1
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Wang C, Xie X, Li W, Jiang D. Expression of KIF2A, NDC80, CDK1, and CCNB1 in breast cancer patients: Their interaction and linkage with tumor features and prognosis. J Clin Lab Anal 2022; 36:e24647. [PMID: 35949045 PMCID: PMC9459262 DOI: 10.1002/jcla.24647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A), nuclear division cycle 80 (NDC80), cyclin‐dependent kinase 1 (CDK1), and cyclin B1 (CCNB1) exhibit a complex interrelation, which promote cancer progression via multiple ways, whereas their interaction and clinical implications in breast cancer are obscure. Hence, this study aimed to evaluate the correlation among KIF2A, NDC80, CDK1, CCNB1, and their linkage with clinicopathological features and prognosis in breast cancer patients. Methods 195 breast cancer patients underwent surgical resection were analyzed. KIF2A, NDC80, CDK1, and CCNB1 expressions were determined by immunohistochemical (IHC) assay and scored by a semiquantitative IHC score or positive cell percentage. Results KIF2A expression positively associated with NDC80, CDK1, and CCNB1 expressions (all p < 0.01). In terms of tumor features: KIF2A high expression linked with increased T stage (p = 0.011), N stage (p = 0.014), and TNM stage (p = 0.009) but not tumor differentiation (p = 0.651). NDC80 high expression only related to higher N stage (p = 0.010); CDK1 high expression only connected with elevated N stage (p = 0.035) and TNM stage (p = 0.023). In aspect of prognosis, high expression of KIF2A was correlated with worse disease‐free survival (DFS) (p = 0.031), while NDC80 high (p = 0.329), CDK1 high (p = 0.276), and CCNB1 positive (p = 0.063) expressions only showed trends to link with poor DFS (without statistical significance). Furthermore, high expression of KIF2A (p = 0.063), NDC80 (p = 0.939), CDK1 (p = 0.413) and positive expression of CCNB1 (p = 0.296) did not relate to overall survival. Conclusion KIF2A correlates with NDC80, CDK1, CCNB1, and may link with advanced tumor stages and poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Cong Wang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Xianxin Xie
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Weijie Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhang X, Wu M, Peng G, Li W, Guo Z, Li H, Jiang M. Aberrant kinesin family member 2A signifies tumor size and invasion, and may help predict prognosis of patients with papillary thyroid carcinoma. Oncol Lett 2022; 24:256. [PMID: 35765280 PMCID: PMC9219030 DOI: 10.3892/ol.2022.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Kinesin family member 2A (KIF2A) has been reported as an oncogene and potential biomarker for the progression of numerous cancer types; however, its role in papillary thyroid carcinoma (PTC) has remained elusive. The present study aimed to assess KIF2A expression in patients with PTC and explore the potential association between KIF2A, clinicopathological features and the prognosis of PTC. A total of 200 patients with PTC who received surgical resection were retrospectively reviewed. KIF2A expression was detected using immunohistochemistry (IHC) in 200 pairs of carcinoma/para-carcinoma tissues and using reverse transcription-quantitative PCR in 91 pairs of carcinoma/para-carcinoma tissues. Clinical and pathological data, disease-free survival (DFS) and overall survival (OS) rates of all patients were obtained. The results of the present study demonstrated that KIF2A protein and mRNA expression were both elevated in carcinoma tissues compared with those in para-carcinoma tissues. KIF2A protein expression in carcinoma tissues was positively associated with increased tumor size and a higher pathologic tumor-nodes-metastasis (pTNM) stage. However, KIF2A mRNA expression in carcinoma tissues was only associated with an increased pTNM stage and not with any other clinicopathological features. In addition, high levels of KIF2A protein expression in carcinoma tissues led to a poor predicted DFS, but were not associated with OS. Following adjustments using a multivariate Cox regression model, high KIF2A protein expression levels were indicated to be independently associated with a decreased DFS. In conclusion, aberrant KIF2A signifies tumor size and invasion, and may help to predict prognosis in patients with PTC.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mian Wu
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Gongling Peng
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Wenhuan Li
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zhe Guo
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hai Li
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ming Jiang
- Department of Thyroid and Breast Surgery, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
5
|
Yang H, Liu Y. Kinesin Family Member 2A Serves as a Potential Biomarker Reflecting More Frequent Lymph Node Metastasis and Tumor Recurrence Risk in Basal-Like Breast Cancer Patients. Front Surg 2022; 9:889294. [PMID: 35784940 PMCID: PMC9243457 DOI: 10.3389/fsurg.2022.889294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A) is reported as an oncogene and a potential biomarker for progression and prognosis in several cancers such as cervical, ovarian, and gastric. However, its clinical value in basal-like breast cancer (BLBC) is unclear. This study aims to evaluate KIF2A expression and its correlation with clinical features and survival rates in BLBC patients. Methods KIF2A mRNA and protein expressions in tumor and adjacent tissues from 89 BLBC patients are assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry assays, respectively. Results Both KIF2A protein (p < 0.001) and mRNA expressions (p < 0.001) were higher in tumor than in adjacent tissue. Besides, tumor KIF2A protein expression was positively correlated with N (p = 0.028) and TNM (p = 0.014) stages; meanwhile, tumor KIF2A mRNA expression was positively correlated with N stage (p = 0.046), TNM stage (p = 0.006), and tumor size (p = 0.043). Additionally, both tumor KIF2A protein (p = 0.035) and mRNA (p = 0.039) high expressions were correlated with worse disease-free survival (DFS) but not with overall survival (both p > 0.05). Moreover, tumor KIF2A protein expression was higher in relapsed patients than in non-relapsed patients within 3 years (p = 0.015) and 5 years (p = 0.031), whereas no difference was found between the dead and survivors within 3 years (p = 0.057) or 5 years (p = 0.107). Lastly, after adjustment, tumor KIF2A mRNA high exhibited a trend that correlated with DFS but without statistical significance (p = 0.051). Conclusion KIF2A correlates with more frequent lymph node metastasis and worse DFS in BLBC patients, shedding light on its potency as a biomarker for BLBC.
Collapse
Affiliation(s)
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang F, Li J, Li L, Chen Z, Wang N, Zhu M, Mi H, Xiong Y, Guo G, Gu Y. Circular RNA circ_IRAK3 contributes to tumor growth through upregulating KIF2A via adsorbing miR-603 in breast cancer. Cancer Cell Int 2022; 22:81. [PMID: 35164763 PMCID: PMC8845402 DOI: 10.1186/s12935-022-02497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Breast cancer (BC) threatens the health of women around the world. Researchers have proved that hsa_circ_0005505 (circ_IRAK3) facilitates BC cell invasion and migration, but the regulatory mechanisms of circ_IRAK3 in BC remain mostly unknown. We aim to explore a new mechanism by which circ_IRAK3 promotes BC progression. Methods Levels of circ_IRAK3, microRNA (miR)-603, and kinesin family member 2A (KIF2A) mRNA in BC tissues and cells were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The cell cycle progression, colony formation, and proliferation of BC cells were evaluated by flow cytometry, plate clone, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays. The migration, invasion, and apoptosis of BC cells were determined by transwell or flow cytometry assays. Several protein levels were detected using western blotting. The targeting relationship between circ_IRAK3 or KIF2A and miR-603 was verified via dual-luciferase reporter assay. The role of circ_IRAK3 in vivo was verified by xenograft assay. Results We observed higher levels of circ_IRAK3 in BC tissues and cell lines than their respective controls. Functional experiments presented that circ_IRAK3 silencing induced BC cell apoptosis, curbed cell proliferation, migration, and invasion in vitro, and decreased tumor growth in vivo. Mechanistically, circ_IRAK3 could modulate kinesin family member 2A (KIF2A) expression through acting as a microRNA (miR)-603 sponge. miR-603 silencing impaired the effects of circ_IRAK3 inhibition on the malignant behaviors of BC cells. Also, the repressive effects of miR-603 mimic on the malignant behaviors of BC cells were weakened by KIF2A overexpression. Conclusions circ_IRAK3 exerted a promoting effect on BC progression by modulating the miR-603/KIF2A axis, providing a piece of novel evidence for circ_IRAK3 as a therapeutic target for BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02497-y.
Collapse
Affiliation(s)
- Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Jingruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Zhuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Hailong Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Guangcheng Guo
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
7
|
Liu W, Xu C, Meng Q, Kang P. The clinical value of kinesin superfamily protein 2A in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101527. [PMID: 33713978 DOI: 10.1016/j.clinre.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND This study aimed to investigate the clinical value of kinesin superfamily protein 2A (KIF2A) in hepatocellular carcinoma (HCC) patients. METHODS This study retrospectively analyzed 196 HCC patients who underwent hepatic resection, and their preoperative clinical characteristics were collected from the medical records. Immunohistochemical (IHC) assay was performed to detect KIF2A expression, subsequently KIF2A expression was evaluated by a semi-quantitative IHC score (according to IHC staining density and intensity of positively stained cells) and then graded as KIF2A-/KIF2A+/KIF2A++/KIF2A+++ for analysis. Overall survival (OS) was calculated from the date of resection to the date of death. RESULTS Compared to adjacent tissue, both KIF2A IHC score and grade were higher in tumor tissue (Both P < 0.001). Tumor KIF2A expression was positively correlated with performance status score (P = 0.001), multifocal tumor nodule (P = 0.018), largest tumor size (P = 0.015) and Barcelona clinic liver cancer stage (P < 0.001). Regarding live function indexes, tumor KIF2A expression was positively associated with aspartate aminotransferase (P = 0.006). As to tumor markers, tumor KIF2A expression showed a trend to be positively correlated with alpha fetoprotein (P = 0.060) and carbohydrate antigen 199 (P = 0.053), but no statistical significance. Kaplan-Meier curve showed that tumor higher KIF2A expression was associated with worse OS (P < 0.001), which was further validated by multivariate Cox's regression analysis as higher an independent factor predicting shorter OS (P = 0.001). CONCLUSION KIF2A is upregulated in tumor tissue than adjacent tissue, importantly, tumor KIF2A is associated with worse liver function, raised tumor stage and poor OS in HCC patients.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlin Xu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingyang Meng
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Kang
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Wang Z, Liu X, Liu X, Niu D. Long Non-Coding RNA BLACAT1 Promotes the Tumorigenesis of Gastric Cancer by Sponging microRNA-149-5p and Targeting KIF2A. Cancer Manag Res 2020; 12:6629-6640. [PMID: 32801897 PMCID: PMC7402705 DOI: 10.2147/cmar.s258178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Gastric cancer (GC) is a gastrointestinal tumor. This study is aimed to explore the regulatory mechanism of long non-coding RNA BLACAT1 (BLACAT1)/microRNA-149-5p (miR-149-5p)/KIF2A cascade on GC. Methods The expression of BLACAT1, miR-149-5p and KIF2A in GC was detected by qRT-PCR. The proliferation, migration and invasion of GC cells in vitro were analyzed by MTT, wound-healing and transwell assay, respectively. The xenograft tumor model was constructed in nude mice to confirm the inhibition effect of BLACAT1 knockdown on GC in vivo. Then, dual-luciferase reporter assay was used to detect the interactions among BLACAT1, miR-149-5p and KIF2A. Western blot assay was performed to determine the protein expression of KIF2A. Results The expression of BLACAT1 and KIF2A was up-regulated in GC, but miR-149-5p expression was down-regulated. Silencing of BLACAT1 retarded the proliferation, migration and invasion of GC cells in vitro and the growth of tumor xenograft in vivo. Moreover, BLACAT1 acted as the molecular sponge of miR-149-5p to up-regulate KIF2A expression. At last, feedback experiments suggested that BLACAT1 accelerated the proliferation, migration and invasion of GC cells by regulating miR-149-5p/KIF2A axis. Conclusion BLACAT1 facilitated the tumorigenesis of GC through regulating miR-149-5p/KIF2A axis, which indicated BLACAT1/miR-149-5p/KIF2A cascade may be a new therapeutic target.
Collapse
Affiliation(s)
- Zhengkun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Xichun Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Xiaolei Liu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Dongguang Niu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| |
Collapse
|
9
|
Li D, Sun H, Meng L, Li D. The Overexpression of Kinesin Superfamily Protein 2A (KIF2A) was Associated with the Proliferation and Prognosis of Esophageal Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:3731-3739. [PMID: 32547209 PMCID: PMC7246320 DOI: 10.2147/cmar.s248008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Aim Kinesin family member 2A (KIF2A) is a member of the kinesin-13 superfamily protein. KIF2A played a role in the development of many tumors. However, the role of KIF2A in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we aimed to investigate the role of KIF2A in ESCC. Methods We used bioinformatics analysis to study the expression levels and prognosis of KIF2A in ESCC and normal tissues. We also used our own samples to verify the results by immunohistochemistry. Then, the biological functions of KIF2A in ESCC was studied by cell experiments and animal experiments. Results Both the TCGA database and our samples showed that KIF2A was relatively highly expressed in ESCC tissues and was significantly associated with disease-free survival (P =0.037) in TCGA database. Colony formation assay, CCK8 and Western blotting results showed that knockdown of KIF2A can significantly reduce colony forming ability and proliferation ability. The results of animal experiments showed that knocking down KIF2A can significantly reduce the tumor volume of mice. Conclusion KIF2A might be used as a prognostic factor for ESCC, and knockdown of KIF2A could inhibit ESCC proliferation in vitro and in vivo, respectively. KIF2A could serve as a potential prognostic biomarker and therapeutic target for future ESCC.
Collapse
Affiliation(s)
- Demao Li
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| | - Huijie Sun
- Department of Pharmacy, Xingtai Medical College, Xingtai City, Hebei 054000, People's Republic of China
| | - Linglei Meng
- Department of CT/MR, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| | - Deshang Li
- Department of Laboratory, Xingtai People's Hospital, Xingtai City, Hebei 054000, People's Republic of China
| |
Collapse
|
10
|
Zhang X, Wang Y, Liu X, Zhao A, Yang Z, Kong F, Sun L, Yu Y, Jiang L. KIF2A promotes the progression via AKT signaling pathway and is upregulated by transcription factor ETV4 in human gastric cancer. Biomed Pharmacother 2020; 125:109840. [PMID: 32106376 DOI: 10.1016/j.biopha.2020.109840] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Kinesin family protein 2A (KIF2A), an M-type nonmotile microtubule depolymerase, plays essential roles in development and progression of various human cancers. However, its exact function and the underlying mechanism in tumorigenesis of gastric cancer (GC) haven't been fully elucidated. In the present study, KIF2A was overexpressed in human GC and predicted poor prognosis according to the results of GEPIA analysis. KIF2A was also observed to be upregulated in 82 GC samples compared with paired pericarcinoma tissues. Its overexpression was associated with tumor metastasis (P = 0.047) and Ⅲ stage GC (P = 0.0267). The mRNA and protein expression levels of KIF2A were significantly suppressed in KIF2A specific siRNA transfected GC cells compared with the wild-type and negative control (NC) siRNA transfected cells. Furthermore, the effects of KIF2A on the growth, migration, invasion, and apoptosis of GC cell were evaluated in vitro and the underlying mechanisms were explored. It was found that silencing KIF2A effectively induced the apoptosis, and inhibited the proliferation, migration and invasion capacities of GC cells. Western blot analysis demonstrated that silencing of KIF2A significantly decreased the expression levels of AKT, Cyclin D1 and S6K. Moreover, bioinformatics analysis showed that the promoter (from -414 to -407bp) of KIF2A has the ability to bind to transcription factor ETV4, which was confirmed by bi-luciferase reporter assay using 293T cells. The level of ETV4 was upregulated and positively correlated with KIF2A in human GC tissues. Our results also proved that ETV4 upregulated the expression of KIF2A and blocked the decline of proliferation induced by KIF2A knockdown in MKN-45 and AGS cells. In summary, KIF2A is upregulated by transcription factor ETV4, and its knockdown can effectively inhibit the proliferation and induce the apoptosis of GC cells through the AKT signaling pathway in GC cells, implying that the inhibition of KIF2A expression is a potential target for GC therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Yuyan Wang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Anqi Zhao
- Capital Medical University, Beijing, 100069, PR China
| | - Zhongheng Yang
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Fanshuang Kong
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Lili Sun
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Yingyu Yu
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Lipeng Jiang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China.
| |
Collapse
|
11
|
Wang G, Wang Z, Yu H. Kinesin family member 2A high expression correlates with advanced tumor stages and worse prognosis in non-small cell lung cancer patients. J Clin Lab Anal 2019; 34:e23135. [PMID: 31858647 PMCID: PMC7171296 DOI: 10.1002/jcla.23135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background This present study was to explore the association of kinesin family member 2A (KIF2A) expression with clinicopathological features and survival profiles, and the effect of KIF2A on cell proliferation and chemosensitivity in non‐small cell lung cancer (NSCLC). Methods Tumor and paired adjacent specimens were collected from 380 patients with NSCLC underwent resection for immunohistochemistry assay of KIF2A expression. In vitro, the effect of KIF2A on cell proliferation, chemosensitivity to cisplatin/vinorelbine was detected via KIF2A plasmids transfection into NCI‐H1299 NSCLC cells. Results Kinesin family member 2A expression was upregulated in tumor tissues compared with adjacent tissues, and tumor tissue KIF2A high expression was associated with higher pathological grade (P < .001), larger tumor size (P = .021), lymph node metastasis (P = .044), and increased tumor‐node‐metastasis stage (P = .001). As for survival profiles, disease‐free survival (P < .001) and overall survival (P < .001) were worse in patients with KIF2A high expression compared with those with KIF2A low expression. Multivariate Cox's regression exhibited that KIF2A high expression was an independent predictive factor for lower DFS (P < .001) and OS (P < .001). In vitro, KIF2A promoted proliferation and decreased chemosensitivity to cisplatin but not vinorelbine in NCI‐H1299 NSCLC cells. Conclusions The correlation of KIF2A expression with tumor features, survival, and its cellular function implies its potential as a prognostic biomarker and a treatment target in NSCLC.
Collapse
Affiliation(s)
- Guanjie Wang
- Department of Oncology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zheng Wang
- Department of Oncology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Haizhen Yu
- Department of Clinical Laboratory, Xi'an No.4 Hospital, Xi'an, China
| |
Collapse
|
12
|
Li X, Shu K, Wang Z, Ding D. Prognostic significance of KIF2A and KIF20A expression in human cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e18040. [PMID: 31725680 PMCID: PMC6867763 DOI: 10.1097/md.0000000000018040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The kinesin family (KIF) is reported to be aberrantly expressed and significantly correlated with survival outcomes in patients with various cancers. This meta-analysis was carried out to quantitatively evaluate the prognostic values of partial KIF members in cancer patients. METHODS Two well-known KIF members, KIF2A and KIF20A, were investigated to evaluate their potential values as novel prognostic biomarkers in human cancer. A comprehensive literature search was carried out of the PubMed, EMBASE, Cochrane Library, and Web of Science databases up to April 2019. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association of KIF2A and KIF20A expression with overall survival (OS) and clinicopathological parameters. RESULTS Twenty-five studies involving 7262 patients were finally incorporated, including nine about KIF2A and sixteen about KIF20A. Our results indicated that patients with high expression of KIF2 and KIF20A tended to have shorter OS than those with low expression (HR = 2.23, 95% CI = 1.87-2.65, P < .001; HR = 1.77, 95% CI = 1.57-1.99, P < .001, respectively). Moreover, high expression of these 2 KIF members was significantly associated with advanced clinical stage (OR = 1.98, 95% CI: 1.57-2.50, P < .001; OR = 2.63, 95% CI: 2.03-3.41, P < .001, respectively), positive lymph node metastasis (OR = 2.32, 95% CI: 1.65-3.27, P < .001; OR = 2.13, 95% CI: 1.59-2.83, P < .001, respectively), and distant metastasis (OR = 2.20, 95% CI: 1.21-3.99, P = .010; OR = 5.25, 95% CI: 2.82-9.77, P < .001, respectively); only high KIF20A expression was related to poor differentiation grade (OR = 1.82, 95% CI: 1.09-3.07, P = .023). CONCLUSIONS High expression of KIF2 and KIF20A in human cancer was significantly correlated with worse prognosis and unfavorable clinicopathological features, suggesting that these 2 KIF members can be used as prognostic biomarkers for different types of tumors. PROSPERO REGISTRATION NUMBER CRD42019134928.
Collapse
Affiliation(s)
- Xing Li
- Department of Urology, People's Hospital of Zhengzhou University
| | - Kunpeng Shu
- Department of Urology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Identification of KIF11 As a Novel Target in Meningioma. Cancers (Basel) 2019; 11:cancers11040545. [PMID: 30991738 PMCID: PMC6521001 DOI: 10.3390/cancers11040545] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Kinesins play an important role in many physiological functions including intracellular vesicle transport and mitosis. The emerging role of kinesins in different cancers led us to investigate the expression and functional role of kinesins in meningioma. Therefore, we re-analyzed our previous microarray dataset of benign, atypical, and anaplastic meningiomas (n = 62) and got evidence for differential expression of five kinesins (KIFC1, KIF4A, KIF11, KIF14 and KIF20A). Further validation in an extended study sample (n = 208) revealed a significant upregulation of these genes in WHO°I to °III meningiomas (WHO°I n = 61, WHO°II n = 88, and WHO°III n = 59), which was most pronounced in clinically more aggressive tumors of the same WHO grade. Immunohistochemical staining confirmed a WHO grade-associated upregulated protein expression in meningioma tissues. Furthermore, high mRNA expression levels of KIFC1, KIF11, KIF14 and KIF20A were associated with shorter progression-free survival. On a functional level, knockdown of kinesins in Ben-Men-1 cells and in the newly established anaplastic meningioma cell line NCH93 resulted in a significantly inhibited tumor cell proliferation upon siRNA-mediated downregulation of KIF11 in both cell lines by up to 95% and 71%, respectively. Taken together, in this study we were able to identify the prognostic and functional role of several kinesin family members of which KIF11 exhibits the most promising properties as a novel prognostic marker and therapeutic target, which may offer new treatment options for aggressive meningiomas.
Collapse
|
14
|
Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H. Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11020258. [PMID: 30813343 PMCID: PMC6406917 DOI: 10.3390/cancers11020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
In the human genome, miR-451a is encoded close to the miR-144 on chromosome region 17q11.2. Our previous study showed that both strands of pre-miR-144 acted as antitumor miRNAs and were involved in lung squamous cell carcinoma (LUSQ) pathogenesis. Here, we aimed to investigate the functional significance of miR-451a and to identify its targeting of oncogenic genes in LUSQ cells. Downregulation of miR-451a was confirmed in LUSQ clinical specimens, and low expression of miR-451a was significantly associated with poor prognosis of LUSQ patients (overall survival: p = 0.035, disease-free survival: p = 0.029). Additionally, we showed that ectopic expression of miR-451a significantly blocked cancer cell aggressiveness. In total, 15 putative oncogenic genes were shown to be regulated by miR-451a in LUSQ cells. Among these targets, high kinesin family member 2A (KIF2A) expression was significantly associated with poor prognosis (overall survival: p = 0.043, disease-free survival: p = 0.028). Multivariate analysis showed that KIF2A expression was an independent prognostic factor in patients with LUSQ (hazard ratio = 1.493, p = 0.034). Aberrant KIF2A expression promoted the malignant transformation of this disease. Analytic strategies based on antitumor miRNAs and their target oncogenes are effective tools for identification of novel molecular pathogenesis of LUSQ.
Collapse
Affiliation(s)
- Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan.
| |
Collapse
|
15
|
Dong XH, Yang XJ. Role of kinesin superfamily in gastrointestinal cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:1789-1794. [DOI: 10.11569/wcjd.v26.i31.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kinesins constitute a protein superfamily that belongs to motor proteins. Kinesins move along microtubules to exert their functions. They play a crucial role in intracellular transportation, mitosis, cell formation, and cell function. Kinesin are not only responsible for the transport of various membrane organelles, protein complexes, mRNA and so on to ensure the basic activity of cells, but also can regulate intracellular molecular signal pathways. Numerous studies have shown that kinesins are closely associated with the development of a variety of human diseases, especially the formation and development of gastrointestinal tumors. This article reviews the role of kinesins in gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiao-Hua Dong
- Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
| | - Xiao-Jun Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
16
|
Zhao P, Lan F, Zhang H, Zeng G, Liu D. Down-regulation of KIF2A inhibits gastric cancer cell invasion via suppressing MT1-MMP. Clin Exp Pharmacol Physiol 2018; 45:1010-1018. [PMID: 29781531 DOI: 10.1111/1440-1681.12974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer accounts for a sizeable proportion of global cancer mortality with high morbidity and poor prognosis. Kinesin superfamily proteins (KIFs) are microtubule-dependent motor proteins that function as oncogenes in cancer cells, it has been discovered in recent years. Kinesin family member 2a (KIF2A), a member of the KIFs, has received attention for its role in carcinogenesis and its prognostic value in several human cancers such as breast cancer, colorectal cancer, and squamous cell carcinoma. However, the role of KIF2A in human gastric cancer remains unknown. In this study we aimed to explore the expression and biological functions of KIF2A in human gastric cancer cells, as well as to reveal its potential action mechanism. First, we found that KIF2A was markedly increased in gastric cancer cells (MKN-28, MKN-45, NCI-N87 and SGC-7901) compared to normal gastric mucosa epithelial cells (GES-1). Then KIF2A was successfully silenced in MKN-45 and SGC-7901 cells to facilitate further research into its function. We discovered that KIF2A silencing can significantly inhibit the growth and invasion of MKN-45 and SGC-7901 cells in a time-independent manner, accompanying a decreased expression of Membrane type 1-matrix metalloproteinase (MT1-MMP). When MT1-MMP was reintroduced into MKN-45 and SGC-7901 cells in the KIF2A-siRNA group, only invasion inhibition effects on MKN-45 and SGC-7901 cells induced by KIF2A silencing can be reversed. In conclusion, our study reveals that down-regulation of KIF2A can inhibit gastric cancer cell invasion by suppressing MT1-MMP.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| | - Fei Lan
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| | - Hui Zhang
- Department of Internal Medicine, Jingyang County Hospital, Shaanxi, Xianyang, China
| | - Guangwei Zeng
- Department of Cardiovascular Medicine, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| | - Dong Liu
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, China
| |
Collapse
|
17
|
Zhang Y, You X, Liu H, Xu M, Dang Q, Yang L, Huang J, Shi W. High KIF2A expression predicts unfavorable prognosis in diffuse large B cell lymphoma. Ann Hematol 2017; 96:1485-1491. [PMID: 28616658 PMCID: PMC5537331 DOI: 10.1007/s00277-017-3047-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023]
Abstract
Kinesin family member 2A (KIF2A), a conserved motor protein, plays a critical role in the pathogenesis and prognosis of several malignant tumors. The aim of the present study was to investigate KIF2A expression in diffuse large B cell lymphoma (DLBCL), evaluate the association between KIF2A expression and the clinical parameters of the disease, and determine its prognostic value. KIF2A expression was evaluated in 134 DLBCL and 57 reactive hyperplasia samples using immunohistochemistry on a tissue microarray. The correlations between KIF2A expression with clinical parameters and prognosis were estimated using univariate and multivariate analyses. The expression of KIF2A was significantly higher in DLBCL tissue samples compared with those from subjects with reactive hyperplasia (P=0.002). Furthermore, increased expression of KIF2A protein in DLBCL was related to Ann Arbor stage (P=0.027) and international prognostic index (IPI) score (P=0.01). The survival analysis showed that KIF2A expression (P=0.016), serum LDH level (P=0.049), and IPI score (P<0.001) were independent prognostic markers for DLBCL. Our findings also confirmed that downregulating KIF2A expression decreased tumor cell viability, accompanied by downregulation of pAKT levels. Taken together, these data provide the first evidence that increased KIF2A expression predicts poor prognosis in patients with DLBCL, and a rationale for treatment of DLBCL by targeting KIF2A.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xuefen You
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Mengqi Xu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Qingxiu Dang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Li Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianfei Huang
- Clinical biological sample library, Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenyu Shi
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
18
|
KIF2A Overexpression and Its Association with Clinicopathologic Characteristics and Poor Prognoses in Patients with Gastric Cancer. DISEASE MARKERS 2016; 2016:7484516. [PMID: 27773961 PMCID: PMC5059588 DOI: 10.1155/2016/7484516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
Kinesin family protein 2A (KIF2A), an M-type nonmotile microtubule depolymerase, has attracted attention for its role in carcinogenesis and poor prognoses in various human cancers. In this study, we aimed to evaluate the expression of KIF2A and its robustness and potential to predict clinical outcomes in gastric cancer (GC) patients. The messenger RNA (mRNA) expression of KIF2A was determined in 24 pairs of cancerous and adjacent nontumor tissues by real-time polymerase chain reaction. Immunohistochemistry of KIF2A was performed on a tissue microarray composed of 461 GC and 65 matched adjacent nontumor tissues removed during surgeries and 18 chronic gastritis, 15 intestinal metaplasia, and 37 low-grade and 62 high-grade intraepithelial neoplasias acquired through gastric endoscopic biopsies. Univariate and multivariate Cox regression models were used to perform survival analyses. The high KIF2A expression was significantly correlated to histological type, TNM stage, and lymph node metastasis. A negative correlation was found between KIF2A expression and the 5-year survival rate of GC patients. In addition, multivariate analysis indicated that KIF2A is an independent prognostic factor in GC. This study demonstrated the high KIF2A expression might serve as an independent marker for poor prognoses in GC patients.
Collapse
|
19
|
Collí-Dulá RC, Friedman MA, Hansen B, Denslow ND. Transcriptomics analysis and hormonal changes of male and female neonatal rats treated chronically with a low dose of acrylamide in their drinking water. Toxicol Rep 2016; 3:414-426. [PMID: 28959563 PMCID: PMC5615912 DOI: 10.1016/j.toxrep.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
Acrylamide is known to produce follicular cell tumors of the thyroid in rats. RccHan Wistar rats were exposed in utero to a carcinogenic dose of acrylamide (3 mg/Kg bw/day) from gestation day 6 to delivery and then through their drinking water to postnatal day 35. In order to identify potential mechanisms of carcinogenesis in the thyroid glands, we used a transcriptomics approach. Thyroid glands were collected from male pups at 10 PM and female pups at 10 AM or 10 PM in order to establish whether active exposure to acrylamide influenced gene expression patterns or pathways that could be related to carcinogenesis. While all animals exposed to acrylamide showed changes in expected target pathways related to carcinogenesis such as DNA repair, DNA replication, chromosome segregation, among others; animals that were sacrificed while actively drinking acrylamide-laced water during their active period at night showed increased changes in pathways related to oxidative stress, detoxification pathways, metabolism, and activation of checkpoint pathways, among others. In addition, thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were increased in acrylamide-treated rats sampled at night, but not in quiescent animals when compared to controls. The data clearly indicate that time of day for sample collection is critical to identifying molecular pathways that are altered by the exposures. These results suggest that carcinogenesis in the thyroids of acrylamide treated rats may ensue from several different mechanisms such as hormonal changes and oxidative stress and not only from direct genotoxicity, as has been assumed to date.
Collapse
Key Words
- ADA, adenosine Deaminase
- ADRB2, adrenergic
- ASF1B, anti-Silencing Function 1B Histone Chaperone
- Acrylamide
- BRIP1, BRCA1 Interacting Protein C-Terminal Helicase 1
- BUB1B, BUB1 Mitotic Checkpoint Serine/Threonine Kinase B
- C1QTNF3, C1q and Tumor Necrosis Factor Related Protein 3
- C5, complement Component 5
- CALCR, calcitonin receptor
- CARD9, caspase recruitment domain family
- CCNA2, cyclin A2
- CCNG1, cyclin G1
- CD45, protein tyrosine phosphatase
- CD46, CD46 molecule
- CDC45, cell division cycle 45
- CDCA2, cell division cycle associated 2
- CDCA5, cell division cycle associated 5
- CENPT, centromere protein T
- CFB, complement factor B
- CGA, glycoprotein hormones
- CTLA4, cytotoxic T-lymphocyte-associated protein 4
- DAD1, defender against cell death 1
- DCTPP1, DCTP pyrophosphatase 1
- DNMT3A, DNA (cytosine-5-)-methyltransferase 3 alpha
- DUOX2, dual oxidase 2
- GCG, glucagon
- GCLC, glutamate-cysteine ligase
- GOLGA3, golgin A3
- GSTM1, glutathione S-transferase Mu 1
- GSTP1, glutathione S-transferase Pi 1
- HPSE, heparanase
- HSPA5, heat shock 70 kDa protein 5
- HSPB1, heat shock 27 KDa protein
- HSPB2, heat shock 27 kDa protein 2
- HSPH1, heat shock 105 kDa/110 kDa protein 1
- HTATIP2, HIV-1 tat interactive protein 2
- ID1, inhibitor of DNA binding 1
- IGF2, Insulin-like growth factor 2 (somatomedin A)
- IL1B, interleukin 1
- INHBA, inhibin
- IYD, iodotyrosine deiodinase
- KIF20B, kinesin family member 20B
- KIF22, kinesin family Member 22
- KLK1, kallikrein 1
- LAMA2, laminin, alpha 2
- MCM8, minichromosome maintenance complex component 8
- MIF, macrophage migration inhibitory factor
- MIS18A, MIS18 kinetochore protein A
- NDC80, NDC80 kinetochore complex component
- NPPC, natriuretic peptide precursor C
- NPY, neuropeptide
- NUBP1, nucleotide binding protein 1
- ORC1, origin recognition complex
- PDE3A, phosphodiesterase 3A
- PINK1, PTEN induced putative kinase 1
- PLCD1, phospholipase C
- PLK1, polo-like kinase 1
- POMC, proopiomelanocortin
- PRKAA2, protein kinase
- PRL, prolactin
- PRODH, proline dehydrogenase
- PTGIS, prostaglandin I2 (prostacyclin) synthase
- PTGS1, prostaglandin-endoperoxide synthase 1
- RAB5A, RAB5A
- RAN, ras-related nuclear protein
- RRM2, ribonucleotide reductase M2
- RccHan Wistar
- SCL5A5, solute carrier family 5 (sodium iodide symporter)
- SELP, selectin P (granule membrane protein 140 kDa
- SPAG8, sperm associated antigen 8
- TACC3, transforming
- TBCB, tubulin folding cofactor B
- TFRC, transferrin receptor
- TOP2A, topoisomerase (DNA) II alpha
- TPO, thyroid peroxidase
- TSHR, thyroid stimulating hormone receptor
- TSN, translin
- Thyroid
- Transcriptomics
- VWF, Von Willebrand Factor
Collapse
Affiliation(s)
- Reyna Cristina Collí-Dulá
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | | - Benjamin Hansen
- Laboratory of Pharmacology and Toxicology, D-211134, Hamburg, Germany
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Wang D, Zhu H, Ye Q, Wang C, Xu Y. Prognostic Value of KIF2A and HER2-Neu Overexpression in Patients With Epithelial Ovarian Cancer. Medicine (Baltimore) 2016; 95:e2803. [PMID: 26937910 PMCID: PMC4779007 DOI: 10.1097/md.0000000000002803] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinesin family member 2A (KIF2A) is a member of Kinesin-13 family and involved in cell migration and cell signaling. Human epidermal growth factor receptor 2 (HER2-neu) is implicated in the development of many cancers. Both of these 2 proteins are upstream inducer of PI3K/AKT signaling pathway that plays an important role in the regulation of many cellular events including proliferation, survival, and invasion. We hypothesized that aberrant KIF2A and HER2-neu expression might be associated with aggressive behavior of epithelial ovarian cancer (EOC).To address the prognostic implications of KIF2A and HER2-neu in EOC, we assessed protein levels of KIF2A and HER2-neu in 159 ovarian and fallopian tube tissues (111 carcinomas and 48 normal ovary or fallopian tube tissues) by immunohistochemistry (IHC) analysis on tissue microarray and KIF2A mRNA levels in 35 ovarian and fallopian tube tissues (15 carcinomas and 20 normal ovary or fallopian tube tissues) by real-time PCR.We found that significantly higher KIF2A mRNA expression in EOC tumors than that in normal ovary or fallopian tube tissues. The IHC results showed that protein of KIF2A and HER2-neu was overexpressed in EOC tissues compared with normal ovary or fallopian tube tissues, and KIF2A expression level was significantly associated with lymph nodes, metastasis, ascites cells, and FIGO stage. No correlation between KIF2A and HER2-neu expression was observed. Survival analysis showed that patients with KIF2A and HER2-neu overexpression had a worse overall survival (OS) as compared to patients with low or none expression of the 2 proteins. Multivariate analysis of variance revealed that overexpression of KIF2A was an independent prognostic factor for OS.These findings indicate the important role of KIF2A in predicting EOC prognosis.
Collapse
Affiliation(s)
- Di Wang
- From the Department of Obstetrics and Gynecology (DW, QY, CW, YX) and Department of Pathology (HZ), Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | | | | | | | | |
Collapse
|