the CCND1 G870A polymorphism significantly increases breast cancer risk in total pooled data (AA vs GG+GA: OR = 1.20; 95% CI = 1.03 to 1.39; P value, 0.016*) and Caucasian (AA vs GG+GA: OR = 1.22; 95% CI = 0.99 to 1.51; P value, .056*) but not in Asian population. Further, a significant protective association with breast cancer was also found in the GA vs AA comparison model in pooled data (OR = 0.73; 95% CI = 0.58 to 0.92; P value, .007*) as well as in Caucasian subgroup (OR = 0.62; 95% CI = 0.49 to 0.94; P value, .022*). CONCLUSION CCND1 G870A AA genotype was found associated with breast cancer risk. Future association studies considering the environmental impact on gene expression are required to validate/explore this association.
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Faisal Abdulrahman Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India.,Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Showket Hussain
- Division of Molecular OncologyAnchor, AnchorNational Institute of Cancer Prevention and Research (ICMR), Noida, India
| | - Shafiul Haque
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India.,Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shakeel Ahmed Ansari
- AnchorAnchorCenter of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shaia Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Thakur N, Kumari S, Mehrotra R. Association between Cyclin D1 G870A (rs9344) polymorphism and cancer risk in Indian population: meta-analysis and trial sequential analysis. Biosci Rep 2018; 38:BSR20180694. [PMID: 30361291 PMCID: PMC6265616 DOI: 10.1042/bsr20180694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: Association between Cyclin D1 (CCND1) single nucleotide polymorphism (SNP) rs9344 and cancer risk is paradoxical. Thus, we performed a meta-analysis to explore the association between CCND1 variant and overall cancer risk in Indian population. Methods: Data from 12 published studies including 3739 subjects were collected using Pubmed and Embase. RevMan (Review Manager) 5.3 was used to perform the meta-analysis. OR with 95%CI were calculated to establish the association. Results: Overall, the cumulative findings demonstrated that CCND1 polymorphism (rs9344) was not significantly associated with cancer risk in all the genetic models studied (dominant model: GG vs GA+AA: OR (95%CI) = 0.81 (0.60-1.09), P=0.17; recessive model: GG+GA vs AA: OR (95%CI) = 1.23 (0.96-1.59), P=0.11; co-dominant model: GG vs AA: OR (95%CI) = 1.35 (0.93-1.97), P=0.12; co-dominant model: (GG vs GA: OR (95%CI) = 1.16 (0.85-1.59), P=0.34; allelic model: A vs G: OR (95%CI) = 1.20 (1.14-2.85), P=0.23; allelic model: G vs A: OR (95%CI) = 0.83 (0.62-1.12), P=0.23). Subgroup analysis according to cancer types presented significant association of CCND1 polymorphism and increased breast cancer risk in dominant model (GG vs GA+AA: OR = 2.75, 95%CI = 1.54-4.90, P=0.0006) and allelic model (G vs A: OR = 1.63, 95%CI = 1.22-2.19, P=0.001). An increased esophageal cancer risk in recessive model (GG+GA vs AA: OR = 1.51, 95%CI = 1.05-2.16, P=0.03) and co-dominant model (GG vs AA: OR = 2.51, 95%CI = 1.10-5.71, P=0.03) was detected. A higher risk for colorectal cancer was detected under both the co-dominant models (GG vs AA: OR = 2.46, 95%CI = 1.34-4.51, P=0.004 and GG vs GA: OR = 1.74, 95%CI = 1.14-2.67, P=0.01). However, in case of cervical cancer risk a non-significant association was reported under the recessive model (GG+GA vs AA: OR = 1.52, 95%CI = 0.60-3.90, P=0.38) with reference to CCND1 polymorphism (rs9344). The trial sequential analysis (TSA) showed that the cumulative Z-curve neither crossed the trial sequential monitoring boundary nor reached the required information size (RIS). Thus, present meta-analysis remained inconclusive due to insufficient evidence. Conclusion:CCND1 polymorphism rs9344 may not have a role in overall cancer susceptibility in Indian population. However, this polymorphism acts as a crucial risk factor for breast, esophageal, and colorectal cancer but not for cervical cancer. Future studies with larger sample size are required to draw a reliable conclusion.
Collapse
Affiliation(s)
- Nisha Thakur
- Division of Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)ICMR, I-7, Sector-39, Noida, Gautam Buddha Nagar, Uttar Pradesh 201301, India
| | - Suchitra Kumari
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR)ICMR, I-7, Sector-39, Noida, Gautam Buddha Nagar, Uttar Pradesh 201301, India
| | - Ravi Mehrotra
- Division of Preventive Oncology, National Institute of Cancer Prevention and Research (NICPR)ICMR, I-7, Sector-39, Noida, Gautam Buddha Nagar, Uttar Pradesh 201301, India
| |
Collapse
|
7
|
Yang CH, Kao YK, Chuang LY, Lin YD. Catfish Taguchi-Based Binary Differential Evolution Algorithm for Analyzing Single Nucleotide Polymorphism Interactions in Chronic Dialysis. IEEE Trans Nanobioscience 2018; 17:291-299. [PMID: 29994217 DOI: 10.1109/tnb.2018.2844342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-nucleotide polymorphism (SNP)-SNP interactions are crucial for understanding the association between disease-related multifactorials for disease analysis. Existing statistical methods for determining such interactions are limited by the considerable computation required for evaluating all potential associations between disease-related multifactorials. Identifying SNP-SNP interactions is thus a major challenge in genetic association studies. This paper proposes a catfish Taguchi-based binary differential evolution (CT-BDE) algorithm for identifying SNP-SNP interactions. In the search space, the catfish effect prevents the premature convergence of the population, and the Taguchi method improves the search ability of the BDE algorithm. Hence, the proposed algorithm enables obtaining a favorable solution regarding the identification of high-order SNP-SNP interactions. Additionally, the proposed algorithm applies an effective fitness function derived from a multifactor dimensionality reduction (MDR) operation to evaluate the solutions from BDE-based algorithms. Simulated and real data sets were used to evaluate the ability of several BDE-based algorithms in identifying specific SNP-SNP interactions. We compared the fitness function derived from the MDR operation with that derived according to the difference between cases and controls, by using the different BDE-based algorithms. The results showed that the proposed CT-BDE algorithm applying the fitness function derived from the MDR operation exhibited a superior ability in identifying SNP-SNP interactions compared with the other BDE-based algorithms.
Collapse
|
8
|
A comprehensive analysis of BRCA2 gene: focus on mechanistic aspects of its functions, spectrum of deleterious mutations, and therapeutic strategies targeting BRCA2-deficient tumors. Med Oncol 2018; 35:18. [PMID: 29387975 DOI: 10.1007/s12032-018-1085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022]
Abstract
BRCA2is the main susceptibility gene known to be involved in the pathogenesis of breast cancer. It plays an important role in maintaining the genome stability by homologous recombination through DNA double-strand breaks repairing, by interacting with various other proteins including RAD51, DSS1, RPA, MRE11, PALB2, and p53. BRCA2-deficient cells show the abnormalities of chromosome number. BRCA2 is also found to be involved in centrosome duplication specifically in the metaphase to anaphase transition. Inactivation or depletion of BRCA2 leads to centrosome amplification that results in unequal separation of chromosomes. BRCA2 localizes with central spindle and midbody during telophase and cytokinesis. Inactivation or depletion of BRCA2 leads to multinucleation of cell. Around 2000 mutations have been reported in BRCA2 gene. BRCA2-deficient tumors are being taking into consideration for targeted cancer therapy by using different inhibitors like poly ADP-ribose polymerase and thymidylate synthase. The present review focusses on the role of BRCA2 in various critical cellular processes based on the mechanistic approaches. Mutations reported in the BRCA2 gene in various ethnic groups till date have also been compiled with an insight into the functional aspects of these alterations. The therapeutic strategies for targeting BRCA2-deficient tumors have also been targeted.
Collapse
|
9
|
Devi KR, Ahmed J, Narain K, Mukherjee K, Majumdar G, Chenkual S, Zonunmawia JC. DNA Repair Mechanism Gene, XRCC1A ( Arg194Trp) but not XRCC3 ( Thr241Met) Polymorphism Increased the Risk of Breast Cancer in Premenopausal Females: A Case-Control Study in Northeastern Region of India. Technol Cancer Res Treat 2017; 16:1150-1159. [PMID: 29332455 PMCID: PMC5762082 DOI: 10.1177/1533034617736162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes.
Collapse
Affiliation(s)
- K Rekha Devi
- 1 Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Jishan Ahmed
- 2 Assam Medical College and Hospital, Dibrugarh, Assam, India
| | - Kanwar Narain
- 1 Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Kaustab Mukherjee
- 1 Regional Medical Research Centre, NE Region, Indian Council of Medical Research, Dibrugarh, Assam, India
| | | | | | | |
Collapse
|
10
|
Soleimani Z, Kheirkhah D, Sharif MR, Sharif A, Karimian M, Aftabi Y. Association of CCND1 Gene c.870G>A Polymorphism with Breast Cancer Risk: A Case-ControlStudy and a Meta-Analysis. Pathol Oncol Res 2016; 23:621-631. [PMID: 28004353 DOI: 10.1007/s12253-016-0165-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Cyclin D1 (CCND1) plays an essential role in regulating the progress of the cell cycle from G1 to S phase. There is a common c.870G>A polymorphism in the CCND1 gene. The aim of this study was to investigate the association of CCND1 gene c.870G>A polymorphism with breast cancer risk in a case-control study, which followed by a meta-analysis and an in silico analysis. Three hundred and thirty-five subjects composed of 174 women with breast cancer and 161 healthy controls were included in the case-control study. CCND1 gene c.870G>A genotyping was performed by PCR-RFLP. Meta-analysis was done for 14 studies composed of 7281 cases and 6820 controls. Some bioinformatics tools were applied to investigate the effects of c.870G>A on the mRNA splicing and structure. Our data obtained from case-control study revealed that GA genotype (OR: 1.89, 95%CI: 1.12-3.17, p = 0.017), AA genotype (OR: 1.95, 95%CI: 1.08-3.53, p = 0.027), and A allele (OR: 1.44, 95%CI: 1.06-1.95, p = 0.019) were significantly associated with breast cancer risk. The results of meta-analysis showed a significant association between CCND1 c.870G>A polymorphism and breast cancer risk, especially in Caucasian population. In silico analysis revealed that c.870G>A transition affect CCND1 mRNA splicing and secondary structure.
Collapse
Affiliation(s)
- Zahra Soleimani
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Kheirkhah
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Pediatrics, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Reza Sharif
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Sharif
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Younes Aftabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Cao J, Luo C, Peng R, Guo Q, Wang K, Wang P, Ye H, Song C. MiRNA-binding site functional polymorphisms in DNA repair genes RAD51, RAD52, and XRCC2 and breast cancer risk in Chinese population. Tumour Biol 2016; 37:16039–16051. [PMID: 27726100 DOI: 10.1007/s13277-016-5459-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023] Open
Abstract
RAD51, RAD52, and XRCC2 are all involved in DNA homologous recombinational repair, and there are interactions among those genes. Polymorphisms in 3'-UTR of DNA repair genes may change DNA repair capacity by regulating gene expression. However, potential regulatory variants affecting their expression remain largely unexplored. Five miRNA-binding site SNPs (rs7180135 and rs45549040 in RAD51, rs1051669 and rs7963551 in RAD52 and rs3218550 in XRCC2) selected by bioinformatics method were genotyped in 498 breast cancer (BC) patients and 498 matched controls in Chinese population. Association between SNPs and BC risk was analyzed by adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) in unconditional logistic regression model. Quantitative real-time (qRT) PCR and Western Blot assays were used to calculate the relative expression of RAD52 in recombinant plasmid-pGenesil-1-let-7b group and let-7b-inhibitor group. Gene-reproductive factors interactions were evaluated by multifactor dimensionality reduction (MDR) method. We found that individuals with AC (OR 0.684, 95%CI 0.492-0.951) and CC (OR 0.317, 95%CI 0.200-0.503) genotypes of rs7963551 had a significantly lower risk of breast cancer and qRT-PCR and Western Blot revealed that let-7b might downregulate the expression of RAD52 in MCF-7 and SKBR-3 cells. A significant interaction between the number of pregnancy (≥2) and rs7963551 (Ars7963551) was found to increase breast cancer risk by 2.63-fold (OR 2.63; 95%CI 2.03-3.42). In summary, the miRNA-binding SNPs in DNA repair genes RAD51, RAD52, and XRCC2 and their interaction with reproductive factors might play important roles in the development of BC, and let-7b might downregulate RAD52 expression in MCF-7 and SKBR-3 cells.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chenglin Luo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rui Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Qiaoyun Guo
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Kaijuan Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
12
|
Sinha DN, Abdulkader RS, Gupta PC. Smokeless tobacco-associated cancers: A systematic review and meta-analysis of Indian studies. Int J Cancer 2015; 138:1368-79. [PMID: 26443187 DOI: 10.1002/ijc.29884] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
Abstract
The International Agency for Research on Cancer (IARC) has concluded that there is sufficient evidence in humans for the carcinogenicity of smokeless tobacco (SLT) for mouth, oesophagus and pancreas, based largely on Western studies. We wanted to confirm this by conducting a systematic review using Indian studies because India faces the biggest brunt of SLT-attributable health effects. A systematic search was conducted for published and unpublished studies. Two authors independently reviewed the studies and extracted data. Summary odds ratio (OR) for each cancer type was calculated using fixed and random effects model. The population attributable fraction (PAF) method was used to calculate the attributable burden of incident cases. A significant association was found for oral-5.55 (5.07, 6.07), pharyngeal-2.69 (2.28, 3.17), laryngeal-2.84 (2.18, 3.70), oesophageal-3.17 (2.76, 3.63) and stomach-1.26 (1.00, 1.60) cancers. But in random effects model, laryngeal-1.79 (0.70, 4.54) and stomach-1.31 (0.92, 1.87) cancers became non-significantly associated. Gender-wise analysis revealed that women had a higher risk (OR = 12.0 vs. 5.16) of oral but a lower risk (1.9 vs. 4.5) of oesophageal cancer compared with men. For oral cancer, studies that adjusted for smoking, alcohol and other factors reported a significantly lower OR compared with studies that adjusted for smoking only or smoking and alcohol only (3.9 vs. 8.4). The annual number of attributable cases was calculated as 49,192 (PAF = 60%) for mouth, 14,747 (51%) for pharynx, 11,825 (40%) for larynx, 14,780 (35%) for oesophagus and 3,101 (8%) for stomach.
Collapse
Affiliation(s)
- Dhirendra N Sinha
- Surveillance, (Tobacco Control), Tobacco Free Initiative Unit, World Health Organization, Regional Office for South-East Asia, New Delhi, India
| | | | - Prakash C Gupta
- Healis - Sekhsaria Institute for Public Health, Mumbai, India
| |
Collapse
|
13
|
RAD51 135G>C substitution increases breast cancer risk in an ethnic-specific manner: a meta-analysis on 21,236 cases and 19,407 controls. Sci Rep 2015; 5:11588. [PMID: 26108708 PMCID: PMC4479800 DOI: 10.1038/srep11588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/30/2015] [Indexed: 11/08/2022] Open
Abstract
RAD51 is a homolog of bacterial RecA protein, which plays an important role in preserving stability of the genome. RAD51 interacts with BRCA1 and BRCA2 for homologous recombination repair. A functional polymorphism (135G > C) in the RAD51 gene has been a subject of great interest, which is evidenced by at least 28 case-control studies and eight meta-analyses undertaken on this polymorphism till now. We undertook a meta-analysis on RAD51 135G > C data for 21236 cases and 19407 controls pooled from 28 studies on breast cancer in women. Pooled data analysis suggested a significant association of the substitution with breast cancer in the recessive model (GG + GC versus CC) and in the co-dominant models comparing GG versus CC and GC versus CC. Analysis of the results suggested that ‘CC’ genotype is a significant breast cancer risk factor in comparison to ‘GG’ and ‘GC’ genotypes. We also undertook pooled analyses on different ethnic groups and found that ‘CC’ was a strong risk factor in Caucasians, but not in East-Asians and populations of mixed ethnicity. In conclusion, the RAD51 135G > C substitution in the homozygous form (CC) increases the risk of breast cancer in an ethnic-specific manner.
Collapse
|
14
|
Aggarwal S, Phadke SR. Medical genetics and genomic medicine in India: current status and opportunities ahead. Mol Genet Genomic Med 2015; 3:160-71. [PMID: 26029702 PMCID: PMC4444157 DOI: 10.1002/mgg3.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences Hyderabad, India ; Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics Hyderabad, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, India
| |
Collapse
|
15
|
XPD, APE1, and MUTYH polymorphisms increase head and neck cancer risk: effect of gene-gene and gene-environment interactions. Tumour Biol 2015; 36:7569-79. [PMID: 25916209 DOI: 10.1007/s13277-015-3472-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/15/2015] [Indexed: 01/11/2023] Open
Abstract
In the present study, we investigated the effect of the DNA repair gene polymorphisms XPD Asp312Asn (G>A), APE1 Asp148Glu (T>G), and MUTYH Tyr165Cys (G>A) on the risk for head and neck cancer (HNC) in association with tobacco use in a population of Northeast India. The study subjects comprised of 80 HNC patients and 92 healthy controls. Genotyping was performed using amplification refractory mutation system-PCR (ARMS-PCR) for XPD Asp312Asn (G>A) and PCR using confronting two-pair primers (PCR-CTPP) for APE1 Asp148Glu (T>G) and MUTYH Tyr165Cys (G>A). The XPD Asp/Asn genotype increased the risk for HNC by 2-fold (odds ratio, OR = 2.072; 95 % CI, 1.025-4.190; p < 0.05). Interaction between APE1 Asp/Asp and XPD Asp/Asn as well as MUTYH Tyr/Tyr and XPD Asp/Asn genotypes further increased the risk by 2.9 (OR = 2.97; 95 % CI, 1.16-7.61; p < 0.05) and 2.3 (OR = 2.37; 95 % CI, 1.11-5.10; p < 0.05) folds, respectively. The risk was further increased in heavy smokers with the XPD Asp/Asn genotype and heavy tobacco chewers with XPD Asn/Asn genotype by 7.7-fold (OR = 7.749; 95 % CI, 2.53-23.70; p < 0.05) and 10-fold (OR = 10; 95 % CI, 1.26-79.13; p < 0.05), respectively. We thus conclude that the XPD Asp312Asn and APE1 Asp148Glu polymorphisms increase the risk for HNC in association with smoking and/or tobacco chewing in the population under study.
Collapse
|