1
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
2
|
Abdollahzadeh R, Azarnezhad A, Paknahad S, Mansoori Y, Pirhoushiaran M, Kanaani K, Bafandeh N, Jafari D, Tavakkoly-Bazzaz J. A Proposed TUSC7/miR-211/Nurr1 ceRNET Might Potentially be Disturbed by a cer-SNP rs2615499 in Breast Cancer. Biochem Genet 2022; 60:2200-2225. [PMID: 35296964 DOI: 10.1007/s10528-022-10216-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/24/2022] [Indexed: 12/09/2022]
Abstract
Evidence and in silico analyses showed that TUSC7, miR-211, and Nurr1 may be involved in BC pathogenesis by ceRNET signaling axis. This study aimed to investigate the potential role of TUSC7/miR-211/Nurr1 ceRNET and rs2615499 variant as a novel cer-SNP in BC subjects. The expression assays were conducted by qPCR on tumor tissues (n = 50), tumor-adjacent normal tissues (TANTs) (n = 50), and clinically healthy control tissues (n = 50). The expression of TUSC7 and Nurr1 significantly decreased, but the level of miR-211 significantly increased in tumor tissues compared to TANTs and healthy normal tissues. Altered expression of TUSC7 and miR-211 was associated with poor prognosis of patients. The Nurr1 exhibited a double-edged sword-like activity in BC. In addition, TUSC7, Nurr1, and miR-211 expressions were significantly related to a novel BC-associated rs2615499 (A > C) located in the miR-211 binding site on Nurr1 3'-UTR. In the second part of the study, a case-control study was performed on BC patients (n = 100) and matched healthy controls (n = 100). The genomic DNA was isolated and genotyping was performed using Tetra-Primer ARMS PCR. The CC and AC genotypes were associated with higher expression levels of Nurr1 and worse outcomes of the disease. Our findings revealed that TUSC7 functions as a tumor suppressor in BC potentially via miR-211/Nurr1, which might be disturbed by the cer-SNP rs2615499. However, functional studies are needed to validate these results.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sahereh Paknahad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khaled Kanaani
- Faculty of Nursing and Midwifery, Kowsar Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Bafandeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Paul U, Banerjee S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 2022; 49:6899-6918. [PMID: 35235157 DOI: 10.1007/s11033-022-07288-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10-20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.
Collapse
Affiliation(s)
- Utpalendu Paul
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Xu J, Wu KJ, Jia QJ, Ding XF. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B 2021; 21:673-689. [PMID: 32893525 PMCID: PMC7519626 DOI: 10.1631/jzus.b1900709] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.
Collapse
|
5
|
Liu J, Zhao G, Liu XL, Zhang G, Zhao SQ, Zhang SL, Luo LH, Yin DC, Zhang CY. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci 2021; 272:119238. [PMID: 33600860 DOI: 10.1016/j.lfs.2021.119238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) include miRNA, lncRNA, and circRNA. NcRNAs are involved in multiple biological processes, including chromatin remodeling, signal transduction, post-transcriptional modification, cell autophagy, carbohydrate metabolism, and cell cycle regulation. Triple negative breast cancer (TNBC) is notorious for high invasiveness and metastasis, poor prognosis, and high mortality, and it is the most malignant breast cancer, while the effective targets for TNBC treatment are still lacking. NcRNAs act as oncogenes or suppressor genes, as well as promote or inhibit the occurrence and development of TNBC. Here, we reviewed some important miRNAs, lncRNAs, circRNAs, their target(s) and molecular mechanisms in TNBC. It is benefited to understand the occurrence and development of TNBC, further some ncRNAs might be potential targets for TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
6
|
Zolota V, Tzelepi V, Piperigkou Z, Kourea H, Papakonstantinou E, Argentou MI, Karamanos NK. Epigenetic Alterations in Triple-Negative Breast Cancer-The Critical Role of Extracellular Matrix. Cancers (Basel) 2021; 13:cancers13040713. [PMID: 33572395 PMCID: PMC7916242 DOI: 10.3390/cancers13040713] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancer characterized by genomic complexity and therapeutic options limited to only standard chemotherapy. Although it has been suggested that stratifying TNBC patients by pathway-specific molecular alterations may predict benefit from specific therapeutic agents, application in routine clinical practice has not yet been established. There is a growing body of the literature supporting that epigenetic modifications comprised by DNA methylation, chromatin remodeling and non-coding RNAs play a fundamental role in TNBC pathogenesis. Extracellular matrix (ECM) is a highly dynamic 3D network of macromolecules with structural and cellular regulatory roles. Alterations in the expression of ECM components result in uncontrolled matrix remodeling, thus affecting its ability to regulate vital functions of cancer cells, including proliferation, migration, adhesion, invasion and epithelial-to-mesenchymal transition (EMT). Recent molecular data highlight the major role of tumor microenvironment and ECM alterations in TNBC and approaches for targeting tumor microenvironment have recently been recognized as potential therapeutic strategies. Notably, many of the ECM/EMT modifications in cancer are largely driven by epigenetic events, highlighting the pleiotropic effects of the epigenetic network in TNBC. This article presents and critically discusses the current knowledge on the epigenetic alterations correlated with TNBC pathogenesis, with emphasis on those associated with ECM/EMT modifications, their prognostic and predictive value and their use as therapeutic targets.
Collapse
Affiliation(s)
- Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
- Correspondence: ; Tel.: +30-0693613366
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; (Z.P.); (N.K.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26110 Patras, Greece
| | - Helen Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
| | - Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics School of Medicine, University of Patras, 26504 Rion, Greece;
| | - Maria-Ioanna Argentou
- Department of Surgery, School of Medicine, University of Patras, 26504 Rion, Greece;
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; (Z.P.); (N.K.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26110 Patras, Greece
| |
Collapse
|
7
|
Ray A, Kunhiraman H, Perera RJ. The Paradoxical Behavior of microRNA-211 in Melanomas and Other Human Cancers. Front Oncol 2021; 10:628367. [PMID: 33628737 PMCID: PMC7897698 DOI: 10.3389/fonc.2020.628367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer initiation, progression, and metastasis leverage many regulatory agents, such as signaling molecules, transcription factors, and regulatory RNA molecules. Among these, regulatory non-coding RNAs have emerged as molecules that control multiple cancer types and their pathologic properties. The human microRNA-211 (MIR211) is one such molecule, which affects several cancer types, including melanoma, glioblastoma, lung adenocarcinomas, breast, ovarian, prostate, and colorectal carcinoma. Previous studies suggested that in certain tumors MIR211 acts as a tumor suppressor while in others it behaves as an oncogenic regulator. Here we summarize the known molecular genetic mechanisms that regulate MIR211 gene expression and molecular pathways that are in turn controlled by MIR211 itself. We discuss how cellular and epigenetic contexts modulate the biological effects of MIR211, which exhibit pleiotropic effects. For example, up-regulation of MIR211 expression down-regulates Warburg effect in melanoma tumor cells associated with an inhibition of the growth of human melanoma cells in vitro, and yet these conditions robustly increase tumor growth in xenografted mice. Signaling through the DUSP6-ERK5 pathway is modulated by MIR211 in BRAFV600E driven melanoma tumors, and this function is involved in the resistance of tumor cells to the BRAF inhibitor, Vemurafenib. We discuss several alternate but testable models, involving stochastic cell-to-cell expression heterogeneity due to multiple equilibria involving feedback circuits, intracellular communication, and genetic variation at miRNA target sties, to reconcile the paradoxical effects of MIR211 on tumorigenesis. Understanding the precise role of this miRNA is crucial to understanding the genetic basis of melanoma as well as the other cancer types where this regulatory molecule has important influences. We hope this review will inspire novel directions in this field.
Collapse
Affiliation(s)
- Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Haritha Kunhiraman
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
| | - Ranjan J. Perera
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
8
|
Zeng H, Hui Y, Qin W, Chen P, Huang L, Zhong W, Lin L, Lv H, Qin X. High-throughput sequencing-based analysis of gene expression of hepatitis B virus infection-associated human hepatocellular carcinoma. Oncol Lett 2020; 20:18. [PMID: 32774491 PMCID: PMC7406887 DOI: 10.3892/ol.2020.11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/13/2020] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a critical factor for the initiation and progression of hepatocellular carcinoma (HCC). Gene expression profiles for HBV-associated HCC may provide valuable insight for the diagnosis and treatment of this type of HCC. The present study aimed to screen the differential genes in human HCC tissues based on high-throughput sequencing and to predict the potential therapeutic targets. Total mRNA was extracted from human HCC tissues and paracancerous tissues and sequenced using the Hiseq4000 sequencing platform. Differential gene expressions were screened and further analyzed using quantitative PCR and immunohistochemistry. A total of 2,386 differentially expressed genes were screened. Of these, 1119 were upregulated and 1,267 were downregulated in paracancerous tissues compared with tumor tissues. Gene Ontology term analysis demonstrated that differentially expressed genes were involved in carboxylic acid catabolism, monocarboxylic acid metabolic processes and α-amino acid metabolic processes. Molecular functional analysis revealed that the differentially expressed genes functioned in oxidoreductase activity, for example acting on CH-OH group of donors and permitting identical protein binding, anion binding, coenzyme binding and monocarxylic acid transporter activity. The Kyoto Encyclopedia of Genes and Genomes analysis reported that the differentially expressed genes were primarily concentrated in 20 signaling pathways, such as valine, leucine and leucine degradation, retinol metabolism and the cell cycle. Differential expression of proteins regulating the cell cycle, including stratifin, cyclin B1 and cyclin-dependent kinase 1, were significantly higher in tumor tissue compared with those in paracancerous tissue at both the mRNA and protein levels. These results were consistent with those obtained from high-throughput sequencing, indicating the reliability of the high-throughput sequencing. Together, these results identified differentially expressed genes and predicted the subsequent signaling pathways, which may be involved in the occurrence and development of HCC. Therefore, the present study may provide novel implications in the therapeutic and diagnosis of HCC.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Clinical Laboratory, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Ying Hui
- Department of Clinical Laboratory, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Wenzhou Qin
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Peisheng Chen
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Lifang Huang
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Wenfu Zhong
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Liwen Lin
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Hui Lv
- Department of Pathology, Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
9
|
Yarahmadi S, Abdolvahabi Z, Hesari Z, Tavakoli-Yaraki M, Yousefi Z, Seiri P, Hosseinkhani S, Nourbakhsh M. Inhibition of sirtuin 1 deacetylase by miR-211-5p provides a mechanism for the induction of cell death in breast cancer cells. Gene 2019; 711:143939. [PMID: 31220581 DOI: 10.1016/j.gene.2019.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Sirtuin 1 is one of the regulators of cell growth and survival and its inhibition is suggested as a suitable mechanism to overcome breast cancer development. In this study we explored the role of miR-211-5p in SIRT1/p53 pathway and its influence on breast cancer cell viability and apoptosis. Cells were transfected with miR-211-5p mimic and inhibitor to modulate cellular miR-211-5p levels in breast cancer cell lines, MDA-MB-231 and MCF-7. Gene expression of miR-211-5p and SIRT1 were measured with real-time PCR. SIRT1 protein level and the acetylation of p53 as well as SIRT1 activity were evaluated by Western blotting and fluorometry, respectively. In order to explore the direct attachment of miR-211-5p to the 3'-UTR of SIRT1 mRNA, luciferase reporter assay was applied. Cell viability in response to miR-211-5p was studied by MTT assay and apoptosis was assessed by annexin V labeling followed by flow cytometry. Results showed that SIRT1 gene and protein expression were inhibited by miR-211-5p and the 3'-UTR of SIRT1 was found to be directly targeted by miR-211-5p. Inhibition of SIRT1 expression resulted in its reduced activity. Up-regulation of miR-211-5p was also followed by a significant decline in the acetylation status of p53 which was associated with remarkable decreased cell viability and induction of apoptosis in breast cancer cells. Antisense oligonucleotide of miR-211-5p acted as its inhibitor and exerted opposite effects both on SIRT1 expression and cell apoptosis. In conclusion, inhibition of SIRT1 by miR-211-5p could effectively reduce breast cancer cell survival and cause cell death and therefore might be considered a seemly mechanism for designing anticancer therapies.
Collapse
Affiliation(s)
- Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Laboratory Science, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Seiri
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Pei Y, Yao Q, Li Y, Zhang X, Xie B. microRNA-211 regulates cell proliferation, apoptosis and migration/invasion in human osteosarcoma via targeting EZRIN. Cell Mol Biol Lett 2019; 24:48. [PMID: 31333725 PMCID: PMC6617937 DOI: 10.1186/s11658-019-0173-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, microRNA-211 (miR211) has been considered as a tumor suppressor in multiple malignancies. However, the function of miR211 in human osteosarcoma has not been explored intensively so far. In this study, the relationship between miR211 and EZRIN was analyzed in human osteosarcoma. Methods The expression levels of miR211 and EZRIN were measured in both human osteosarcoma cells and tissues. The direct regulatory relationship between miR211 and EZRIN was evaluated using dual-luciferase assay. The effect of miR211 and EZRIN overexpression on cell proliferation, migration/invasion, and apoptosis was detected. Results The expression of miR211 was obviously lower in osteosarcoma tissues than paracancerous tissues. EZRIN was identified as the direct target of miR211, and up-regulation of miR211 increased the percentage of cell apoptosis, and suppressed cell proliferation as well as cell migration/invasion via directly regulating EZRIN. Conclusions Our study indicated that miR211 has an important role in the development and progress of osteosarcoma, and it might become a novel target in the diagnosis and treatment of human osteosarcoma. Electronic supplementary material The online version of this article (10.1186/s11658-019-0173-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Pei
- 1Central laboratory, ZhongShan Hospital XiaMen University, Xiamen, 361004 China.,2Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, 361004 China
| | - Qin Yao
- 1Central laboratory, ZhongShan Hospital XiaMen University, Xiamen, 361004 China.,2Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, 361004 China
| | - Yingchao Li
- 3Department of Spine Surgery, ZhongShan Hospital XiaMen University, No. 201 Hubin South Road, Xiamen, 361004 China
| | - Xin Zhang
- 4Department of Rehabilitation, ZhongShan Hospital XiaMen University, Xiamen, 361004 China
| | - Bozhen Xie
- 3Department of Spine Surgery, ZhongShan Hospital XiaMen University, No. 201 Hubin South Road, Xiamen, 361004 China
| |
Collapse
|
11
|
Xiao Q, Dai J, Luo J, Fujita H. Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2019.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Joshi P, Seki T, Kitamura S, Bergano A, Lee B, Perera RJ. Transcriptome stability profiling using 5'-bromouridine IP chase (BRIC-seq) identifies novel and functional microRNA targets in human melanoma cells. RNA Biol 2019; 16:1355-1363. [PMID: 31179855 DOI: 10.1080/15476286.2019.1629769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA half-life is closely related to its cellular physiological function, so stability determinants may have regulatory functions. Micro(mi)RNAs have primarily been studied with respect to post-transcriptional mRNA regulation and target degradation. Here we study the impact of the tumour suppressive melanoma miRNA miR-211 on transcriptome stability and phenotype in the non-pigmented melanoma cell line, A375. Using 5'-bromouridine IP chase (BRIC)-seq, transcriptome-wide RNA stability profiles revealed highly regulated genes and pathways important in this melanoma cell line. By combining BRIC-seq, RNA-seq and in silico predictions, we identified both existing and novel direct miR-211 targets. We validated DUSP3 as one such novel miR-211 target, which itself sustains colony formation and invasion in A375 cells via MAPK/PI3K signalling. miRNAs have the capacity to control RNA turnover as a gene expression mechanism, and RNA stability profiling is an excellent tool for interrogating functionally relevant gene regulatory pathways and miRNA targets when combined with other high-throughput and in silico approaches.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Tatsuya Seki
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Medical and Biological Laboratories , Nagoya , Japan
| | | | - Andrea Bergano
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA
| | - Ranjan J Perera
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
13
|
Zhu L, Wang R, Zhang L, Zuo C, Zhang R, Zhao S. rs187960998 polymorphism in miR-211 prevents development of human colon cancer by deregulation of 3'UTR in CHD5. Onco Targets Ther 2019; 12:405-412. [PMID: 30655677 PMCID: PMC6322703 DOI: 10.2147/ott.s180935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Previous research indicated that overexpression of miRNA-211 could promote colorectal cancer cell growth by targeting tumor suppressive gene Chromodomain-helicase-DNA-binding protein 5 (CHD5) in human colon cancer (CC). Moreover, the function of the single-nucleotide polymorphism (SNP) located in the mature region of miR-211 has not been investigated. In this study, we found that SNP of rs187960998 in miR-211 was involved in the occurrence of CC by acting as a tumor suppressor by mal-regulation of its target gene CHD5. Materials and methods The genotype of total 685 CC patients was detected by real-time PCR, the proliferation of CC cell lines with different genotypes of miR-211 was determined by Cell Counting Kit-8, cell invasion evaluated by transwell and the activity of the CHD5 promoter in CC cell lines transfected with different miR-211 was determined by luciferase assay. The expression of CHD5 in CC patients was determined by the immunohistochemistry, and the relapse-free survival rate was analyzed by Kaplan–Meier analysis. Results C/T SNP of miR-211 could inhibit CC cell proliferation and invasion by upregulation of CHD5. And SNP in rs187960998 of miR-211 was associated with tumor size, metastasis and tumor differentiation in CC patients. Patients with CC genotype have significantly low CHD5 expression than the T-carrier, while no significant expression difference in miR-211 expression among different genotype subsets. Patients with CC genotype have significantly shorter postsurgery survival rate compared to the T-carrier. Conclusion rs187960998 in miR-211 was highly associated with a decreased risk of CC in the Chinese population by deregulating a tumor suppressive gene CHD5.
Collapse
Affiliation(s)
- Limei Zhu
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,
| | - Ran Wang
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,
| | - Li Zhang
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,
| | - Chunlei Zuo
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,
| | - Rui Zhang
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,
| | - Shaolin Zhao
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China,
| |
Collapse
|
14
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Li W, Miao X, Liu L, Zhang Y, Jin X, Luo X, Gao H, Deng X. Methylation-mediated silencing of microRNA-211 promotes cell growth and epithelial to mesenchymal transition through activation of the AKT/β-catenin pathway in GBM. Oncotarget 2018; 8:25167-25176. [PMID: 28445937 PMCID: PMC5421919 DOI: 10.18632/oncotarget.15531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Aberrant expression of miR-211 has frequently been reported in cancer studies; however, its role in glioblastoma multiforme (GBM) has not been examined in detail. We investigated the function and the underlying mechanism of miR-211 in GBM. We revealed that miR-211 was downregulated in GBM tissues and cell lines. Restoration of miR-211 inhibited GBM cell growth and invasion both in vitro and in vivo. The epithelial to mesenchymal transition (EMT) phenotype was reversed when miR-211 expression was restored. HMGA2 was identified as a down-stream target of miR-211. MiR-211 had an inhibitory effect on AKT/β-catenin signaling, which was reversed by HMGA2 overexpression or miR-211 restoration. In addition, miR-211 was transcriptionally repressed by EZH2-induced H3K27 trimethylation and promoter methylation. Overall, our findings revealed miR-211 as a tumor suppressor in GBM and mir-211 may be a potential therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Weidong Li
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaobo Miao
- Department of Radiation and Chemotherapy Oncology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xuejun Jin
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Luo
- Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Hai Gao
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.,Xiamen Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, China
| | - Xubin Deng
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Chen G, Huang P, Xie J, Li R. microRNA‑211 suppresses the growth and metastasis of cervical cancer by directly targeting ZEB1. Mol Med Rep 2017; 17:1275-1282. [PMID: 29115509 DOI: 10.3892/mmr.2017.8006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/11/2017] [Indexed: 11/06/2022] Open
Abstract
Of gynecological cancers, cervical cancer has the second highest incidence globally and is a major cause of cancer‑associated mortality in women. An increasing number of studies have reported that microRNAs (miRNAs) have important roles in cervical cancer carcinogenesis and progression through regulation of various critical protein‑coding genes. The aim of the present study was to investigate the expression and biological roles of miRNA‑211 (miR‑211) in cervical cancer and its underlying molecular mechanism. The results of reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that the expression levels of miR‑211 in cervical cancer tissues and cell lines were significantly lower compared with adjacent normal tissues and the normal human cervix epithelial cell line, respectively. Furthermore, upregulation of miR‑211 by transfection with miR‑211 mimics inhibited cell proliferation, migration and invasion of cervical cancer, as determined by MTT, Transwell and Matrigel assays, respectively. Bioinformatics analysis and luciferase reporter assay results indicated that zinc finger E‑box binding homeobox 1 (ZEB1) may be a direct target gene of miR‑211. In addition, RT‑qPCR and western blot analysis results demonstrated that miR‑211 overexpression markedly reduced ZEB1 expression at mRNA and protein levels in cervical cancer. Furthermore, the effects of ZEB1 downregulation on the proliferation, migration and invasion of cervical cancer cells were similar to those induced by miR‑211 overexpression. These results indicate that miR‑211 may act as a tumor suppressor in cervical cancer by directly targeting ZEB1. Therefore, miR‑211/ZEB1‑based targeted therapy may represent a potential novel treatment for patients with cervical cancer.
Collapse
Affiliation(s)
- Guangyuan Chen
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| | - Ping Huang
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| | - Jiabin Xie
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| | - Rihong Li
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| |
Collapse
|
17
|
MicroRNA-148a promotes apoptosis and suppresses growth of breast cancer cells by targeting B-cell lymphoma 2. Anticancer Drugs 2017; 28:588-595. [PMID: 28430743 DOI: 10.1097/cad.0000000000000498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) contribute toward tumorigenesis through the modulation of tumor-related genes. MiR-148a has been characterized as a tumor-suppressing miRNA and its downregulation has been reported in tumors of a variety of cancers. However, the functional role of miR-148a in breast cancer is not yet fully understood. Using both in-vitro and in-vivo models, we confirmed that miR-148a acts to inhibit the proliferation of breast cancer cells. Through the use of bioinformatic approaches in miRNA target prediction, we determined that B-cell lymphoma 2 (BCL-2) is a likely target of miR-148a. The overexpression and tumorigenic effects of BCL-2 have already been confirmed in cancerous tumors of the breast. A dual-luciferase assay was performed to confirm that miR-148a targets the 3'-untranslated region of BCL-2. In this study, we first characterized the downregulation of miR-148a in breast cancer tissues. We then found that restoring expression of miR-148a suppressed the expression of BCL-2 at the level of both mRNA and protein. Upregulation of miR-148a caused a subsequent reduction of proliferation and an increase in apoptosis. In conclusion, we have confirmed the role of miR-148a as a pivotal regulator in breast cancer through its targeting of BCL-2. This evidence strongly suggests that miR-148a could prove to be a novel therapeutic target in breast cancer.
Collapse
|
18
|
Shi Y, Chen X, Xi B, Yu X, Ouyang J, Han C, Qin Y, Wu D, Shen H. SNP rs3202538 in 3'UTR region of ErbB3 regulated by miR-204 and miR-211 promote gastric cancer development in Chinese population. Cancer Cell Int 2017; 17:81. [PMID: 28924391 PMCID: PMC5599891 DOI: 10.1186/s12935-017-0449-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
Background/aims ErbB3 is an oncogene which has proliferation and metastasis promotion effects by several signaling pathways. However, the individual expression difference regulated by miRNA was almost still unknown. We focused on the miRNAs associated SNPs in the 3′-UTR of ErbB3 to investigate the further relationship of the SNPs with miRNAs among Chinese gastric cancer (GC) patients. Methods We performed case–control study including 851 GC patients and 799 cancer-free controls. Genotyping, real-time PCR assay, cell transfection, the dual luciferase reporter assay, western-blot, cell proliferation and trans-well based cell invasion assay were used to investigate the effects of the SNP on ErbB3 expression. Moreover, a 5-years-overall survival and relapse free survival were investigated between different genotypes. Results We found that patients suffering from Helicobacter pylori (Hp.) infection indicated to be the susceptible population by comparing with controls. Besides, SNP rs3202538 (G/T) in ErbB3 3′-UTR was involved in the occurrence of GC by acting as tumor risk factors. SNP rs3202538 (G/T) could be regulated by both miR-204 and miR-211 which caused an upregulation of ErbB3 in patients. Furthermore, the carriers of T genotype was related to the significantly high expression of ErbB3, and to big tumor size, poor differentiation as well as the high probability of metastasis. Both miR-211 and miR-204 can significantly decrease cell proliferation, metastasis as well as downstream AKT activation through G but not T allele of ErbB3 3′UTR. Moreover, the SNP of G/T was associated with shorter survival of post-surgery GC patients with 5 years of follow up study. Conclusion In conclusion, our findings have shown that the SNP rs3202538 (G/T) in ErbB3 3′-UTR acted as promotion factors in the GC development through disrupting the regulatory role of miR-204 and miR-211 in ErbB3 expression. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaxiang Shi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Xuan Chen
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Biao Xi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Xiaowen Yu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Jun Ouyang
- College of Jingjiang, Jiangsu University, Zhenjiang, China
| | - Chunxia Han
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Yucheng Qin
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Defeng Wu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang Affiliated Hosptial of Nanjing University of Chinese Medicine, Zhenjiang, China
| | - Hong Shen
- Department of Gastroenterology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| |
Collapse
|
19
|
Wang M, Liang L, Li L, Han K, Li Q, Peng Y, Peng X, Zeng K. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep 2017; 15:3479-3484. [PMID: 28393203 PMCID: PMC5436295 DOI: 10.3892/mmr.2017.6422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Pemphigus is an autoimmune disease that causes blisters and erosions in the skin and mucous membranes. The development of pemphigus is associated with the imbalance of T‑cell and humoral responses. MicroRNAs (miRNAs) can regulate many cell functions. However, whether miRNA expression is altered in peripheral blood mononuclear cells (PBMCs) during the pathogenesis of pemphigus has not been clarified. The aim of the present study was to examine the miRNA expression profiles of PBMCs from patients with pemphigus. The expression profiles of miRNAs in PBMCs from patients with active pemphigus (n=3) and healthy subjects (n=3) were analyzed by microarray. The relative levels of miR-424-5p expression in PBMCs from 9 patients and controls were validated by RT-qPCR. The functional and biological processes of the differentially expressed miRNAs were analyzed by bioinformatics. There were 124 differentially expressed miRNAs in PBMCs from the patients with pemphigus, compared with healthy controls, including 71 that were upregulated (P<0.05, fold change >2), and 53 that were downregulated (P<0.05, fold change <0.5). miR-424-5p was highly expressed in patients with pemphigus. Bioinformatics analysis indicated that the genes targeted by miR-424-5p were involved in intracellular signaling cascades, phosphate metabolism and regulation of kinase activity. The predicted target genes were associated with the T-cell receptor and mitogen-activated protein kinase signaling pathways as well as others. In conclusion, the results have demonstrated the miRNA expression profile, and verified that miR-424-5p was upregulated in PBMCs from patients with pemphigus. The biological function and potential pathways of miR-424-5p in pemphigus were predicted. Thus, miR-424-5p may contribute to the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liuping Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai Han
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yusheng Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuebiao Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
20
|
Peng F, Xiong L, Tang H, Peng C, Chen J. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumour Biol 2016; 37:14463-14477. [DOI: 10.1007/s13277-016-5334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
|
21
|
Weng W, Okugawa Y, Toden S, Toiyama Y, Kusunoki M, Goel A. FOXM1 and FOXQ1 Are Promising Prognostic Biomarkers and Novel Targets of Tumor-Suppressive miR-342 in Human Colorectal Cancer. Clin Cancer Res 2016; 22:4947-4957. [PMID: 27162244 DOI: 10.1158/1078-0432.ccr-16-0360] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Colorectal cancer ranks as the third most frequent cancer type, and its incidence continues to rise gradually worldwide, highlighting the need to identify previously unrecognized molecular events that propel development of this malignancy. Recent evidence suggests that dysregulated expression of FOX family of transcription factors may be critical in various genetic disorders as well as cancer; however, the functional and clinical significance of this pathway in colorectal cancer remains unclear. EXPERIMENTAL DESIGN AND RESULTS Herein, we performed a systematic and comprehensive discovery step by evaluating the expression of FOX family members, and identified that FOXM1 and FOXQ1 are frequently overexpressed in colorectal cancer. We subsequently confirmed these findings in two large testing cohorts (n = 550) and an independent clinical validation cohort (n = 134), in which high expression of FOXM1 and FOXQ1 emerged as an independent prognostic factor in colorectal cancer patients. We corroborated these findings by performing functional assays in which knockdown of FOXM1 and FOXQ1 resulted in inhibited cell proliferation and suppressed migration and invasion in colorectal cancer cells. Furthermore, using bioinformatic approaches, we identified miR-342 as a novel regulator of both FOXM1 and FOXQ1. Overexpression or inhibition of miR-342 modulated the expression of both genes and contributed to phenotypic alterations in colorectal cancer cells, which was subsequently validated in a xenograft animal model. CONCLUSIONS Collectively, we have firstly identified FOXM1 and FOXQ1 as promising prognostic biomarkers in colorectal cancer patients, and provided novel evidence that therapeutic targeting of these genes or miR-342 may be a potential treatment approach in colorectal cancer patients. Clin Cancer Res; 22(19); 4947-57. ©2016 AACR.
Collapse
Affiliation(s)
- Wenhao Weng
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas. Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yoshinaga Okugawa
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Shusuke Toden
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Yuji Toiyama
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Masato Kusunoki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
22
|
Lee H, Lee S, Bae H, Kang HS, Kim SJ. Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells. Sci Rep 2016; 6:25287. [PMID: 27121770 PMCID: PMC4848534 DOI: 10.1038/srep25287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
MiR-204 and miR-211 (miR-204/211) share the same seed site sequence, targeting many of the same genes. Their role in cancer development remains controversial, as both cell proliferative and suppressive effects have been identified. This study aimed to address the relationship between the two structurally similar microRNAs (miRs) by examining their target genes in depth as well as to reveal their contribution in breast cancer cells. Genome-wide pathway analysis with the dysregulated genes after overexpression of either of the two miRs in MCF-7 breast cancer cell identified the “Cancer”- and “Cell signaling”-related pathway as the top pathway for miR-204 and miR-211, respectively. The majority of the target genes for both miRs notably comprised ones that have been characterized to drive cells anti-tumorigenic. Accordingly, the miRs induced the proliferation of MCF-7 and MDA-MB-231 cells, judged by cell proliferation as well as colony forming assay. Tumor suppressors, MX1 and TXNIP, were proven to be direct targets of the miRs. In addition, a high association was observed between miR-204 and miR-211 expression in breast cancer tissue. Our results indicate that miR-204/211 serve to increase cell proliferation at least in MCF-7 and MDA-MB-231 breast cancer cells by downregulating tumor suppressor genes.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
23
|
Abstract
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|
24
|
Ye L, Wang H, Liu B. miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol 2015; 37:1151-7. [PMID: 26277787 DOI: 10.1007/s13277-015-3835-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that, when dysregulated, are involved in the initiation and progression of various cancers, including lung cancer, in humans. In the current study, qRT-PCR was performed to measure miR-211 expression in human non-small cell lung cancer (NSCLC) cell lines and tissues. Cell proliferation, cell cycle, colony formation, and invasion were performed to detect the functional role of miR-211 in human NSCLC cell line. We used luciferase reporter assay to find the potential target of miR-211. We found that miR-211 expression was upregulated in human non-small cell lung cancer (NSCLC) cell lines and tissues. The overexpression of miR-211 enhanced NSCLC cell proliferation, colony formation, and invasion. SRC kinase signaling inhibitor 1 (SRCIN1) was identified as a direct target of miR-211. SRCIN1 silencing promoted cell proliferation, and SRCIN1 expression was downregulated in human NSCLC cell lines. Thus, miR-211 may function as an oncogenic miRNA in NSCLC, partly by regulating SRCIN1, and the modulation of miR-211 expression represents a potential strategy for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Leiguang Ye
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040
| | - Hui Wang
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040
| | - Baogang Liu
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040.
| |
Collapse
|
25
|
Yu Y, Wang L, Liu T, Guan H. MicroRNA-204 suppresses trophoblast-like cell invasion by targeting matrix metalloproteinase-9. Biochem Biophys Res Commun 2015; 463:285-91. [DOI: 10.1016/j.bbrc.2015.05.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
|