1
|
Zhang N, Cai S, Wang M, Hu T, Schneider F, Sun SY, Coskun AF. Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells. Cell Mol Bioeng 2024; 17:467-490. [PMID: 39513000 PMCID: PMC11538221 DOI: 10.1007/s12195-024-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose Current bulk molecular assays fail to capture spatial signaling activities in cancers, limiting our understanding of drug resistance mechanisms. We developed a graph-based super-resolution protein-protein interaction (GSR-PPI) technique to spatially resolve single-cell signaling networks and evaluate whether higher resolution microscopy enhances the biological study of PPIs using deep learning classification models. Methods Single-cell spatial proximity ligation assays (PLA, ≤ 9 PPI pairs) were conducted on EGFR mutant (EGFRm) PC9 and HCC827 cells (>10,000 cells) treated with 100 nM Osimertinib. Multiplexed PPI images were obtained using wide-field and super-resolution microscopy (Zeiss Airyscan, SRRF). Graph-based deep learning models analyzed subcellular protein interactions to classify drug treatment states and test GSR-PPI on clinical tissue samples. GSR-PPI triangulated PPI nodes into 3D relationships, predicting drug treatment labels. Biological discriminative ability (BDA) was evaluated using accuracy, AUC, and F1 scores. The method was also applied to 3D spatial proteomic molecular pixelation (PixelGen) data from T cells. Results GSR-PPI outperformed baseline models in predicting drug responses from multiplexed PPI imaging in EGFRm cells. Super-resolution data significantly improved accuracy over localized wide-field imaging. GSR-PPI classified drug treatment states in cancer cells and human lung tissues, with performance improving as imaging resolution increased. It differentiated single and combination drug therapies in HCC827 cells and human tissues. Additionally, GSR-PPI accurately distinguished T-cell stimulation states, identifying key nodes such as CD44, CD45, and CD54. Conclusion The GSR-PPI framework provides valuable insights into spatial protein interactions and drug responses, enhancing the study of signaling biology and drug resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00822-1.
Collapse
Affiliation(s)
- Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Mingshuang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Frank Schneider
- Winship Cancer Institute of Emory University, Atlanta, GA 30322 USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shi-Yong Sun
- Winship Cancer Institute of Emory University, Atlanta, GA 30322 USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
2
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
3
|
Lin Z, Xu Q, Song X, Zeng Y, Zeng L, Zhao L, Xu J, Miao D, Chen Z, Yu F. Comprehensive Analysis Identified Mutation-Gene Signature Impacts the Prognosis Through Immune Function in Hepatocellular Carcinoma. Front Oncol 2022; 12:748557. [PMID: 35311113 PMCID: PMC8931204 DOI: 10.3389/fonc.2022.748557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a life-threatening and refractory malignancy with poor outcome. Genetic mutations are the hallmark of cancer. Thus far, there is no comprehensive prognostic model constructed by mutation-gene transcriptome in HCC. The prognostic value of mutation-gene signature in HCC remains elusive.MethodsRNA expression profiles and the corresponding clinical information were recruited from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was employed to establish gene signature. Kaplan–Meier curve and time-dependent receiver operating characteristic curve were implemented to evaluate the prognostic value. The Wilcoxon test was performed to analyze the expression of immune checkpoint genes, cell cycle genes, and tumor drug resistance genes in different risk groups. Finally, quantitative real-time PCR (qRT-RCR) and immunohistochemistry (IHC) were performed to validate the mRNA and protein expression between HCC and adjacent nontumorous tissues in an independent cohort.ResultsA prognostic model consisting of five mutated genes was established by LASSO Cox regression analysis. The prognostic model classified patients into high- and low-risk groups. Compared with the low‐risk group, patients in the high‐risk group had significantly worse survival results. The prognostic model can accurately predict the overall survival of HCC patients and predict overall survival more accurately when combined with stage. Furthermore, the immune checkpoint genes, cell cycle genes, and tumor drug resistance genes were higher expressed in the high-risk group compared in the low-risk group. In addition, the expression level of prognostic signature genes was validated in an independent sample cohort, which was consistent with RNA sequencing expression in the TCGA database.ConclusionThe prediction model of HCC constructed using mutation-related genes is of great significance for clinical decision making and the personalized treatment of patients with HCC.
Collapse
Affiliation(s)
- Zhuo Lin
- Laboratory Animal Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Miao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fujun Yu, ; Zhuoyan Chen,
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Fujun Yu, ; Zhuoyan Chen,
| |
Collapse
|
4
|
Chang TY, Wu CT, Sheu ML, Yang RS, Liu SH. CARMA3 Promotes Colorectal Cancer Cell Motility and Cancer Stemness via YAP-Mediated NF-κB Activation. Cancers (Basel) 2021; 13:cancers13235946. [PMID: 34885061 PMCID: PMC8657120 DOI: 10.3390/cancers13235946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary CARMA3 is overexpressed in most cancers, and its expression is positively associated with poor prognosis. In this study, we evaluated the detailed mechanisms of CARMA3-mediated CRC metastasis. We found that overexpression of CARMA3 induced the expression of YAP and NF-κB activation, then elicited EMT induction to enhance cell migration and invasion. We demonstrate for the first time that YAP is a critical downstream regulator of CARMA3 in CRC. Our findings reveal a regulation axis between CARMA3 and Hippo oncoprotein YAP and further support the potential role of CARMA3 in the metastasis and cancer stemness of CRC. Abstract CARD-recruited membrane-associated protein 3 (CARMA3) is overexpressed in various cancers and is associated with cancer cell proliferation, metastasis, and tumor progression; however, the underlying mechanisms of CARMA3 in colorectal cancer (CRC) metastasis remain unclear. Here, we found that higher CARMA3 expression was correlated with poor overall survival and metastasis in CRC patients from the TNMplot database and Human Tissue Microarray staining. Elevating CARMA3 expression promoted cell proliferation, epithelial-mesenchymal transition (EMT) induction, migration/invasion abilities, sphere formation, and cancer stem cell markers expression. Knockdown of CARMA3 decreased these processes via the EMT-related transcription factor Slug. Moreover, CARMA3 depletion significantly reduced tumor growth in mice that were consistent with the in vitro results. CRC migration/invasion could be regulated by CARMA3/YAP/Slug signaling axis using genetic inhibition of Yes-associated protein (YAP). Interestingly, CARMA3 induced activation of nuclear factor (NF)-κB through YAP expression, contributing to upregulation of Slug. YAP expression positively correlated with CARMA3, NF-κB, and Slug gene expression and poor clinical outcomes in CRC patients. Our findings demonstrate for the first time that CARMA3 plays an important role in CRC progression, which may serve as a potential diagnostic biomarker and candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan;
- Master Program for Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| |
Collapse
|
5
|
CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo. Oncogenesis 2021; 10:32. [PMID: 33824280 PMCID: PMC8024357 DOI: 10.1038/s41389-021-00321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
Collapse
|
6
|
Sheta R, Bachvarova M, Plante M, Renaud MC, Sebastianelli A, Gregoire J, Navarro JM, Perez RB, Masson JY, Bachvarov D. Development of a 3D functional assay and identification of biomarkers, predictive for response of high-grade serous ovarian cancer (HGSOC) patients to poly-ADP ribose polymerase inhibitors (PARPis): targeted therapy. J Transl Med 2020; 18:439. [PMID: 33213473 PMCID: PMC7678187 DOI: 10.1186/s12967-020-02613-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background Poly(ADP-ribose) polymerase inhibitors (PARPis) specifically target homologous recombination deficiency (HRD) cells and display good therapeutic effect in women with advanced-stage BRCA1/2-mutated breast and epithelial ovarian cancer (EOC). However, about 50% of high grade serous ovarian cancers (HGSOC) present with HRD due to epigenetic BRCA1 inactivation, as well as genetic/epigenetic inactivation(s) of other HR genes, a feature known as “BRCAness”. Therefore, there is a potential for extending the use of PARPis to these patients if HR status can be identified. Methods We have developed a 3D (spheroid) functional assay to assess the sensitivity of two PARPis (niraparib and olaparib) in ascites-derived primary cell cultures (AsPCs) from HGSOC patients. A method for AsPCs preparation was established based on a matrix (agarose), allowing for easy isolation and successive propagation of monolayer and 3D AsPCs. Based on this method, we performed cytotoxicity assays on 42 AsPCs grown both as monolayers and spheroids. Results The response to PARPis treatment in monolayer AsPCs, was significantly higher, compared to 3D AsPCs, as 88% and 52% of the monolayer AsPCs displayed sensitivity to niraparib and olaparib respectively, while 66% of the 3D AsPCs were sensitive to niraparib and 38% to olaparib, the latter being more consistent with previous estimates of HRD (40%–60%) in EOC. Moreover, niraparib displayed a significantly stronger cytotoxic effect in both in 3D and monolayer AsPCs, which was confirmed by consecutive analyses of the HR pathway activity (γH2AX foci formation) in PARPis-sensitive and resistant AsPCs. Global gene expression comparison of 6 PARPi-resistant and 6 PARPi-sensitive 3D AsPCs was indicative for the predominant downregulation of numerous genes and networks with previously demonstrated roles in EOC chemoresistance, suggesting that the PARPis-sensitive AsPCs could display enhanced sensitivity to other chemotherapeutic drugs, commonly applied in cancer management. Microarray data validation identified 24 potential gene biomarkers associated with PARPis sensitivity. The differential expression of 7 selected biomarkers was consecutively confirmed by immunohistochemistry in matched EOC tumor samples. Conclusion The application of this assay and the potential biomarkers with possible predictive significance to PARPis therapy of EOC patients now need testing in the setting of a clinical trial.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Obstetrics and Gynecology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamilet Miranda Navarro
- Bioinformatics Department, Center for Genetic Engineering and Biotechnology, 10600, Havana, CP, Cuba
| | - Ricardo Bringas Perez
- Bioinformatics Department, Center for Genetic Engineering and Biotechnology, 10600, Havana, CP, Cuba
| | - Jean-Yves Masson
- Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, G1V 0A6, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Université Laval, Québec, QC, G1V 0A6, Canada. .,Centre de recherche du CHU de Québec, Oncology division, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 3S3, Canada.
| |
Collapse
|
7
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
8
|
Peng L, He K, Cao Z, Bi L, Yu D, Wang Q, Wang J. CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Mol Med Rep 2020; 21:329-337. [PMID: 31939627 PMCID: PMC6896372 DOI: 10.3892/mmr.2019.10840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/22/2019] [Indexed: 01/29/2023] Open
Abstract
Previous studies have demonstrated that the expression of CARD10 is closely associated with the occurrence of tumors, and its role is mainly to promote tumor progression by activating the transcription factor NF‑κB. However, the signaling pathway in renal cancer remains unclear. The objective of the present study was to investigate the ability of caspase recruitment domain 10 (CARD10) to regulate the NF‑κB signaling pathway and promote the progression of renal cell carcinoma (RCC). Expression of CARD10 in ACHN, 786‑O and HK‑2 cells was evaluated via western blot analysis, as was the epidermal growth factor (EGF)‑induced activation of NF‑κB signaling pathway‑related proteins in cells. The expression of CARD10 was inhibited by CARD10 short hairpin RNA transfection. Cell cycle analysis and MTT assays were used to evaluate cell proliferation. Cell apoptosis was analyzed via flow cytometry. The invasion of renal cell lines was detected via Transwell cell migration and invasion assays in vitro. The results showed that CARD10 expression was significantly higher in RCC cells than in normal renal tubular epithelial cells. CARD10 silencing inhibited the proliferation, invasion and migration of RCC cells. EGF stimulation upregulated the activation of the NF‑κB pathway in RCC cells. Inhibition of CARD10 expression inhibited NF‑κB activation in RCC cells. Taken together, these data suggested that CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Thus, this indicated that CARD10 may be a novel therapeutic target in RCC.
Collapse
Affiliation(s)
- Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ke He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Man X, Liu T, Jiang Y, Zhang Z, Zhu Y, Li Z, Kong C, He J. Silencing of CARMA3 inhibits bladder cancer cell migration and invasion via deactivating β-catenin signaling pathway. Onco Targets Ther 2019; 12:6309-6322. [PMID: 31496734 PMCID: PMC6693424 DOI: 10.2147/ott.s191502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/02/2019] [Indexed: 02/03/2023] Open
Abstract
Background Bladder cancer (BC) is the ninth most common cancer and the fourteenth leading death worldwide. CARD-containing MAGUK 3 (CARMA3) protein is a novel scaffold protein known to activate NF-κB pathway and is overexpressed in BC tissues. Purpose The objective of this study was to identify how CARMA3 affects the metastasis of BC cells via the β-catenin signaling pathway. Materials and methods In the present study, 5637 and T24 BC cells with stable low expression of CARMA3 were established, and their migratory and invasive capabilities were further evaluated by wound-healing and transwell assay. The activity and expression of β-catenin were determined by Luciferase assay and immunofluoresence staining. The mRNA and protein expression levels of CARMA3, matrix metallopeptidase (MMP) 9 and MMP2 were detected by quantitative real-time PCR (qRT-PCR) and Western blot analysis. The nude mouse tumor xenograft model was established for in vivo study. Results By comparison to the control cells, CARMA3-silenced cells acquired a less aggressive phenotype: decreased migration and invasion. More importantly, we confirmed that CARM3 knockdown could inhibit β-catenin mRNA and protein expression and activity, and reduce the expression and/or activity of matrix metallopeptidase (MMP) 9, MMP2 and C-myc. Also, CARM3 silencing increased E-cadherin expression and attenuated the expression of β-catenin. Moreover, we demonstrated that β-catenin overexpression reversed the inhibiting effect of CARMA3 silencing on cell invasion and migration. Furthermore, our study illustrated that knockdown of CARMA3 suppressed BC cells xenograft tumor growth in nude mice. Conclusion We demonstrated that CARMA3 contributes to the malignant phenotype of BC cells at least by activating β-catenin signaling pathway, and it may serve as a therapeutic target for clinic treatment in BC.
Collapse
Affiliation(s)
- Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Jiani He
- Breast Division, Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
10
|
Jia XP, Chen XZ, Lou QB, Zhou ZF, Gao L, Zhou PF. Sevoflurane regulates CARMA3 to inhibit migration and invasion of gastric cancer cells by targeting NF-κB signaling pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:220-227. [DOI: 10.11569/wcjd.v27.i4.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of sevoflurane on cell migration and invasion in gastric cancer (GC) cells, and to explore the underlying mechanism.
METHODS After SGC7901 cells were transfected with siCARMA3 (siCARMA3 group), siControl (NC group), pcDNA 3.1-CARMA3 (CARMA3 group), or pcDNA 3.1 (vector group) by liposome method, the expression of CARMA3 mRNA in cells was detected by qRT-PCR, and the protein expression of CARMA3, p-p65, and p65 was detected by Western blot.
RESULTS Compared with the control group, sevoflurane inhibited the migration and invasion of GC cells and down-regulated the expression of CARMA3. Silencing of CARMA3 inhibited the migration and invasion of GC cells, while overexpression of CARMA3 promoted the migration and invasion of GC cells. CARMA3 targeted the NF-κB pathway. Thus, sevoflurane regulated CARMA3 to inhibit migration and invasion of GC cells by targeting the NF-κB pathway.
CONCLUSION Sevoflurane could inhibit the migration and invasion of GC cells via mechanisms that may be related to the regulation of CARMA3 to target the NF-κB pathway. This finding will provide a basis for clinical treatment of GC with sevoflurane.
Collapse
Affiliation(s)
- Xiu-Ping Jia
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xiao-Zhen Chen
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Qun-Bin Lou
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Zhen-Feng Zhou
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Liang Gao
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Fei Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
11
|
Zhang S, Lin X. CARMA3: Scaffold Protein Involved in NF-κB Signaling. Front Immunol 2019; 10:176. [PMID: 30814996 PMCID: PMC6381293 DOI: 10.3389/fimmu.2019.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Scaffold proteins are defined as pivotal molecules that connect upstream receptors to specific effector molecules. Caspase recruitment domain protein 10 (CARD10) gene encodes a scaffold protein CARMA3, belongs to the family of CARD and membrane-associated guanylate kinase-like protein (CARMA). During the past decade, investigating the function of CARMA3 has revealed that it forms a complex with BCL10 and MALT1 to mediate different receptors-dependent signaling, including GPCR and EGFR, leading to activation of the transcription factor NF-κB. More recently, CARMA3 and its partners are also reported to be involved in antiviral innate immune response and DNA damage response. In this review, we summarize the biology of CARMA3 in multiple receptor-induced NF-κB signaling. Especially, we focus on discussing the function of CARMA3 in regulating NF-κB activation and antiviral IFN signaling in the context of recent progress in the field.
Collapse
Affiliation(s)
| | - Xin Lin
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
12
|
Zhang X, Liu X, Jing Z, Bi J, Li Z, Liu X, Li J, Li Z, Zhang Z, Kong C. The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer. Cancer Gene Ther 2019; 27:189-202. [PMID: 30723269 DOI: 10.1038/s41417-019-0085-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 11/09/2022]
Abstract
Accumulating evidence shows that circular RNAs (circRNAs) function as microRNA sponges that regulate gene expression in the progression of human cancers. However, the roles of circRNAs and functional miRNA sponges in bladder cancer (BC) remain largely unknown. In the present study, we applied bioinformatics methods and hypothesised that miR-146b may target the 3'-untranslated region (UTR) of CARMA3 mRNA and circINTS4 may serve as a sponge for miR-146b in BC tumorigenesis. Expression of circINTS4 was significantly increased in miR-146b-downregulated BC tissues and cell lines compared to adjacent normal tissues. Furthermore, circINTS4 was found to control multiple pathological processes, including cell proliferation and migration, the cell cycle and apoptosis. Regarding the mechanism, circINTS4 directly bound to miR-146b to inhibit its activity of targeting the 3'-UTR of CARMA3 mRNA. In addition, circINTS4 could activate the NF-kB signalling pathway and suppress the P38 MAPK signalling pathway in a CARMA3-mediated manner in BC cells. In summary, the circINTS4/miR-146b/CARMA3 axis might serve as a promising therapeutic target for BC intervention.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xi Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhifei Jing
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
13
|
Mellett M, Meier B, Mohanan D, Schairer R, Cheng P, Satoh TK, Kiefer B, Ospelt C, Nobbe S, Thome M, Contassot E, French LE. CARD14 Gain-of-Function Mutation Alone Is Sufficient to Drive IL-23/IL-17–Mediated Psoriasiform Skin Inflammation In Vivo. J Invest Dermatol 2018; 138:2010-2023. [DOI: 10.1016/j.jid.2018.03.1525] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
14
|
McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 Is a Critical Mediator of G Protein-Coupled Receptor and Receptor Tyrosine Kinase-Driven Solid Tumor Pathogenesis. Front Immunol 2018; 9:1887. [PMID: 30158935 PMCID: PMC6104486 DOI: 10.3389/fimmu.2018.01887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
The CARMA–Bcl10–MALT1 (CBM) signalosome is an intracellular protein complex composed of a CARMA scaffolding protein, the Bcl10 linker protein, and the MALT1 protease. This complex was first recognized because the genes encoding its components are targeted by mutation and chromosomal translocation in lymphoid malignancy. We now know that the CBM signalosome plays a critical role in normal lymphocyte function by mediating antigen receptor-dependent activation of the pro-inflammatory, pro-survival NF-κB transcription factor, and that deregulation of this signaling complex promotes B-cell lymphomagenesis. More recently, we and others have demonstrated that a CBM signalosome also operates in cells outside of the immune system, including in several solid tumors. While CARMA1 (also referred to as CARD11) is expressed primarily within lymphoid tissues, the related scaffolding protein, CARMA3 (CARD10), is more widely expressed and participates in a CARMA3-containing CBM complex in a variety of cell types. The CARMA3-containing CBM complex operates downstream of specific G protein-coupled receptors (GPCRs) and/or growth factor receptor tyrosine kinases (RTKs). Since inappropriate expression and activation of GPCRs and/or RTKs underlies the pathogenesis of several solid tumors, there is now great interest in elucidating the contribution of CARMA3-mediated cellular signaling in these malignancies. Here, we summarize the key discoveries leading to our current understanding of the role of CARMA3 in solid tumor biology and highlight the current gaps in our knowledge.
Collapse
Affiliation(s)
- J Randall McAuley
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tanner J Freeman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Prasanna Ekambaram
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter C Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Linda M McAllister-Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Xu X, Zheng Z, Jia L, Suo S, Liu B, Shao T, Tu Q, Hua Y, Xu H. Overexpression of SMARCA2 or CAMK2D is associated with cisplatin resistance in human epithelial ovarian cancer. Oncol Lett 2018; 16:3796-3804. [PMID: 30127991 PMCID: PMC6096159 DOI: 10.3892/ol.2018.9109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is one of the most lethal types of gynecological cancer. Drug resistance is a major underlying cause of treatment failure, which has lead to continued poor mortality and morbidity rates in patients. In the present study, highly sensitive transcriptome sequencing was performed to systematically identify differentially expressed mRNAs in cisplatin-sensitive (A2780) and -resistant (A2780-DR) cells. Calcium/calmodulin dependent protein kinase IIδ (CAMK2D) and SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily A member 2 (SMARCA2) were identified as exhibiting increased expression in cisplatin-resistant cells. Overexpression of either SMARCA2 or CAMK2D led to a significant increase in the survival rates of A2780 and SKVO3 cells following cisplatin treatment. To further verify the contribution of these two genes in the development of drug resistance, the RNA levels in tissues with different recurrence-free survival (RFS) rates were compared. An increased mRNA level of CAMK2D was detected in samples with shorter RFS rates. An apoptosis assay revealed that overexpression of SMARCA2 or CAMK2D increased the resistance of ovarian cancer cells to cisplatin, as indicated by the decreased apoptotic cell populations. The levels of these two genes also affected the cell cycle and apoptosis-associated protein expression. Quantitative proteomic analyses revealed that overexpression of SMARCA2 or CAMK2D influences multiple metabolism and cancer-associated signaling pathways, which are critical for responses to cisplatin treatment and drug resistance development.
Collapse
Affiliation(s)
- Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Zhiguo Zheng
- Institute of Zhejiang Cancer Research, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lanlan Jia
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Shasha Suo
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Bowen Liu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Tianning Shao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Qinqing Tu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| |
Collapse
|
16
|
Elshimali YI, Wu Y, Khaddour H, Wu Y, Gradinaru D, Sukhija H, Chung SS, Vadgama JV. Optimization Of Cancer Treatment Through Overcoming Drug Resistance. JOURNAL OF CANCER RESEARCH AND ONCOBIOLOGY 2018; 1:107. [PMID: 29932172 PMCID: PMC6007995 DOI: 10.31021/jcro.20181107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer Drug resistance is a medical concern that requires extensive research and a thorough understanding in order to overcome. Remarkable achievements related to this field have been accomplished and further work is needed in order to optimize the cure for cancer and serve as the basis for precise medicine with few or no side effects.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Hussein Khaddour
- Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Daniela Gradinaru
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Hema Sukhija
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
| | - Seyung S. Chung
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| |
Collapse
|
17
|
Zhou T, Souzeau E, Sharma S, Siggs OM, Goldberg I, Healey PR, Graham S, Hewitt AW, Mackey DA, Casson RJ, Landers J, Mills R, Ellis J, Leo P, Brown MA, MacGregor S, Burdon KP, Craig JE. Rare variants in optic disc area gene CARD10 enriched in primary open-angle glaucoma. Mol Genet Genomic Med 2016; 4:624-633. [PMID: 27896285 PMCID: PMC5118207 DOI: 10.1002/mgg3.248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified association of common alleles with primary open-angle glaucoma (POAG) and its quantitative endophenotypes near numerous genes. This study aims to determine whether rare pathogenic variants in these disease-associated genes contribute to POAG. METHODS Participants fulfilled strict inclusion criteria of advanced POAG at a young age of diagnosis. Myocilin mutation carriers were excluded using direct sequencing. Whole exome sequencing was performed on 187 glaucoma cases and 103 local screened nonglaucoma controls then joint-called with exomes of 993 previously sequenced Australian controls. GWAS-associated genes were assessed for enrichment of rare predicted pathogenic variants in POAG. Significantly enriched genes were compared against Exome Aggregation Consortium (ExAC) public control. RESULTS Eighty-six GWAS disease or trait-associated glaucoma genes were captured and sequenced. CARD10 showed enrichment after Bonferroni correction for rare variants in glaucoma cases (OR = 13.2, P = 6.94 × 10-5) with mutations identified in 4.28% of our POAG cohort compared to 0.27% in controls. CARD10 was significantly associated with optic disc parameters in previous GWAS. The whole GWAS gene set showed no enrichment in POAG overall (OR = 1.12, P = 0.51). CONCLUSION We report here an enrichment of rare predicted pathogenic coding variants within a GWAS-associated locus in POAG (CARD10). These findings indicate that both common and rare pathogenic coding variants in CARD10 may contribute to POAG pathogenesis.
Collapse
Affiliation(s)
- Tiger Zhou
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | | | - Shiwani Sharma
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Owen M Siggs
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Ivan Goldberg
- Discipline of OphthalmologyUniversity of SydneySydneyNSWAustralia; Glaucoma UnitSydney Eye HospitalSydneyNSWAustralia
| | - Paul R Healey
- Discipline of Ophthalmology University of Sydney Sydney NSW Australia
| | - Stuart Graham
- Discipline of Ophthalmology University of Sydney Sydney NSW Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research University of Tasmania Hobart TAS Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science Lions Eye Institute University of Western Australia Perth WA Australia
| | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences University of Adelaide Adelaide SA Australia
| | - John Landers
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Richard Mills
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Jonathan Ellis
- Diamantina Institute Translational Research Institute Princess Alexandra Hospital University of Queensland Woolloongabba QLD Australia
| | - Paul Leo
- Diamantina Institute Translational Research Institute Princess Alexandra Hospital University of Queensland Woolloongabba QLD Australia
| | - Matthew A Brown
- Diamantina Institute Translational Research Institute Princess Alexandra Hospital University of Queensland Woolloongabba QLD Australia
| | - Stuart MacGregor
- Statistical Genetics QIMR Berghofer Medical Research Institute Royal Brisbane Hospital Brisbane QLD Australia
| | - Kathryn P Burdon
- Department of OphthalmologyFlinders UniversityAdelaideSAAustralia; Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTASAustralia
| | - Jamie E Craig
- Department of Ophthalmology Flinders University Adelaide SA Australia
| |
Collapse
|
18
|
Chang YW, Chiu CF, Lee KY, Hong CC, Wang YY, Cheng CC, Jan YH, Huang MS, Hsiao M, Ma JT, Su JL. CARMA3 Represses Metastasis Suppressor NME2 to Promote Lung Cancer Stemness and Metastasis. Am J Respir Crit Care Med 2015; 192:64-75. [PMID: 25906011 DOI: 10.1164/rccm.201411-1957oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE CARD-recruited membrane-associated protein 3 (CARMA3) is a novel scaffold protein that regulates nuclear factor (NF)-κB activation; however, the underlying mechanism of CARMA3 in lung cancer stemness and metastasis remains largely unknown. OBJECTIVES To investigate the molecular mechanisms underlying the involvement of CARMA3 in non-small cell lung cancer progression. METHODS The expression levels of CARMA3 and NME2 in a cohort of patients with lung cancer (n = 91) were examined by immunohistochemistry staining and assessed by Kaplan-Meier survival analysis. The effects of CARMA3, microRNA-182 (miR-182), and NME2 on cancer stemness and metastasis were measured in vitro and in vivo. Chromatin immunoprecipitation and luciferase reporter assays were performed to determine the mechanisms of NF-κB-driven miR-182 expression and NME2 regulation. MEASUREMENTS AND MAIN RESULTS We observed that CARMA3 inversely correlated with NME2 expression in patients with lung cancer (Pearson correlation coefficient: R = -0.24; P = 0.022). NME2 levels were significantly decreased in tumor tissues compared with adjacent normal lung tissues (P < 0.001), and patients with lung cancer with higher levels of NME2 had longer survival outcomes (overall survival, P < 0.01; disease-free survival, P < 0.01). Mechanistically, CARMA3 promoted cell motility by reducing the level of NME2 through the NF-κB/miR-182 pathway and by increasing cancer stem cell properties and metastasis in lung cancer. CONCLUSIONS We identified a novel mechanism of CARMA3 in lung cancer stemness and metastasis through the negative regulation of NME2 by NF-κB-dependent induction of miR-182. Our findings provide an attractive strategy for targeting the CARMA3/NF-κB/miR-182 pathway as a potential treatment for lung cancer.
Collapse
Affiliation(s)
- Yi-Wen Chang
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.,2 Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Chiu
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kang-Yun Lee
- 4 Department of Internal Medicine, School of Medicine, College of Medicine, and.,5 Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chen Hong
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Yun Wang
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ching-Chia Cheng
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Hua Jan
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Shyan Huang
- 6 Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Ti Ma
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jen-Liang Su
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.,7 Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan.,8 Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan; and.,9 Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Pérez de Diego R, Sánchez-Ramón S, López-Collazo E, Martínez-Barricarte R, Cubillos-Zapata C, Ferreira Cerdán A, Casanova JL, Puel A. Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity. J Allergy Clin Immunol 2015; 136:1139-49. [PMID: 26277595 DOI: 10.1016/j.jaci.2015.06.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These 3 CARD-BCL10-MALT1 (CBM) complexes activate nuclear factor κB in both the innate and adaptive arms of immunity. Human inherited defects of the 3 components of the CBM complex, including the 2 adaptors CARD9 and CARD11 and the 2 core components BCL10 and MALT1, have recently been reported. Biallelic loss-of-function mutant alleles underlie several different immunologic and clinical phenotypes, which can be assigned to 2 distinct categories. Isolated invasive fungal infections of unclear cellular basis are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1, and BCL10 deficiencies. Interestingly, human subjects with these mutations have some features in common with the corresponding knockout mice, but other features are different between human subjects and mice. Moreover, germline and somatic gain-of-function mutations of MALT1, BCL10, and CARD11 have also been found in patients with other lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including loss-of-function and gain-of-function mutations, highlights the contribution of each of the components of the CBM complex to human immunity.
Collapse
Affiliation(s)
- Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain.
| | | | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Laboratory of Tumor Immunology, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Rubén Martínez-Barricarte
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Laboratory of Tumor Immunology, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University Paris Descartes, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University Paris Descartes, Imagine Institute, Paris, France
| |
Collapse
|