1
|
Zhuang T, Gao C, Zeng W, Zhao W, Yu H, Chen S, Shen J, Ji M. Analysis of key targets for 5-hydroxymethyl-2-furfural-induced lung cancer based on network toxicology, network informatics, and in vitro experiments. Drug Chem Toxicol 2025; 48:451-461. [PMID: 39072491 DOI: 10.1080/01480545.2024.2384442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
5-hydroxymethyl-2-furfural (5-HMF) is a by-product of Maillard reaction and widely exists in food and environment, which may lead to lung cancer. However, the relevant mechanism is unknown. This study aims to predict the key targets of 5-HMF-induced lung cancer through network toxicology, analyze the relationship between the key targets and lung cancer through network informatics, and further validate them through in vitro experiments. By using ChEMBL, STITCH, GeneCards, and OMIM databases, 51 toxic targets were identified. GO and KEGG enrichment analyses indicated a strong correlation between toxic targets and lung cancer. Through protein-protein interaction (PPI) analysis, MAPK3, MAPK1, and SRC were identified as key targets implicated in 5-HMF-induced lung cancer. The HPA database showed high expression of these three key targets in lung cancer tissues. Kaplan-Meier database demonstrated that the higher expression of these key targets in lung cancer patients was associated with a poorer prognosis. The TIMER database revealed that the high expression of these key targets had a significant impact on the level of immune cell infiltration in lung cancer, particularly impacting CD4+ T cells and macrophages. Finaly, in In vitro experiments demonstrated that prolonged exposure to 5-HMF induced malignant transformation of BEAS-2B cells and the upregulation of key targets. The findings suggest that 5-HMF is a contributing factor in the development of lung cancer, with MAPK3, MAPK1, and SRC potentially playing crucial roles in this process.
Collapse
Affiliation(s)
- Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chang Gao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Zeng
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenwu Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Hairong Yu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Shen Chen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jiemiao Shen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Chiang CY, Zhang M, Huang J, Zeng J, Chen C, Pan D, Yang H, Zhang T, Yang M, Han Q, Wang Z, Xiao T, Chen Y, Zou Y, Yin F, Li Z, Zhu L, Zheng D. A novel selective ERK1/2 inhibitor, Laxiflorin B, targets EGFR mutation subtypes in non-small-cell lung cancer. Acta Pharmacol Sin 2024; 45:422-435. [PMID: 37816856 PMCID: PMC10789733 DOI: 10.1038/s41401-023-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity. However, Laxiflorin B is present at low levels in herbs; therefore, we adopted a semi-synthetic process for the efficient production of Laxiflorin B to improve the yield. Laxiflorin B induced mitochondria-mediated apoptosis via BAD activation in non-small-cell lung cancer (NSCLC) cells, especially in EGFR mutant subtypes. Transcriptomic analysis suggested that Laxiflorin B inhibits amphiregulin (AREG) and epiregulin (EREG) expression through ERK inhibition, and suppressed the activation of their receptors, ErbBs, via a positive feedback loop. Moreover, mass spectrometry analysis combined with computer simulation revealed that Laxiflorin B binds covalently to Cys-183 in the ATP-binding pocket of ERK1 via the D-ring, and Cys-178 of ERK1 through non-inhibitory binding of the A-ring. In a NSCLC tumor xenograft model in nude mice, Laxiflorin B also exhibited strong tumor suppressive effects with low toxicity and AREG and EREG were identified as biomarkers of Laxiflorin B efficacy. Finally, Laxiflorin B-4, a C-6 analog of Laxiflorin B, exhibited higher binding affinity for ERK1/2 and stronger tumor suppression. These findings provide a new approach to tumor inhibition using natural anticancer compounds.
Collapse
Affiliation(s)
- Cheng-Yao Chiang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Min Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Junrong Huang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Chunlan Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Dongmei Pan
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Heng Yang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Tiantian Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Min Yang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Qiangqiang Han
- SpecAlly Life Technology Co., Ltd, Wuhan, 430075, China
- Wuhan Biobank Co., Ltd, Wuhan, 430074, China
| | - Zou Wang
- Wuhan Biobank Co., Ltd, Wuhan, 430074, China
| | - Tian Xiao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yongdong Zou
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Feng Yin
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen, 518055, China
| | - Zigang Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen, 518055, China
| | - Lizhi Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Duo Zheng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Cell Biology and Genetics, Shenzhen University Medical School; College of Life Sciences and Oceanography, Shenzhen University; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China.
| |
Collapse
|
3
|
Shi C, Ren S, Zhao X, Li Q. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/ SHOC2 axis. Pharmacogenomics 2022; 23:973-985. [PMID: 36420706 DOI: 10.2217/pgs-2022-0077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim: To explore the roles of lncRNA MALAT1 and SHOC2 in breast cancer, and the potential connections to chemotherapy resistance in breast cancer. Materials & methods: Paclitaxel-resistant breast cancer cells were induced by gradually increasing intermittent doses. Bioinformatic analyses were performed to predict the regulated miRNAs of MALAT1. Results: High expressions of MALAT1 and SHOC2 contribute to paclitaxel resistance in breast cancer cells. MALAT1 sponges miR-497-5p enhance SHOC2 expression in paclitaxel-resistant breast cancer cells and contribute to paclitaxel resistance in breast cancer cells. Conclusion: Patients with high expression of MALAT1 and SHOC2 have a poorer response to paclitaxel. Upregulation of miR-497-5p could improve the treatment response to paclitaxel in patients with breast cancer by inhibiting MALAT1 and SHOC2.
Collapse
Affiliation(s)
- Chang Shi
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Shuangjie Ren
- Department of Traditional Chinese Medicine Surgery, the Second Hospital of Hebei Medical University
| | - Xiaodong Zhao
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Qinghuai Li
- The Sixth Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
4
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
5
|
Tang Y, Luo J, Yang Y, Liu S, Zheng H, Zhan Y, Fan S, Wen Q. Overexpression of p-4EBP1 associates with p-eIF4E and predicts poor prognosis for non-small cell lung cancer patients with resection. PLoS One 2022; 17:e0265465. [PMID: 35737644 PMCID: PMC9223369 DOI: 10.1371/journal.pone.0265465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/01/2022] [Indexed: 12/09/2022] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) and its phosphorylated form (p-eIF4E) play a crucial role in the protein synthesis, both are under regulation of eIF4E-binding protein 1 (4EBP1) and mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). This study aims to explore the potential prognostic significance of p-4EBP1 and p-eIF4E in NSCLC patients. The expression of p-4EBP1 and p-eIF4E in NSCLC patients was detected by immunohistochemistry (IHC) staining in tissue microarrays (TMAs) containing 354 NSCLC and 53 non-cancerous lung tissues (Non-CLT). The overexpression percentage of p-4EBP1 and p-eIF4E in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC) was significantly higher than that of Non-CLT. P-4EBP1 expression in patients with advanced clinical stage was higher than that in early stage. Expression of p-4EBP1 had a positive relationship with p-eIF4E expression both in lung SCC and ADC. NSCLC patients with high expression of p-4EBP1 and p-eIF4E alone or in combination had a lower survival rate than that of other phenotypes. For NSCLC patients, p-4EBP1 is an independent poor prognostic factor as well as clinical stage, LNM and pathological grade. Overexpression of p-4EBP1 and p-eIF4E might be novel prognostic marker for NSCLC, who possesses potential application value for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
6
|
Bhatt M, Patel M, Adnan M, Reddy MN. Anti-Metastatic Effects of Lupeol via the Inhibition of MAPK/ERK Pathway in Lung Cancer. Anticancer Agents Med Chem 2021; 21:201-206. [PMID: 32329697 DOI: 10.2174/1871520620666200424131548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE ERK pathway is one of the most crucial pathways in lung cancer metastasis. Targeting its pathway is decisive in lung cancer research. Thus, this study demonstrated for the first time for significant and selective anti-metastatic effects of lupeol against lung cancer A549 cells via perturbations in the ERK signaling pathway. MATERIALS AND METHODS Human protein targets of lupeol were predicted in silico. Migration and cytotoxicity assays were carried out in vitro. Expression levels of proteins Erk1/2 and pErk1/2 were ensured using Enzyme- Linked Immunosorbent Assay (ELISA). Semi-quantitative RT-PCR technique was used to estimate changes in crucial mesenchymal marker gene expression levels of N-cadherin and vimentin. RESULTS Lupeol was found to target ERK and MEK proteins effectively. Despite having no cytotoxic effects, lupeol also significantly inhibited cell migration in A549 cells with decreased expression of the pErk1/2 protein along with N-cadherin and vimentin genes. CONCLUSION Lupeol inhibits cell migration, showed no cytotoxic effects on A549 cells, decreased pErk1/2 and EMT gene expression. Thus, it can serve as a potential ERK pathway inhibitor in lung cancer therapeutics.
Collapse
Affiliation(s)
- Mital Bhatt
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P O Box 2440, Saudi Arabia
| | - Mandadi N Reddy
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
7
|
Cheng J, Eroglu A. The Promising Effects of Astaxanthin on Lung Diseases. Adv Nutr 2020; 12:850-864. [PMID: 33179051 PMCID: PMC8166543 DOI: 10.1093/advances/nmaa143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.
Collapse
Affiliation(s)
- Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | |
Collapse
|
8
|
ERK phosphorylation as a marker of RAS activity and its prognostic value in non-small cell lung cancer. Lung Cancer 2020; 149:10-16. [PMID: 32947221 DOI: 10.1016/j.lungcan.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deregulated signal transduction pathways play a key role in development, progression and therapeutic resistance of non-small cell lung cancers (NSCLC). The purpose of this study is to assess the downstream markers of two well-characterized pathways and to correlate them with clinical outcome. DESIGN 670 patients with metastatic NSCLC were prospectively enrolled in a comprehensive biomarker profiling program at a single center from 2012 to 2016. Phosphorylation of extracellular signal-regulated kinase (p-ERK), and protein kinase B (p-AKT) was assessed by standardized immunohistochemistry. Product of scores for quantity and quality of staining were calculated (immunoreactive score, 0-9). Somatic mutations of Kirsten rat sarcoma viral oncogene homolog [KRAS], epithelial growth factor receptor [EGFR], v-Raf murine sarcoma viral oncogene homolog B [BRAF] and phosphatidylinositol 3-kinase [PIK3CA]) were detected by Sanger (2012-03/2015) and amplicon NGS (04/2015-02/2016). Patients enrolled during the first year (2012) were used as discovery cohort. Patients enrolled from 2013 to 02/2016 were used as validation cohort. Clinical data were retrieved from the electronic medical records and were analyzed retrospectively. RESULTS Using a discovery cohort, we identified an immunoreactive score of p-ERK ≥3 to be prognostically relevant. The validation cohort confirmed that higher levels of p-ERK correlated with worse overall survival (OS) and higher proportion of RAS mutations. Multivariate analysis including established risk factors such EGFR, ALK or ROS mutations and metastatic disease showed a trend of a detrimental effect of high p-ERK on OS (HR 1.23, CI 0.94-1.59, p = 0.131 for p-ERK immunoreactive score ≥3) and time to treatment failure after first-line therapy in the validation cohort. Phosphorylated AKT did not correlate with clinical outcome. CONCLUSION While serving as a prognosticator in univariate analysis, highly phosphorylated ERK does not convey a significant prognostic effect for OS in the presence of other prognostic factors. Phosphorylated ERK indicates a higher activity of RAS in advanced NSCLC.
Collapse
|
9
|
Wang L, Gu Y, Zhang J, Gong L. Effects of Sleep Deprivation (SD) on Rats via ERK1/2 Signaling Pathway. Med Sci Monit 2019; 25:2886-2895. [PMID: 31002658 PMCID: PMC6486800 DOI: 10.12659/msm.913839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Sleep deprivation (SD) is common in humans, and sleep loss has a significant influence on health and produces related diseases. Orexin-A has been demonstrated to play a role in physiological processes, including feeding, sleep/wake cycle, and energy metabolism. The aim of this study was to investigate the effect of SD on rats and to define the underlying mechanism. Material/Methods We constructed an SD rat model. The Morris water maze test was used to assess rat learning and memory. Imaging of hippocampus and hippocampal tissue in rats were captured by magnetic resonance imaging or electron microscopy. We used the CCK-8 kit to assess cell viability. The level of protein was measured using Western blot analysis, and qRT-PCR was used to evaluate mRNA level. Results SD rats had poorer learning and memory and had damage to the hippocampus. SD resulted in shrinkage of hippocampal volume and encephalocele size. SD increased the expression of Orexin-A, OX1R, OX2R, and PARP-1, and decreased the expression of ERK1/2 and p-ERK1/2. Orexin-A (0–10 μM) improved neuron viability, whereas orexin-A (10–100 μM) attenuated neuron viability. SB334867 treatment reduced the viability of neurons treated with orexin-A. NU1025 treatment increased cell viability, especially in neurons treated with orexin-A. SB334867 treatment decreased the p-ERK1/2 levels in neurons treated with orexin-A. NU1025 increased the expression of p-ERK1/2 in neurons treated with orexin-A. Conclusions SD decreases learning and memory through damage to the hippocampus. Higher concentrations of orexin-A had a major negative effect on hippocampal neurons via OX1R and PARP-1 through inhibition of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland).,Department of Integration of Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Youyi Gu
- Department of Integration of Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Jingjing Zhang
- Department of Integration of Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Li Gong
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
10
|
Increased SPK1 expression promotes cell growth by activating the ERK1/2 signaling in non-small-cell lung cancer. Anticancer Drugs 2019; 30:458-465. [PMID: 30920400 DOI: 10.1097/cad.0000000000000733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung cancer remains the leading cause of cancer-associated mortality in China and the world. Increasing numbers of studies have reported that sphingosine kinase 1 (SPK1) is frequently highly expressed in tumors of various origins, including lung cancer, and its high expression contributes toward tumor progression. However, the clinical significance of SPK1 and its role in the growth and metastasis of non-small-cell lung cancer (NSCLC) remain unclear. In the present study, we found that SPK1 expression was expressed highly in NSCLC tissues and cell lines. Knockdown of SPK1 suppressed cell growth, proliferation, migration, and invasion and increased apoptosis. Moreover, knocking down SPK1 expression inhibited the growth of tumors in nude mice. Mechanistically, silencing the expression of SPK1 inhibited the expression of p-extracellular signal-regulated kinase (ERK). Moreover, the ERK-specific inhibitor U0126 suppressed the expression of the epithelial-mesenchymal transition of lung cancer cells. Together, our findings indicated that SPK1 enhanced tumor growth in lung cancer and induced metastasis by activating the ERK1/2 signaling pathway, indicating its potential application in NSCLC diagnosis and therapy.
Collapse
|
11
|
Liu Z, Jiang L, Li Y, Xie B, Xie J, Wang Z, Zhou X, Jiang H, Fang Y, Pan H, Han W. Cyclosporine A sensitizes lung cancer cells to crizotinib through inhibition of the Ca2 +/calcineurin/Erk pathway. EBioMedicine 2019; 42:326-339. [PMID: 30879923 PMCID: PMC6491942 DOI: 10.1016/j.ebiom.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Crizotinib has potent anti-tumor activity in patients with advanced MET-amplified non-small cell lung cancer (NSCLC). However, the therapeutic effect is still not satisfying. Thus, developing approaches that improve the efficacy of crizotinib remains a significant challenge. Methods MET-amplified NSCLC cell lines were treated with crizotinib and cyclosporine A (CsA). Cell viability was determined by MTS assay. The changes of apoptosis, cell cycle and calcineurin-Erk pathways were assessed by western blot. Xenograft mouse model, primary human NSCLC cells and hollow fiber assays were utilized to confirm the effects of CsA. Findings We demonstrated that CsA significantly increased the anti-tumor effect of crizotinib on multiple MET-amplified NSCLC cells in vitro and in vivo. Mechanistically, crizotinib treatment led to the activation of Ca2+-calcineurin (CaN)-Kinase suppressor of Ras 2 (KSR2) signaling, resulting in Erk1/2 activation and enhanced survival of cancer cells. CsA effectively blocked CaN-KSR2-Erk1/2 signaling, promoting crizotinib-induced apoptosis and G2/M arrest. Similarly, pharmacologic or genetic inhibition of Erk1/2 also enhanced crizotinib-induced growth inhibition in vitro. Xenograft studies further confirmed that CsA or Erk1/2 inhibitor PD98059 enhanced the anti-cancer activity of crizotinib through inhibition of CaN-Erk1/2 axis. The results were also validated by primary human NSCLC cells in vitro and hollow fiber assays in vivo. Interpretation This study provides preclinical evidences that combination therapy of CsA and crizotinib is a promising approach for targeted treatment of MET-amplified lung cancer patients. Fund This work was supported by the National Natural Science Foundation of China, the Key Projects of Natural Foundation of Zhejiang Province, the Ten thousand plan youth talent support program of Zhejiang Province, the Zhejiang Natural Sciences Foundation Grant, and the Zhejiang medical innovative discipline construction project-2016.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Liming Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yiran Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Zhanggui Wang
- Department of Radiotherapy, The Second People's Hospital of Anhui Province, Hefei, Anhui, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, Xiasha Branch of Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hanliang Jiang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
12
|
Quintanal-Villalonga Á, Mediano M, Ferrer I, Meléndez R, Carranza-Carranza A, Suárez R, Carnero A, Molina-Pinelo S, Paz-Ares L. Histology-dependent prognostic role of pERK and p53 protein levels in early-stage non-small cell lung cancer. Oncotarget 2018; 9:19945-19960. [PMID: 29731995 PMCID: PMC5929438 DOI: 10.18632/oncotarget.24977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/11/2018] [Indexed: 12/17/2022] Open
Abstract
Lung tumors represent a major health problem. In early stage NSCLC tumors, surgical resection is the preferred treatment, but 30-55% of patients will relapse within 5 years after surgery. Thus, the identification of prognostic biomarkers in early stage NSCLC patients, especially those which are therapeutically addressable, is crucial to enhance survival of these patients. We determined the immunohistochemistry expression of key proteins involved in tumorigenesis and oncogenic signaling, p53, EGFR, pAKT and pERK, and correlated their expression level to clinicopathological characteristics and patient outcome. We found EGFR expression is higher in the squamous cell carcinomas than in adenocarcinomas (p=0.043), and that nuclear p53 staining correlated with lower differentiated squamous tumors (p=0.034). Regarding the prognostic potential of the expression of these proteins, high pERK levels proved to be an independent prognostic factor for overall (p<0.001) and progression-free survival (p<0.001) in adenocarcinoma patients, but not in those from the squamous histology, and high p53 nuclear levels were identified as independent prognostic factor for progression-free survival (p=0.031) only in squamous cell carcinoma patients. We propose a role as early prognostic biomarkers for pERK protein levels in adenocarcinoma, and for nuclear p53 levels in squamous cell lung carcinoma. The determination of these potential biomarkers in the adequate histologic context may predict the outcome of early stage NSCLC patients, and may offer a therapeutic opportunity to enhance survival of these patients.
Collapse
Affiliation(s)
- Álvaro Quintanal-Villalonga
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain
| | - Mariló Mediano
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Hospital Universitario Virgen del Rocío (HUVR), Sevilla, Spain
| | - Irene Ferrer
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain.,CiberOnc, Madrid, Spain
| | - Ricardo Meléndez
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Andrés Carranza-Carranza
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Hospital Universitario Virgen del Rocío (HUVR), Sevilla, Spain
| | - Rocío Suárez
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,CiberOnc, Madrid, Spain
| | - Luis Paz-Ares
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain.,Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Medical School, Universidad Complutense, Madrid, Spain.,CiberOnc, Madrid, Spain
| |
Collapse
|
13
|
Guo H, Zhang XY, Peng J, Huang Y, Yang Y, Liu Y, Guo XX, Hao Q, An S, Xu TR. RUVBL1, a novel C-RAF-binding protein, activates the RAF/MEK/ERK pathway to promote lung cancer tumorigenesis. Biochem Biophys Res Commun 2018; 498:932-939. [DOI: 10.1016/j.bbrc.2018.03.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023]
|
14
|
Ma C, Zhao LL, Zhao HJ, Cui JW, Li W, Wang NY. Lentivirus‑mediated MDA7/IL24 expression inhibits the proliferation of hepatocellular carcinoma cells. Mol Med Rep 2018; 17:5764-5773. [PMID: 29484443 PMCID: PMC5866019 DOI: 10.3892/mmr.2018.8616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
MDA7/IL24 is a member of the IL-10 gene family that functions as a cytokine. Notably, supra-physiological endogenous MDA7 levels have been indicated to suppress tumor growth and induce apoptosis in different cancer types. In the present study, MDA7 roles were investigated during the proliferation of hepatocellular carcinoma (HCC) cells and the molecular mechanisms underlying this process. A lentiviral vector expressing MDA7/IL24 (LV-MDA7/IL24) was constructed and used to infect HCC SMMC-7721 cells. The expression levels of MDA7/IL24 in these cells were determined using RT-qPCR and western blot analysis. The effects of LV-MDA7/IL24 on cell proliferation were analyzed using MTT and colony formation assays. Furthermore, the influence of LV-MDA7/IL24 on cell apoptosis and cell cycle distribution were detected using flow cytometry. The underlying molecular mechanisms were investigated using microarray and western blot analysis. The expression of MDA7/IL24 was confirmed to be significantly increased in the cells infected with LV-MDA7/IL24 compared with that the negative-control infected group. Lentivirus-mediated MDA7/IL24 expression was found to inhibit HCC cell proliferation and colony formation, and it also induced cell arrest and apoptosis. Microarray analysis and western blotting results indicated that multiple cancer-associated pathways and oncogenes are regulated by MDA7/IL24, including cell cycle regulatory and apoptosis activation pathway. In conclusion, it was determined that MDA7/IL24 inhibits the proliferation and reduces the tumorigenicity of HCC cells by regulating cell cycle progression and inducing apoptosis, indicating that it may be used as a potential prognostic and therapeutic target in HCC.
Collapse
Affiliation(s)
- Chao Ma
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling-Ling Zhao
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Heng-Jun Zhao
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiu-Wei Cui
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nan-Ya Wang
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Carlson A, Alderete KS, Grant MKO, Seelig DM, Sharkey LC, Zordoky BNM. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Vet Comp Oncol 2017; 16:253-261. [PMID: 29235249 DOI: 10.1111/vco.12375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation.
Collapse
Affiliation(s)
- A Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - K S Alderete
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - M K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - D M Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - L C Sharkey
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - B N M Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
16
|
Wu Y, Feng J, Hu W, Zhang Y. T-box 3 overexpression is associated with poor prognosis of non-small cell lung cancer. Oncol Lett 2017; 13:3335-3341. [PMID: 28521440 DOI: 10.3892/ol.2017.5855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
T-box 3 (Tbx3), a member of the T-box transcription factor family, serves a crucial role in embryonic development and cancer progression. Previous studies have demonstrated the clinical significance of Tbx3 in numerous types of cancer. However, the expression level and pathological function of Tbx3 in non-small cell lung cancer (NSCLC) are unknown. To the best of our knowledge, the present study provided the first evidence demonstrating the clinicopathological significance of Tbx3 in NSCLC. Tbx3 was revealed to be overexpressed in NSCLC cell lines and tissues obtained from patients with NSCLC by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Downregulation of Tbx3 by Tbx3-specific short hairpin RNA decreased cell proliferation in NSCLC cell lines, but there was a slight increase in the cell population of the G1 phase. Furthermore, depletion of Tbx3 expression significantly decreased the cell migration distance. In addition, overexpression of Tbx3 was notably associated with tumor size, tobacco smoking status, tumor-node-metastasis stage and differentiation. These results demonstrated the importance of Tbx3 in the pathological progression of NSCLC and may serve as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yueming Wu
- Department of Thoracic Surgery, The People's Hospital of Dongyang City, Dongyang, Zhejiang 322100, P.R. China
| | - Jiang Feng
- Department of Thoracic Surgery, The People's Hospital of Dongyang City, Dongyang, Zhejiang 322100, P.R. China
| | - Weiwei Hu
- Department of Thoracic Surgery, The People's Hospital of Dongyang City, Dongyang, Zhejiang 322100, P.R. China
| | - Yawei Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200433, P.R. China
| |
Collapse
|