1
|
Doghish AS, El-Sayyad GS, Abdel Mageed SS, Abd-Elmawla MA, Sallam AAM, El Tabaa MM, Rizk NI, Ashraf A, Mohammed OA, Mangoura SA, Al-Noshokaty TM, Zaki MB, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Elballal MS, Abulsoud AI. The emerging role of miRNAs in pituitary adenomas: From molecular signatures to diagnostic potential. Exp Cell Res 2024; 442:114279. [PMID: 39389336 DOI: 10.1016/j.yexcr.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pituitary adenomas (PAs) are an array of tumors originating from the pituitary gland. PAs are sorted as functional or nonfunctional according to their hormonal activity and classified according to size into microadenomas and macroadenomas. Still, the cellular events that trigger the transformations in pituitary neoplasms are not fully understood, and the current classification methods do not precisely predict clinical behavior. A rising number of researches have emphasized the role of miRNAs, that drawn more attention as oncogenic molecules or tumor suppressors. The etiopathological mechanisms of PAs include multiple molecular cascades that are influenced by different miRNAs. miRNAs control the cell cycle control, pro- or antiapoptotic processes, and tumor invasion and metastasis. miRNAs offer a novel perspective on tumor features and behaviors and might be valuable in prognostication and therapeutic plans. In pituitary adenomas, miRNAs showed a specific expression pattern depending on their size, cell origin, remission, and treatments. Screening miRNA expression patterns is promising to monitor and evaluate recurrence, as well as to investigate the efficacy of radiation and chemotherapy for PAs exhibiting aggressive behavior. Thus, the current review investigated the interplay of the miRNAs' pivotal role in offering new opportunities to translate these innovative epigenetic tools into healthcare applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
2
|
Zhang X, Ji H, Huang Y, Zhu B, Xing Q. Elevated PTTG1 predicts poor prognosis in kidney renal clear cell carcinoma and correlates with immunity. Heliyon 2023; 9:e13201. [PMID: 36793955 PMCID: PMC9922818 DOI: 10.1016/j.heliyon.2023.e13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Background PTTG1 has been reported to be linked with the prognosis and progression of various cancers, including kidney renal clear cell carcinoma (KIRC). In this article, we mainly investigated the associations between prognosis, immunity, and PTTG1 in KIRC patients. Method We downloaded transcriptome data from the TCGA-KIRC database. PCR and immunohistochemistry were used, respectively, to validate the expression of PTTG1 in KIRC at the cell line and the protein levels. Survival analyses as well as univariate or multivariate Cox hazard regression analyses were used to prove whether PTTG1 alone could affect the prognosis of KIRC. The most important point was to study the relationship between PTTG1 and immunity. Results The results of the paper revealed that the expression levels of PTTG1 were elevated in KIRC compared with para-cancerous normal tissues, validated by PCR and immunohistochemistry at the cell line and the protein levels (P < 0.05). High PTTG1 expression was related to shorter overall survival (OS) in patients with KIRC (P < 0.05). Through univariate or multivariate regression analysis, PTTG1 was confirmed to be an independent prognostic factor for OS of KIRC (P < 0.05), and its related seven pathways were obtained through gene set enrichment analysis (GSEA; P < 0.05). Moreover, tumor mutational burden (TMB) and immunity were found to be significantly connected with PTTG1 in KIRC (P < 0.05). Correlations between PTTG1 and immunotherapy responses implied that the low-PTTG1 group was more sensitive to immunotherapy (P < 0.05). Conclusions PTTG1 was closely associated with TMB or immunity, and it had a superior ability to forecast the prognosis of KIRC patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hao Ji
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yeqing Huang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226001, Jiangsu Province, China,Corresponding author. Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), No. 881 Yonghe Road, Nantong, 226001, Jiangsu Province, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China,Corresponding author. Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
3
|
Liu X, Zeng W, Zheng D, Tang M, Zhou W. Clinical significance of securin expression in solid cancers: A PRISMA-compliant meta-analysis of published studies and bioinformatics analysis based on TCGA dataset. Medicine (Baltimore) 2022; 101:e30440. [PMID: 36123907 PMCID: PMC9478268 DOI: 10.1097/md.0000000000030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Numerous studies have investigated the clinical significance of securin expression in solid cancers; however, the results have been inconsistent. Hence, we performed a meta-analysis of published studies to assess the clinical value of securin expression in patients with solid cancers. METHODS The Chinese National Knowledge Infrastructure, Web of Science, PubMed, and EMDASE databases were searched for eligible studies (from inception up to April 2021). Bioinformatics analysis based on The Cancer Genome Atlas dataset was also performed to evaluate the prognostic value of securin expression. RESULTS A total of 25 articles with 26 studies were included in the meta-analysis. The results of the meta-analysis implied that high securin expression was positively correlated with unfavorable overall survival (OS) (hazard ratio = 1.52, 95% CI, 1.33-1.73; P < .001) and lymph node metastasis (odd ratio = 2.96, 95% CI, 2.26-3.86; P < .001). Consistently, our bioinformatics analysis showed that increased securin expression was associated with worse OS and shorter disease-free survival in cancer patients. CONCLUSION Our study indicated that securin overexpression was positively associated with metastasis and inversely related to the prognosis of patients with solid cancers. However, additional high-quality studies should be conducted to validate these findings.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wei Zeng
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Dayang Zheng
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Min Tang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wangyan Zhou
- Department of Medical Humanities and Education Department, the First Affiliated Hospital, University of South China, Hengyang, China
- * Correspondence: Wangyan Zhou, Department of Medical Humanities and Education Department, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang 421001, China (e-mail: )
| |
Collapse
|
4
|
Renu K, Vinayagam S, Veeraraghavan VP, Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Dey A, Vellingiri B, Kandasamy S, Ramanathan G, Doss C GP, George A, Gopalakrishnan AV. Molecular Crosstalk between the Immunological Mechanism of the Tumor Microenvironment and Epithelial–Mesenchymal Transition in Oral Cancer. Vaccines (Basel) 2022; 10:vaccines10091490. [PMID: 36146567 PMCID: PMC9504083 DOI: 10.3390/vaccines10091490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Oral cancer is a significant non-communicable disease affecting both emergent nations and developed countries. Squamous cell carcinoma of the head and neck represent the eight major familiar cancer types worldwide, accounting for more than 350,000 established cases every year. Oral cancer is one of the most exigent tumors to control and treat. The survival rate of oral cancer is poor due to local invasion along with recurrent lymph node metastasis. The tumor microenvironment contains a different population of cells, such as fibroblasts associated with cancer, immune-infiltrating cells, and other extracellular matrix non-components. Metastasis in a primary site is mainly due to multifaceted progression known as epithelial-to-mesenchymal transition (EMT). For the period of EMT, epithelial cells acquire mesenchymal cell functional and structural characteristics, which lead to cell migration enhancement and promotion of the dissemination of tumor cells. The present review links the tumor microenvironment and the role of EMT in inflammation, transcriptional factors, receptor involvement, microRNA, and other signaling events. It would, in turn, help to better understand the mechanism behind the tumor microenvironment and EMT during oral cancer.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
- Correspondence: (K.R.); (A.V.G.)
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Centre for Postgraduate and Research Studies, Periyar University, Dharmapuri 635205, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Institute of Energy Research, Jiangsu University, No 301, Xuefu Road, Zhenjiang 212013, China
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (K.R.); (A.V.G.)
| |
Collapse
|
5
|
Henriques DG, Lamback EB, Dezonne RS, Kasuki L, Gadelha MR. MicroRNA in Acromegaly: Involvement in the Pathogenesis and in the Response to First-Generation Somatostatin Receptor Ligands. Int J Mol Sci 2022; 23:ijms23158653. [PMID: 35955787 PMCID: PMC9368811 DOI: 10.3390/ijms23158653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly’s tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.
Collapse
Affiliation(s)
- Daniel G. Henriques
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Elisa B. Lamback
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Romulo S. Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Endocrinology Division, Hospital Federal de Bonsucesso, Rio de Janeiro 21041-020, Brazil
| | - Monica R. Gadelha
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Correspondence:
| |
Collapse
|
6
|
Gong S, Wu C, Duan Y, Tang J, Wu P. A Comprehensive Pan-Cancer Analysis for Pituitary Tumor-Transforming Gene 1. Front Genet 2022; 13:843579. [PMID: 35281830 PMCID: PMC8916819 DOI: 10.3389/fgene.2022.843579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) encodes a multifunctional protein that is involved in many cellular processes. However, the potential role of PTTG1 in tumor formation and its prognostic function in human pan-cancer is still unknown. The analysis of gene alteration, PTTG1 expression, prognostic function, and PTTG1-related immune analysis in 33 types of tumors was performed based on various databases such as The Cancer Genome Atlas database, the Genotype-Tissue Expression database, and the Human Protein Atlas database. Additionally, PTTG1-related gene enrichment analysis was performed to investigate the potential relationship and possible molecular mechanisms between PTTG1 and tumors. Overexpression of PTTG1 may lead to tumor formation and poor prognosis in various tumors. Consequently, PTTG1 acts as a potential oncogene in most tumors. Additionally, PTTG1 is related to immune infiltration, immune checkpoints, tumor mutational burden, and microsatellite instability. Thus, PTTG1 could be potential biomarker for both prognosis and outcomes of tumor treatment and it could also be a promising target in tumor therapy.
Collapse
Affiliation(s)
- Siming Gong
- Department of Orthopaedics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Juyu Tang
- Department of Orthopaedics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopaedics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Panfeng Wu,
| |
Collapse
|
7
|
Huang M, Jiang W, Luo C, Yang M, Ren Y. Atractylenolide III inhibits epithelial‑mesenchymal transition in small intestine epithelial cells by activating the AMPK signaling pathway. Mol Med Rep 2022; 25:98. [PMID: 35088892 PMCID: PMC8809054 DOI: 10.3892/mmr.2022.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Compared with the available drugs for the treatment of fibrosis in other organs, the development of intestinal anti-fibrosis drugs is limited. Therefore, it is of practical significance to examine novel drugs to delay or block the development of intestinal fibrosis. The present study aimed to investigate the effect of atractylenolide III (ATL-III) on intestinal fibrosis. An MTT assay was used to detect the effect of ATL-III on the activity of IEC-6 cells. The migration and invasion of fibrotic cells stimulated with TGF-β were determined via wound healing and Transwell assays. An immunofluorescence assay and western blotting were conducted to assess the expression levels of protein associated with epithelial-mesenchymal transition (EMT). The role of the AMP-activated protein kinase (AMPK) pathway was verified using compound C (an AMPK inhibitor) treatment. The results of the present study indicated that ATL-III had no effect on the cells at a dose of 1–20 µmol/l. Moreover, ATL-III can inhibit the invasion and migration of cells induced by TGF-β1, as well as block the EMT process. It was found that ATL-III could also activate the AMPK pathway. Furthermore, compound C reduced the inhibitory effect of ATL-III on stimulated cells, which indicated that the AMPK pathway plays a role in the inhibition process. In conclusion, ATL-III may inhibit the EMT of IEC-6 cells stimulated with TGF-β1 by activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Mingjin Huang
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Wenwen Jiang
- College of Pharmaceutical Science, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Chunli Luo
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Min Yang
- College of Pharmaceutical Science, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Yan Ren
- College of Pharmaceutical Science, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
8
|
Lee SS, Choi JH, Lim SM, Kim GJ, Lee SK, Jeon YK. Alteration of Pituitary Tumor Transforming Gene 1 by MicroRNA-186 and 655 Regulates Invasion Ability of Human Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22031021. [PMID: 33498448 PMCID: PMC7864193 DOI: 10.3390/ijms22031021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Pituitary tumor-transforming gene 1 (PTTG1) was recently shown to be involved in the progression as well as the metastasis of cancers. However, their expression and function in the invasion of oral squamous cell carcinoma (SCC) remain unclear. Methods: The expressions of PTTG1 and PTTG1-targeted miRNA in oral SCC cell lines and their invasion capability depended on PTTG1 expression were analyzed by quantitative RT-PCR, Western blots, the transwell insert system and Zymography. Results: Invasion abilities were decreased in oral SCC cells treated with siRNA-PTTG1. When PTTG1 were downregulated in oral SCC cells treated with microRNA-186 and -655 inhibited their invasion abilities via MMP-9 activity. Conclusions: These results indicate that alteration of expression of PTTG1 in oral SCC cells by newly identified microRNA-186 and -655 can regulate invasion activity. Therefore, these data offer new insights into further understanding PTTG1 function in oral SCC and should provide new strategies for diagnostic markers for oral SCC.
Collapse
Affiliation(s)
- Sang Shin Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.H.C.); (S.K.L.)
- Correspondence: (S.S.L.); (Y.K.J.)
| | - Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.H.C.); (S.K.L.)
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seoul 13488, Korea; (S.M.L.); (G.J.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seoul 13488, Korea; (S.M.L.); (G.J.K.)
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.H.C.); (S.K.L.)
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (S.S.L.); (Y.K.J.)
| |
Collapse
|
9
|
Y-Box Binding Protein-1 Promotes Epithelial-Mesenchymal Transition in Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 22:ijms22010224. [PMID: 33379356 PMCID: PMC7795419 DOI: 10.3390/ijms22010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our collective findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance.
Collapse
|
10
|
Meng Z, Zhu S, Liu N, Tian J. miR-362-3p suppresses sinonasal squamous cell carcinoma progression via directly targeting pituitary tumor-transforming gene 1. J Recept Signal Transduct Res 2020; 42:43-51. [PMID: 33148101 DOI: 10.1080/10799893.2020.1839766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sinonasal squamous cell carcinoma (SNSCC) is a main subtype of sinonasal malignancy with unclear pathogenesis. microRNAs (miRNAs) are involved in SNSCC progression. Nevertheless, the role and mechanism of miR-362-3p in SNSCC development are unclear. METHODS The SNSCC tissues (n = 23) and normal sinonasal samples (n = 13) were harvested. SNSCC cell line RPMI-2650 cells were transfected using Lipofectamine 3000. miR-362-3p and pituitary tumor-transforming gene 1 (PTTG1) were determined by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation was analyzed via Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell migration and invasion was assessed using wound healing assay and transwell assay. Epithelial-mesenchymal transition (EMT)-associated protein (E-cadherin, N-cadherin and Vimentin) levels were measured via western blot. The binding relationship was analyzed via bioinformatic analysis and dual-luciferase reporter assay. RESULTS miR-362-3p abundance was decreased in SNSCC samples. miR-362-3p addition constrained cell proliferation, migration, invasion and EMT, but miR-362-3p knockdown played an opposite effect. PTTG1 was targeted and negatively modulated by miR-362-3p. PTTG1 abundance was elevated in SNSCC samples. PTTG1 overexpression mitigated miR-362-3p-modulated suppression of cell proliferation, migration, invasion and EMT in SNSCC cells. CONCLUSION miR-362-3p repressed cell proliferation, migration, invasion and EMT in SNSCC via targeting PTTG1.
Collapse
Affiliation(s)
- Zhaolun Meng
- Department of E. N. T, Qingdao Jiaozhou Center Hospital, Qingdao, Shandong, China
| | - Shu Zhu
- Department of E. N. T, Qingdao Jiaozhou Center Hospital, Qingdao, Shandong, China
| | - Na Liu
- Department of E. N. T, Qingdao Jiaozhou Center Hospital, Qingdao, Shandong, China
| | - Jie Tian
- Department of Otolaryngology, Zibo Center Hospital, Zibo, Shandong, China
| |
Collapse
|
11
|
Fraune C, Yehorov S, Luebke AM, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Weidemann S, Dum D, Kind S, Minner S, Schlomm T, Huland H, Heinzer H, Graefen M, Burandt E. Upregulation of PTTG1 is associated with poor prognosis in prostate cancer. Pathol Int 2020; 70:441-451. [PMID: 32314536 DOI: 10.1111/pin.12938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is a regulator of chromosome stability. PTTG1 overexpression had been associated with tumor aggressiveness in several cancer types. To examine its prognostic utility in prostate cancer, a tissue microarray including 12 427 tumors with clinical and molecular data was analyzed by immunohistochemistry. PTTG1 immunostaining was largely absent in normal prostate epithelial cells. In cancers, staining was considered weak in 5.4%, moderate in 5.6% and strong in 0.8%. Strong staining was linked to advanced pT stage, high classical and quantitative Gleason grade, high Ki67-labeling index (all P < 0.0001) and lymph node metastasis (P = 0.0083). The prognostic impact of PTTG1 expression was independent of established preoperative and postoperative prognostic features. Comparison with molecular features revealed that PTTG1 upregulation was associated with nine of 12 common genomic deletions (P < 0.05), p53 alterations and high androgen receptor levels (P < 0.001 each), but was unrelated to the TMPRSS2:ERG fusion status. In conclusion, these data identify PTTG1 as a strong and independent prognostic feature in prostate cancer. PTTG1 measurement, either alone or in combination with other biomarkers might be instrumental for determining prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serhiy Yehorov
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, University Medical Center Charité-Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Zhang T, Li H, Zhang Y, Wang P, Bian H, Chen ZN. Expression of proteins associated with epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Oncol Lett 2017; 15:3042-3048. [PMID: 29435035 PMCID: PMC5778795 DOI: 10.3892/ol.2017.7701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cluster of differentiation 147 (CD147), pituitary tumor transforming gene (PTTG) and CD44v6 are proteins involved in the epithelial-mesenchymal transition (EMT). To investigate the prognostic value of CD147 and PTTG, and CD44v6 expression in esophageal squamous cell carcinoma (ESCC), tissue microarray specimens from 76 patients with ESCC were evaluated by immunohistochemistry staining and scored by intensity and proportion of positive areas. Expression levels of CD147, PTTG and CD44v6 were higher in tumor tissues than in matched adjacent tissues. CD147 expression was positively associated with lymph node metastasis (P=0.025) and American Joint Committee on Cancer (AJCC) system clinical grades (P=0.037). CD147 expression was positively correlated with the expression levels of PTTG (R=0.369; P=0.001) and CD44v6 (R=0.320; P=0.005). In addition, Kaplan-Meier analysis indicated that positive expression of CD147, PTTG and CD44v6 was significantly associated with poor overall survival times (P=0.045, P=0.014 and P=0.027, respectively). Patients exhibiting CD147-PTTG co-expression, CD147-CD44v6 co-expression and CD147-PTTG-CD44v6 triple-positive expression had the poorest overall survival rates. In conclusion, the expression of EMT-associated proteins, including CD147, PTTG and CD44v6, was significantly associated with poor survival in ESCC and these novel targets may serve as potential biomarkers for anticancer therapies.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Laboratory Medicine and Pathology, The People's Liberation Army 59 Central Hospital, Kaiyuan, Yunnan 661600, P.R. China
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Pei Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Caporali S, Alvino E, Lacal PM, Ruffini F, Levati L, Bonmassar L, Scoppola A, Marchetti P, Mastroeni S, Antonini Cappellini GC, D'Atri S. Targeting the PTTG1 oncogene impairs proliferation and invasiveness of melanoma cells sensitive or with acquired resistance to the BRAF inhibitor dabrafenib. Oncotarget 2017; 8:113472-113493. [PMID: 29371923 PMCID: PMC5768340 DOI: 10.18632/oncotarget.23052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 01/25/2023] Open
Abstract
The pituitary tumor transforming gene 1 (PTTG1) is implicated in tumor growth, metastasis and drug resistance. Here, we investigated the involvement of PTTG1 in melanoma cell proliferation, invasiveness and response to the BRAF inhibitor (BRAFi) dabrafenib. We also preliminary assessed the potential value of circulating PTTG1 protein to monitor melanoma patient response to BRAFi or to dabrafenib plus trametinib. Dabrafenib-resistant cell lines (A375R and SK-Mel28R) were more invasive than their drug-sensitive counterparts (A375 and SK-Mel28), but expressed comparable PTTG1 levels. Dabrafenib abrogated PTTG1 expression and impaired invasion of the extracellular matrix (ECM) in A375 and SK-Mel28 cells. In contrast, it affected neither PTTG1 expression in A375R and SK-Mel28R cells, nor ECM invasion in the latter cells, while further stimulated A375R cell invasiveness. Assessment of proliferation and ECM invasion in control and PTTG1-silenced A375 and SK-Mel28 cells, exposed or not to dabrafenib, demonstrated that the inhibitory effects of this drug were, at least in part, dependent on its ability to down-regulate PTTG1 expression. PTTG1-silencing also impaired proliferation and invasiveness of A375R and SK-Mel28R cells, and counteracted dabrafenib-induced stimulation of ECM invasion in A375R cells. Further experiments performed in A375R cells indicated that PTTG1-silencing impaired cell invasiveness through inhibition of MMP-9 and that PTTG1 expression and ECM invasion could be also reduced by the CDK4/6 inhibitor LEE011. PTTG1 targeting might, therefore, represent a useful strategy to impair proliferation and metastasis of melanomas resistant to BRAFi. Circulating PTTG1 also appeared to deserve further investigation as biomarker to monitor patient response to targeted therapy.
Collapse
Affiliation(s)
- Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Federica Ruffini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Alessandro Scoppola
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Paolo Marchetti
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy.,UOC Oncologia, University of Rome "La Sapienza", Rome, Italy
| | - Simona Mastroeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | | | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| |
Collapse
|
14
|
Liu K, Zhao X, Gu J, Wu J, Zhang H, Li Y. Effects of 12C6+ heavy ion beam irradiation on the p53 signaling pathway in HepG2 liver cancer cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:989-998. [PMID: 29036263 DOI: 10.1093/abbs/gmx096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
The heavy ion beam is considered to be the ideal source for radiotherapy. The p53 tumor suppressor gene senses DNA damage and transducts intracellular apoptosis signals. Previous reports showed that the heavy ion beam can trigger complex forms of damage to cellular DNA, leading to cell cycle arrest and apoptosis of HepG2 human liver cancer cells; however, the mechanisms remains unclear fully. In order to explore whether the intrinsic or extrinsic pathway participates this process, HepG2 cells were treated with 12C6+ HIB irradiation at doses of 0 (control), 1, 2, 4, and 6 Gy with various methods employed to understand relevant mechanisms, such as detection of apoptosis, cell cycle, and Fas expression by flow cytometry, analysis of apoptotic morphology by electron microscopy and laser scanning confocal microscopy, and screening differentially expressed genes relating to p53 signaling pathway by PCR-array assay following with any genes confirmed by western blot analysis. This study showed that 12C6+ heavy ion beam irradiation at a dose of 6 Gy leads to endogenous DNA double-strand damage, G2/M cell cycle arrest, and apoptosis of human HepG2 cells via synergistic effect of the extrinsic and intrinsic pathways. Differentially expressed genes in the p53 signaling pathway related to DNA damage repair, apoptosis, cycle regulation, metastasis, deterioration and radioresistance were also discovered. Consequently, the expressions of Fas, TP53BP2, TP53AIP1, and CASP9 were confirmed upregulated after 12C6+ HIB irradiation treatment. In conclusion, this study demonstrated the mechanisms of inhibition and apoptosis induced by 12C6+ heavy ion beam irradiation on HepG2 cancer cells is mediated by initiation of the biological function of p53 signaling pathway including extrinsic and intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Kai Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xinke Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jing Gu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jianjun Wu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hong Zhang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Department of Heavy Ion Irradiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yingdong Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Department of Heavy Ion Irradiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
15
|
Lee YJ, Cho JM, Moon JH, Ku CR, Kim J, Kim SH, Lee EJ. Increased miR-338-3p expression correlates with invasiveness of GH-producing pituitary adenomas. Endocrine 2017; 58:184-189. [PMID: 28808880 DOI: 10.1007/s12020-017-1390-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Yang Jong Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Jin Mo Cho
- Department of Neurosurgery, Catholic Kwandong University, International St. Mary's Hospital, Incheon, South Korea
| | - Ju Hyung Moon
- Neurosurgery, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jean Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sun Ho Kim
- Neurosurgery, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eun Jig Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea.
- Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Ren Q, Jin B. The clinical value and biological function of PTTG1 in colorectal cancer. Biomed Pharmacother 2017; 89:108-115. [PMID: 28219049 DOI: 10.1016/j.biopha.2017.01.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Pituitary tumor transforming gene-1 (PTTG1) has been suggested to serve as an oncogene in several types of human tumors, but little is known about the biological function of PTTG1 in colorectal cancer. PTTG1 mRNA and protein expressions in colorectal cancer tissues and cell lines were measured by qRT-PCR, western blot or immunohistochemistry. The association between PTTG1 protein expression and clinicopathological features was analyzed. The function of PTTG1 on colorectal cancer cell proliferation and metastasis were explored through MTT, colony formation, migration and invasion assays. In our results, PTTG1 mRNA and protein expressions were increased in colorectal cancer tissues and cell lines compared with normal colonic tissues and colon epithelial cell line. PTTG1 overexpression positively associated with clinical stage, T classification, N classification, M classification and differentiation. The univariate and multivariate analyses suggested PTTG1 overexpression was an independent poor prognostic factor for colorectal cancer patients. The in vitro experiments showed knocking down PTTG1 inhibited colorectal cancer growth and metastasis. In conclusion, PTTG1 is an independent prognostic factor and acts as an oncogene in colorectal cancer.
Collapse
Affiliation(s)
- Qinggui Ren
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Bingwei Jin
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
17
|
Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci Rep 2016; 6:38903. [PMID: 27958323 PMCID: PMC5153642 DOI: 10.1038/srep38903] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 12/29/2022] Open
Abstract
Accumulating studies have indicated the influence of long non-coding RNAs (lncRNAs) on various biological processes as well as disease development and progression. However, the lncRNAs involved in bacterial meningitis and their regulatory effects are largely unknown. By RNA-sequencing, the transcriptional profiles of host lncRNAs in primary human brain microvascular endothelial cells (hBMECs) in response to meningitic Escherichia coli were demonstrated. Here, 25,257 lncRNAs were identified, including 24,645 annotated lncRNAs and 612 newly found ones. A total of 895 lncRNAs exhibited significant differences upon infection, among which 382 were upregulated and 513 were downregulated (≥2-fold, p < 0.05). Via bioinformatic analysis, the features of these lncRNAs, their possible functions, and the potential regulatory relationships between lncRNAs and mRNAs were predicted. Moreover, we compared the transcriptional specificity of these differential lncRNAs among hBMECs, human astrocyte cell U251, and human umbilical vein endothelial cells, and demonstrated the novel regulatory effects of proinflammatory cytokines on these differential lncRNAs. To our knowledge, this is the first time the transcriptional profiles of host lncRNAs involved in E. coli-induced meningitis have been reported, which shall provide novel insight into the regulatory mechanisms behind bacterial meningitis involving lncRNAs, and contribute to better prevention and therapy of CNS infection.
Collapse
|
18
|
Lin YH, Tian Y, Wang JS, Jiang YG, Luo Y, Chen YT. Pituitary tumor-transforming gene 1 regulates invasion of prostate cancer cells through MMP13. Tumour Biol 2016; 37:15495–15500. [PMID: 26201898 DOI: 10.1007/s13277-015-3796-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022] Open
Abstract
It is critical to understand the molecular mechanisms underlying the migration and invasiveness of prostate cancer (PC) for improving the outcome of therapy. A relationship of pituitary tumor-transforming gene 1 (Pttg1) and matrix metalloproteinase 13 (MMP13) in PC as well as their roles in the metastases of PC has not been studied. Here, we reported significantly higher levels of Pttg1 and MMP13 in the resected PC specimens, compared to the adjacent normal prostate tissue from the same patient. Interestingly, Pttg1 and MMP13 levels strongly correlated with each other. In vitro, Pttg1 activated MMP13, which determined PC cell invasiveness. However, Pttg1 levels were not significantly affected by MMP13. Furthermore, the Pttg1-activated MMP13 in PC cells was significantly suppressed by inhibition of PI3k/Akt, but not ERK/MAPK or JNK pathways. Together, our data suggest that Pttg1 may increase PC cell metastasis by MMP13, and highlight Pttg1/MMP13 axis as a promising therapeutic target for PC treatment.
Collapse
Affiliation(s)
- Yun-Hua Lin
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University of China, No.2 Anzhen Road, Beijing, 100029, China,
| | | | | | | | | | | |
Collapse
|
19
|
Wang F, Liu Y, Chen Y. Pituitary tumor transforming gene-1 in non-small cell lung cancer: Clinicopathological and immunohistochemical analysis. Biomed Pharmacother 2016; 84:1595-1600. [PMID: 27829547 DOI: 10.1016/j.biopha.2016.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
Pituitary tumor transforming gene-1 (PTTG1) is a novel oncogene and overexpressed in a wide variety of human cancers. However, the clinical and prognostic significance of PTTG1 in non-small cell lung cancer (NSCLC) is still unknown. The expression status of PTTG1 in NSCLC at the publicly available GEO databases (GSE19804) was observed. The mRNA and protein expression of PTTG1 in NSCLC tissues and cell lines was detected by qRT-PCR and Western blot, and the association between PTTG1 expression and clinicopathological factors was analyzed by immunohistochemistry. In our Results, PTTG1 was one of genes overexpressed in NCSLC samples compared with paired adjacent normal lung samples in microarray data (GSE19804). PTTG1 mRNA and protein expressions were increased in NSCLC tissues and cell lines. PTTG1 protein expression was correlated with malignant status and poor prognosis of NSCLC patients. In conclusion, PTTG1 is correlated with NSCLC progression and as an independent poor prognostic factor in NSCLC patients.
Collapse
Affiliation(s)
- Feng Wang
- Department of Respiratory Medicine, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan, China
| | - Yanhong Liu
- Department of Respiratory Medicine, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan, China
| | - Yan Chen
- Department of Critical Care Medicine, Shengli Oilfield Center Hospital, Dongying 257034, Shandong, China.
| |
Collapse
|
20
|
Heikkinen I, Almangush A, Hagström J, Bello IO, Kauppila JH, Mäkinen LK, Haglund C, Nieminen P, Salo T, Leivo I. Does securin expression have significance in prognostication of oral tongue cancer? A pilot study. Eur Arch Otorhinolaryngol 2016; 273:3905-3911. [DOI: 10.1007/s00405-016-3964-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022]
|
21
|
Inhibition of metastasis of oral squamous cell carcinoma by anti-PLGF treatment. Tumour Biol 2014; 36:2695-701. [DOI: 10.1007/s13277-014-2892-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022] Open
|