1
|
Li S, Hu J, Li G, Mai H, Gao Y, Liang B, Wu H, Guo J, Duan Y. Epigenetic regulation of LINC01270 in breast cancer progression by mediating LAMA2 promoter methylation and MAPK signaling pathway. Cell Biol Toxicol 2023; 39:1359-1375. [PMID: 36241925 DOI: 10.1007/s10565-022-09763-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Application of long non-coding RNAs (lncRNAs) for modulation of breast cancer (BC) has attracted much attention. Here, we probed into the role and underlying mechanism of long intergenic non-coding RNA 01270 (LINC01270) in BC. With the help of bioinformatics tools, we identified laminin subunit alpha 2 (LAMA2) as a BC-related differentially expressed gene to discern the effect of LAMA2 in BC cells. LAMA2 was initially poorly expressed while LINC01270 was highly expressed in BC. BC cells were subsequently treated with sh-LINC01270 or/and sh-LAMA2 for exploration of their regulatory mechanism in BC, which unfolded that LINC01270 inhibition up-regulated LAMA2 and inactivated the MAPK signaling pathway to suppress malignant characteristics of BC cells. Functional assays demonstrated that LINC01270 bound to DNMT1, DNMT3a, and DNMT3b promoted the methylation of CpG islands in LAMA2 promoter and inhibited the LAMA2 expression. Moreover, our data suggested that LAMA2 suppressed MAPK signaling pathway to inhibit BC cell malignant characteristics. The in vitro results were re-produced with the help of the in vivo experimentations. In conclusion, LINC01270 silencing inhibited the methylation of LAMA2 promoter to suppress the activation of MAPK signaling pathway, which subsequently restrained the BC progression. 1, Overexpression of LAMA2 inhibits malignant features of BC cells. 2, LINC01270 promotes LAMA2 promoter methylation by recruiting DNMTs to the LAMA2 promoter region. 3, 5-aza-dc reverses the promotion of LAMA2 promoter methylation by LINC01270. 4, LAMA2 inhibits malignant features of BC cells by suppressing the activation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China.
| | - Jiamei Hu
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Guisen Li
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Huifen Mai
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Yinfei Gao
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Bichan Liang
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Huacong Wu
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Jianling Guo
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| | - Yuan Duan
- Department of Thyroid and Breast Surgery, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518000, Guangdong Province, People's Republic of China
| |
Collapse
|
2
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
3
|
Kudryavtseva AV, Kalinin DV, Pavlov VS, Savvateeva MV, Fedorova MS, Pudova EA, Kobelyatskaya AA, Golovyuk AL, Guvatova ZG, Razmakhaev GS, Demidova TB, Simanovsky SA, Slavnova EN, Poloznikov AА, Polyakov AP, Melnikova NV, Dmitriev AA, Krasnov GS, Snezhkina AV. Mutation profiling in eight cases of vagal paragangliomas. BMC Med Genomics 2020; 13:115. [PMID: 32948195 PMCID: PMC7500026 DOI: 10.1186/s12920-020-00763-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Background Vagal paragangliomas (VPGLs) belong to a group of rare head and neck neuroendocrine tumors. VPGLs arise from the vagus nerve and are less common than carotid paragangliomas. Both diagnostics and therapy of the tumors raise significant challenges. Besides, the genetic and molecular mechanisms behind VPGL pathogenesis are poorly understood. Methods The collection of VPGLs obtained from 8 patients of Russian population was used in the study. Exome library preparation and high-throughput sequencing of VPGLs were performed using an Illumina technology. Results Based on exome analysis, we identified pathogenic/likely pathogenic variants of the SDHx genes, frequently mutated in paragangliomas/pheochromocytomas. SDHB variants were found in three patients, whereas SDHD was mutated in two cases. Moreover, likely pathogenic missense variants were also detected in SDHAF3 and SDHAF4 genes encoding for assembly factors for the succinate dehydrogenase (SDH) complex. In a patient, we found a novel variant of the IDH2 gene that was predicted as pathogenic by a series of algorithms used (such as SIFT, PolyPhen2, FATHMM, MutationTaster, and LRT). Additionally, pathogenic/likely pathogenic variants were determined for several genes, including novel genes and some genes previously reported as associated with different types of tumors. Conclusions Results indicate a high heterogeneity among VPGLs, however, it seems that driver events in most cases are associated with mutations in the SDHx genes and SDH assembly factor-coding genes that lead to disruptions in the SDH complex.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladislav S Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander L Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Razmakhaev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana B Demidova
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Simanovsky
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey А Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey P Polyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
4
|
Szymańska-Chabowska A, Juzwiszyn J, Jankowska-Polańska B, Tański W, Chabowski M. Chitinase 3-Like 1, Nestin, and Testin Proteins as Novel Biomarkers of Potential Clinical Use in Colorectal Cancer: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1279:1-8. [PMID: 32170669 DOI: 10.1007/5584_2020_506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is the third most commonly diagnosed cancer in males and the second most common in females. Only 10-20% of patients are diagnosed at the early stage of disease. Recently, the role of novel biomarkers of the neoplastic process in the early detection of colorectal cancer has been widely discussed. In this review, we focused on the three novel biomarkers that are of potential clinical importance in diagnosing and monitoring colorectal cancer. Chitinase 3-like 1 protein, also known as YKL-40, and nestin and testin proteins are produced by colorectal cancer cells. YKL-40 protein is a marker of proliferation, differentiation, and tissue morphogenetic changes. The level of YKL-40 is elevated in about 20% of patients with colorectal cancer. An increased expression of nestin indicates immaturity. It is a marker of angiogenesis in neoplastic processes. Testin protein is a component of cell-cell connections and focal adhesions. The protein is produced in normal human tissues, but not in tumor tissues. Downregulation of testin increases cell motility, spread, and proliferation, and decreases apoptosis. The usefulness and role of these biomarkers, both alone and combined, in the diagnostics of colorectal cancer should be further explored as early cancer detection may substantially improve treatment outcome and patient survival.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Juzwiszyn
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nursing in Internal Medicine, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Tański
- Department of Internal Medicine, Fourth Military Teaching Hospital, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland. .,Department of Surgery, Fourth Military Teaching Hospital, Wroclaw, Poland.
| |
Collapse
|
5
|
Wang DD, Chen YB, Zhao JJ, Zhang XF, Zhu GC, Weng DS, Pan K, Lv L, Pan QZ, Jiang SS, Wang LL, Xia JC. TES functions as a Mena-dependent tumor suppressor in gastric cancer carcinogenesis and metastasis. Cancer Commun (Lond) 2019; 39:3. [PMID: 30728082 PMCID: PMC6366075 DOI: 10.1186/s40880-019-0347-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background In our previous study, we identified a candidate tumor suppressor gene, testin LIM domain protein (TES), in primary gastric cancer (GC). TES contains three LIM domains, which are specific interacting regions for the cell adhesion and cytoskeleton regulatory proteins. Mena is a known cytoskeleton regulator that regulates the assembly of actin filaments and modulates cell adhesion and motility by interacting with Lamellipodin (Lpd). Therefore, we hypothesized that TES plays a role as tumor suppressor in GC through interacting with Mena. This study aimed to investigate the tumor suppressive functions of TES in GC. Methods We explored the tumor suppressive effect of TES in GC by in vitro cell proliferation assay, colony formation assay, cell cycle analysis, Transwell assays, and in vivo tumorigenicity and metastasis assays. The interaction of TES and Mena was investigated through immunoprecipitation-based mass spectrometry. We also analyzed the expression of TES and Mena in 172 GC specimens using immunohistochemistry and investigated the clinicopathological and prognostic significance of TES and Mena in GC. Results TES suppressed GC cell proliferation and colony formation, induced cell cycle arrest, and inhibited tumorigenicity in vitro. Additionally, it inhibited GC cell migration and invasion in vitro and suppressed metastasis in vivo. TES interacted with Mena, and inhibited the interaction of Mena with Lpd. Transwell assays suggested that TES suppressed migration and invasion of GC cells in a Mena-dependent fashion. In GC patients with high Mena expression, the expression of TES was associated with tumor infiltration (P = 0.005), lymph node metastasis (P = 0.003), TNM stage (P = 0.003), and prognosis (P = 0.010). However, no significant association was observed in GC patients with low Mena expression. Conclusions We believe that TES functions as a Mena-dependent tumor suppressor. TES represents a valuable prognostic marker and potential target for GC treatment. Electronic supplementary material The online version of this article (10.1186/s40880-019-0347-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.,Shandong Medicinal Biotechnology Centre, Back and Neck Pain Hospital, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, P.R. China
| | - Yi-Bing Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.,Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Jing-Jing Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Xiao-Fei Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Guang-Chao Zhu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - De-Sheng Weng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Ke Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Lin Lv
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Qiu-Zhong Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Shan-Shan Jiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Lei-Lei Wang
- Key Laboratory for Applied Microbiology of Shandong Province, Ecology Institute of Shandong Academy of Sciences, Jinan, 250014, Shandong, P.R. China
| | - Jian-Chuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China. .,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.
| |
Collapse
|
6
|
Abstract
Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes.
Collapse
|