1
|
Jackson DC, Burgon RM, Thompson S, Sudweeks SN. Single-cell quantitative expression of nicotinic acetylcholine receptor mRNA in rat hippocampal interneurons. PLoS One 2024; 19:e0301592. [PMID: 38635806 PMCID: PMC11025973 DOI: 10.1371/journal.pone.0301592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Hippocampal interneurons are a very diverse population of cells. Using single-cell quantitative PCR to analyze rat CA1 hippocampal interneurons, we quantified neuronal nicotinic acetylcholine receptor (nAChR) mRNA subunit expression and detailed possible nAChR subtype combinations for the α2, α3, α4, α5, α7, β2, β3, and β4 subunits. We also compared the expression detected in the stratum oriens and the stratum radiatum hippocampal layers. We show that the majority of interneurons in the CA1 of the rat hippocampus contain detectable levels of nAChR subunit mRNA. Our results highlight the complexity of the CA1 nAChR population. Interestingly, the α3 nAChR subunit is one of the highest expressed subunit mRNAs in this population, while the α4 is one of the least likely subunits to be detected in CA1 interneurons. The β2 nAChR subunit is the highest expressed beta subunit mRNA in these cells. In addition, Pearson's correlation coefficient values are calculated to identify significant differences between the nAChR subunit combinations expressed in the CA1 stratum oriens and the stratum radiatum. Statistical analysis also indicates that there are likely over 100 different nAChR subunit mRNA combinations expressed in rat CA1 interneurons. These results provide a valid avenue for identifying nAChR subtype targets that may be effective hippocampus-specific pharmacological targets.
Collapse
Affiliation(s)
- Doris C. Jackson
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Richard M. Burgon
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Spencer Thompson
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Sterling N. Sudweeks
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
2
|
Aronowitz AL, Ali SR, Glaun MDE, Amit M. Acetylcholine in Carcinogenesis and Targeting Cholinergic Receptors in Oncology. Adv Biol (Weinh) 2022; 6:e2200053. [PMID: 35858206 DOI: 10.1002/adbi.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tumor cells modulate and are modulated by their microenvironments, which include the nervous system. Accumulating evidence links the overexpression and activity of nicotinic and muscarinic cholinergic receptor subtypes to tumorigenesis in breast, ovarian, prostate, gastric, pancreatic, and head and neck cancers. Nicotinic and muscarinic receptors have downstream factors are associated with angiogenesis, cell proliferation and migration, antiapoptotic signaling, and survival. Clinical trials analyzing the efficacy of various therapies targeting cholinergic signaling or downstream pathways of acetylcholine have shed promising light on novel cancer therapeutics. Although the evidence for cholinergic signaling involvement in tumor development is substantial, a more detailed understanding of the acetylcholine-induced mechanisms of tumorigenesis remains to be unlocked. Such an understanding would enable the development of clinical applications ranging from the identification of novel biomarkers to the utilization of existing drugs to modulate cholinergic signaling to the development of novel cancer therapies, as discussed in this review.
Collapse
Affiliation(s)
- Alexandra L Aronowitz
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,McGovern Medical School at UTHealth, Houston, TX, 77555, USA
| | - Shahrukh R Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Medical Branch, Galveston, TX, 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otolaryngology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel) 2022; 14:cancers14153722. [PMID: 35954387 PMCID: PMC9367305 DOI: 10.3390/cancers14153722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Nerve–cancer cross-talk has increasingly become a focus of the oncology field, particularly in gastrointestinal (GI) cancers. The indispensable roles of the nervous system in GI tumorigenesis and malignancy have been dissected by epidemiological, experimental animal and mechanistic data. Herein, we review and integrate recent discoveries linking the nervous system to GI cancer initiation and progression, and focus on the molecular mechanisms by which nerves and neural receptor pathways drive GI malignancy. Abstract Our understanding of the fascinating connection between nervous system and gastrointestinal (GI) tumorigenesis has expanded greatly in recent years. Recent studies revealed that neurogenesis plays an active part in GI tumor initiation and progression. Tumor-driven neurogenesis, as well as neurite outgrowth of the pre-existing peripheral nervous system (PNS), may fuel GI tumor progression via facilitating cancer cell proliferation, chemoresistance, invasion and immune escape. Neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. In addition, neural infiltration also plays an integral role in tumor microenvironments, and contributes to an environment in favor of tumor angiogenesis, immune evasion and invasion. Blockade of tumor innervation via denervation or pharmacological agents may serve as a promising therapeutic strategy against GI tumors. In this review, we summarize recent findings linking the nervous system to GI tumor progression, set the spotlight on the molecular mechanisms by which neural signaling fuels cancer aggressiveness, and highlight the importance of targeting neural mechanisms in GI tumor therapy.
Collapse
|
4
|
Zhu Y, Zhang S, Sun J, Wang T, Liu Q, Wu G, Qian Y, Yang W, Wang Y, Wang W. Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and M2 polarization of macrophage. Int J Oral Sci 2021; 13:25. [PMID: 34373444 PMCID: PMC8352977 DOI: 10.1038/s41368-021-00128-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Oral immunosuppression caused by smoking creates a microenvironment to promote the occurrence and development of oral mucosa precancerous lesions. This study aimed to investigate the role of metabolism and macrophage polarization in cigarette-promoting oral leukoplakia. The effects of cigarette smoke extract (CSE) on macrophage polarization and metabolism were studied in vivo and in vitro. The polarity of macrophages was detected by flow cytometric analysis and qPCR. Liquid chromatography-mass spectrometry (LC-MS) was used to perform a metabolomic analysis of Raw cells stimulated with CSE. Immunofluorescence and flow cytometry were used to detect the polarity of macrophages in the condition of glutamine abundance and deficiency. Cell Counting Kit-8 (CCK-8), wound-healing assay, and Annexin V-FITC (fluorescein isothiocyanate)/PI (propidium iodide) double-staining flow cytometry were applied to detect the growth and transferability and apoptosis of Leuk-1 cells in the supernatant of Raw cells which were stimulated with CSE, glutamine abundance and deficiency. Hyperkeratosis and dysplasia of the epithelium were evident in smoking mice. M2 macrophages increased under CSE stimulation in vivo and in vitro. In total, 162 types of metabolites were detected in the CSE group. The metabolites of nicotine, glutamate, arachidic acid, and arginine changed significantly. The significant enrichment pathways were also selected, including nicotine addiction, glutamine and glutamate metabolism, and arginine biosynthesis. The results also showed that the supernatant of Raw cells stimulated by CSE could induce excessive proliferation of Leuk-1 and inhibit apoptosis. Glutamine abundance can facilitate this process. Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and macrophage M2 polarization.
Collapse
Affiliation(s)
- Yanan Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuo Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jiahui Sun
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qin Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guanxi Wu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weidong Yang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China. .,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Afrashteh Nour M, Hajiasgharzadeh K, Kheradmand F, Asadzadeh Z, Bolandi N, Baradaran B. Nicotinic acetylcholine receptors in chemotherapeutic drugs resistance: An emerging targeting candidate. Life Sci 2021; 278:119557. [PMID: 33930371 DOI: 10.1016/j.lfs.2021.119557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
There is no definitive cure for cancer, and most of the current chemotherapy drugs have limited effects due to the development of drug resistance and toxicity at high doses. Therefore, there is an ongoing need for identifying the causes of chemotherapeutic resistance, and it will be possible to develop innovative treatment approaches based on these novel targeting candidates. Cigarette smoking is known to be one of the main causes of resistance to chemotherapeutic agents. Nicotine as a component of cigarette smoke is an exogenous activator of nicotinic acetylcholine receptors (nAChRs). It can inhibit apoptosis, increase cell proliferation and cell survival, reducing the cytotoxic effects of chemotherapy drugs and cause a reduced therapeutic response. Recent studies have demonstrated that nAChRs and their downstream signaling pathways have considerable implications in different cancer's initiation, progression, and chemoresistance. In some previous studies, nAChRs have been targeted to obtain better efficacies for chemotherapeutics. Besides, nAChRs-based therapies have been used in combination with chemotherapy drugs to reduce the side effects. This strategy requires lower doses of chemotherapy drugs compared to the conditions that must be used alone. Here, we discussed the experimental and clinical studies that show the nAChRs involvement in response to chemotherapy agents. Also, controversies relating to the effects of nAChR on chemotherapy-induced apoptosis are in our focus in this review article. Delineating the complex influences of nAChRs would be of great interest in establishing new effective chemotherapy regimens.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Bai S, Wen W, Hou X, Wu J, Yi L, Zhi Y, Lv Y, Tan X, Liu L, Wang P, Zhou H, Dong Y. Inhibitory effect of sinomenine on lung cancer cells via negative regulation of α7 nicotinic acetylcholine receptor. J Leukoc Biol 2021; 109:843-852. [PMID: 32726882 DOI: 10.1002/jlb.6ma0720-344rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with a high morbidity and less than 20% survival rate. Therefore, new treatment strategies and drugs are needed to reduce the mortality of patients with lung cancer. α7 nicotinic acetylcholine receptor (α7 nAChR), as a receptor of nicotine and its metabolites, is a potential target for lung cancer treatment. Our previous studies revealed that sinomenine plays anti-inflammation roles via α7 nAChR and down-regulates the expression of this receptor, thus increasing the inflammatory response. Hence, sinomenine is possibly a natural ligand of this receptor. In the present study, the effects of sinomenine on lung cancer A549 cells and tumor-bearing mice were determined to investigate whether this alkaloid has an inhibitory effect on lung cancer via α7 nAChR. CCK-8 assay, wound-healing test, and flow cytometry were performed for cell proliferation, cell migration, and apoptosis analysis in vitro, respectively. Xenograft mice were used to evaluate the effects of sinomenine in vivo. Results showed that sinomenine decreased cell proliferation and migration abilities but increased the percentage of apoptotic cells. Tumor volume in tumor-bearing mice was significantly reduced after sinomenine treatment compared with that in the vehicle group mice (p < 0.05). Furthermore, the effects of sinomenine were abolished by the α7 nAChR antagonist mecamylamine and the allosteric modulator PNU-120596, but no change occurred when the mice were pretreated with the muscarinic acetylcholine receptor antagonist atropine. Meanwhile, sinomenine suppressed α7 nAChR expression in vitro and in vivo, as well as the related signaling molecules pERK1/2 and ERK1/2 and the transcription factors TTF-1 and SP-1. By contrast, sinomenine up-regulated the expression of another transcription factor, Egr-1. These effects were restricted by mecamylamine and PNU but not by atropine. Results suggested that sinomenine can inhibit lung cancer via α7 nAChR in a negative feedback mode.
Collapse
Affiliation(s)
- Shasha Bai
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Wenhao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Xuenan Hou
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jiexiu Wu
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Lang Yi
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Yingkun Zhi
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Yanjun Lv
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Xiaoqin Tan
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, P. R. China
| | - Peixun Wang
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, P. R. China
| | - Yan Dong
- Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| |
Collapse
|
7
|
Spirina LV, Avgustinovich AV, Afanas'ev SG, Cheremisina OV, Volkov MY, Choynzonov EL, Gorbunov AK, Usynin EA. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets 2021; 21:713-721. [PMID: 31775598 DOI: 10.2174/1389450120666191127113854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is biologically and genetically heterogeneous with complex carcinogenesis at the molecular level. Despite the application of multiple approaches in the GC treatment, its 5-year survival is poor. A major limitation of anti-cancer drugs application is intrinsic or acquired resistance, especially to chemotherapeutical agents. It is known that the effectiveness of chemotherapy remains debatable and varies according to the molecular type of GC. Chemotherapy has an established role in the management of GC. Perioperative chemotherapy or postoperative chemotherapy is applied for localized ones. Most of the advanced GC patients have a poor response to treatment and unfavorable outcomes with standard therapies. Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of MAPK, AKT/mTOR, and Wnt/β-catenin signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. We have summarized the mechanisms of resistance development to cisplatin, 5-fluorouracil, and multidrug resistance in the GC management. The complexity of molecular targets and components of signaling cascades altered in the resistance development results in the absence of significant benefits in GC treatment, and its efficacy remains low. The universal process responsible for the failure in the multimodal approach in GC treatment is autophagy. Its dual role in oncogenesis is the most unexplored issue. We have discussed the possible mechanism of autophagy regulation upon the action of endogenous factors and drugs. The experimental data obtained in the cultured GC cells need further verification. To overcome the cancer resistance and to prevent autophagy as the main reason of ineffective treatment, it is suggested the concept of the direct influence of autophagy molecular markers followed by the standard chemotherapy. Dozen of studies have focused on finding the rationale for the benefits of such complex therapy. The perspectives in the molecular-based management of GC are associated with the development of molecular markers predicting the protective autophagy initiation and search for novel targets of effective anticancer therapy.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny L Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexey K Gorbunov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny A Usynin
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| |
Collapse
|
8
|
Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020; 6:e03611. [PMID: 32215331 PMCID: PMC7090353 DOI: 10.1016/j.heliyon.2020.e03611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the main subtypes of nAChRs that modulates various cancer-related properties including proliferative, anti-apoptotic, pro-angiogenic and pro-metastatic activities in most of the cancers. It also plays a crucial role in inflammation control through the cholinergic anti-inflammatory pathway in numerous pathophysiological contexts. Such diverse physiological and pathological functions that initiate from this receptor may have significant impacts in determining the outcome of different cancers. Various tissues of gastrointestinal (GI) cancers such as gastric, colorectal, pancreatic and liver cancers have shown the up-regulated expression of α7nAChR as compared to normal adjacent tissues. According to the well-established connection between inflammation and tumorigenesis in the digestive system, there are mounting studies demonstrated either stimulatory or inhibitory effects of α7nAChR signaling in the development of GI cancers. To date, the precise underlying mechanisms related to this receptor in patients with GI cancers have not been fully elucidated. Regarding the paradoxical modulatory effects of this receptor in carcinogenesis, in this review, we aim to summarize the accumulated evidence about the involvement of α7nAChR in inflammation-associated GI cancers. It seems that the complex influences of α7nAChR may be a promising target in designing novel strategies in the treatment of such pathologic conditions.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Hajiasgharzadeh K, Somi MH, Mansoori B, Khaze Shahgoli V, Derakhshani A, Mokhtarzadeh A, Shanehbandi D, Baradaran B. Small interfering RNA targeting alpha7 nicotinic acetylcholine receptor sensitizes hepatocellular carcinoma cells to sorafenib. Life Sci 2020; 244:117332. [PMID: 31962133 DOI: 10.1016/j.lfs.2020.117332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
AIMS It has been demonstrated that reduced expression of alpha7 nicotinic acetylcholine receptor (α7nAChR) led to reduced chemotherapeutic drugs resistance in various cancer cells. However, whether small interfering RNA (siRNA) mediated knockdown of α7nAChR can reduce sorafenib (SOR) resistance in HCC cells remains to be determined. MATERIALS AND METHODS The effects of α7nAChR-siRNA in combination with SOR treatment was analyzed in human (HepG2) and mouse (Hepa 1-6) HCC cell lines. The MTT, DAPI staining and flow cytometry assays were applied to measure the cell viability, apoptosis and cell cycle progression of the cells. Also, the changes in the mRNA and protein levels of the α7nAChR were measured by quantitative real-time PCR and western blot analysis, respectively. KEY FINDINGS The results revealed that SOR increased both mRNA and protein levels of α7nAChR in HCC cells. Treatment with α7nAChR-siRNA abolished these effects. Also, SOR treatment in combination with α7nAChR-siRNA significantly sensitizes HCC cells to SOR cytotoxicity. This combination therapy significantly induced HCC cells apoptosis compared to SOR alone. SIGNIFICANCE These experimental results indicate that knockdown of α7nAChR by siRNA increased the SOR antitumor activity of HCC cells and suggests that this additive combination is a promising drug candidate for HCC therapy.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Wang K, Zhao XH, Liu J, Zhang R, Li JP. Nervous system and gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1873:188313. [PMID: 31647986 DOI: 10.1016/j.bbcan.2019.188313] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The nervous system has been recently shown to exert impact on gastric cancer directly and indirectly. Gastric cancer cells invade nerve fibers to induce outgrowth and branching of neural cells, and nerve fibers in turn infiltrate into tumor microenvironment to promote progression of gastric cancer. Additionally, the neuro-immune interaction also plays an important role in gastric cancer development. The interplay of nerves and gastric cancer is mediated by many nervous system-associated factors, which can not only be synthesized and released by both cancer cells and nerve terminals, but also participate in regulation of many aspects of gastric cancer such as cell proliferation, angiogenesis, metastasis and recurrence. Furthermore, clinical researches indicate that some of these factors are significant diagnosis and prognosis biomarkers for gastric cancer. Herein, we reviewed recent advances and future prospects of the interaction between nervous system and gastric cancer.
Collapse
Affiliation(s)
- Ke Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin-Hui Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China.
| | - Ji-Peng Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
11
|
Bu X, Yin C, Zhang X, Zhang A, Shao X, Zhang Y, Yan Y. LaSota Strain Expressing The Rabies Virus Glycoprotein (rL-RVG) Suppresses Gastric Cancer by Inhibiting the Alpha 7 Nicotinic Acetylcholine Receptor (α7 nAChR)/Phosphoinositide 3-Kinase (PI3K)/AKT Pathway. Med Sci Monit 2019; 25:5482-5492. [PMID: 31337746 PMCID: PMC6671559 DOI: 10.12659/msm.915251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) can induce much greater apoptosis than can NDV in gastric carcinoma cells, but the mechanisms involved remains unclear. MATERIAL AND METHODS The 2 gastric carcinoma cell lines were divided into the rL-RVG group, the NDV group, and the PBS group. MTT assay was used to detect and analyze cell viability. siRNA for alpha7-nAChR, alpha7-nAChR antagonist, or alpha7-nAChR agonist, AKT antagonist, and p-AKT agonist were used for pretreatment. The protein expressions of RVG, NDV, alpha7-nAChR, cleaved caspase-3, p-AKT, PI3K, Bcl-2, and Bax proteins were detected by Western blot assay. Immunofluorescence was used to detect expressions of alpha7-nAChR proteins. Light microscopy, flow cytometry, and TUNEL assay were used to assess apoptosis. RESULTS The results showed that 2 virus concentrations over 10³ dilution caused greater cell proliferation inhibition. rL-RVG treatment increased the expression of alpha7-nAChR, cleaved caspase-3, and Bax protein but decreased the expression of p-AKT, PI3K, and Bcl-2 protein. When the groups were pretreated with alpha7-nAChR antagonist, the alpha7-nAChR, cleaved caspase-3, and Bax protein expression increased, but the expression of p-AKT, PI3K, and Bcl-2 protein was clearly decreased. However, the results in the alpha7-nAChR agonist group were the opposite. When treated with the AKT antagonist, the result was the same as in the rL-RVG treatment group. The result in the AKT agonist group was the opposite of that in the AKT antagonist group. Compared with the NDV group, the results of light microscopy, FCM, and TUNEL assay showed that alpha7-nAChR antagonist significantly affected the apoptosis of gastric cancer cells in the rL-RVG group. CONCLUSIONS rL-RVG leads to much greater apoptosis through the alpha7-nAChR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Chaoyun Yin
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Xuanfeng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Anwei Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Xiaomei Shao
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Yao Zhang
- Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,Department of Internal Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Yulan Yan
- Department of Internal Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|
12
|
Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019; 11:cancers11060761. [PMID: 31159324 PMCID: PMC6627730 DOI: 10.3390/cancers11060761] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.
Collapse
|
13
|
Nguyen PH, Touchefeu Y, Durand T, Aubert P, Duchalais E, Bruley des Varannes S, Varon C, Neunlist M, Matysiak-Budnik T. Acetylcholine induces stem cell properties of gastric cancer cells of diffuse type. Tumour Biol 2018; 40:1010428318799028. [PMID: 30207200 DOI: 10.1177/1010428318799028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related death worldwide, but the mechanisms of gastric carcinogenesis are not completely understood. Recently, the role of cholinergic neuronal pathways in promoting this process has been demonstrated. Our aim was to extend these studies and to evaluate, using an in vitro model of tumorspheres, the effect of acetylcholine on human gastric cancer cells, and the role of acetylcholine receptors and of the nitric oxide pathway, in this effect. The gastric cancer cell line MKN-45 of the diffuse type of gastric cancer was cultured in the presence of acetylcholine, or different agonists or inhibitors of muscarinic and nicotinic acetylcholine receptors, or nitric oxide donor or inhibitor of the nitric oxide pathway, and the number and size of tumorspheres were assessed. The expression of cancer stem cell markers (CD44 and aldehyde dehydrogenase) was also evaluated by immunofluorescence and quantitative reverse transcription polymerase chain reaction. We showed that acetylcholine increased both the number and size of tumorspheres and that this effect was reproduced with both muscarinic and nicotinic acetylcholine receptors agonists and was inhibited by both receptor antagonists. The nitric oxide donor stimulated the tumorsphere formation, while the nitric oxide synthesis inhibitor inhibited the stimulatory effect of acetylcholine. Moreover, acetylcholine increased the expression of stem cell markers on gastric cancer cells. These results indicate that acetylcholine induces the stem cell properties of gastric cancer cells and both muscarinic and nicotinic receptors and a nitrergic pathway might be involved in this effect.
Collapse
Affiliation(s)
- Phu Hung Nguyen
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France.,2 Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Yann Touchefeu
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France.,3 Hépato-Gastroentérologie & Oncologie Digestive, IMAD, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Tony Durand
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France
| | - Philippe Aubert
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France
| | - Emilie Duchalais
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France.,3 Hépato-Gastroentérologie & Oncologie Digestive, IMAD, Hôtel Dieu, CHU de Nantes, Nantes, France
| | - Stanislas Bruley des Varannes
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France.,3 Hépato-Gastroentérologie & Oncologie Digestive, IMAD, Hôtel Dieu, CHU de Nantes, Nantes, France
| | | | - Michel Neunlist
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France
| | - Tamara Matysiak-Budnik
- 1 Université Bretagne Loire, Université de Nantes, INSERMU1235, TENS, Institut des Maladies de l'Appareil Digestif du CHU, Nantes, France.,3 Hépato-Gastroentérologie & Oncologie Digestive, IMAD, Hôtel Dieu, CHU de Nantes, Nantes, France
| |
Collapse
|
14
|
Effects of α-conotoxin ImI on TNF-α, IL-8 and TGF-β expression by human macrophage-like cells derived from THP-1 pre-monocytic leukemic cells. Sci Rep 2017; 7:12742. [PMID: 28986583 PMCID: PMC5630575 DOI: 10.1038/s41598-017-11586-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are ubiquitous in the nervous system and ensure important neurophysiological functionality for many processes. However, they are also found in cells of the immune system, where their role has been less studied. Here we report the pro-inflammatory effect of ImI, a well characterized conotoxin that inhibits α7 nAChRs, on differentiated THP-1 pre-monocyte macrophages (MDM) obtained by phorbol 12-myristate 13 acetate (PMA) treatment. Enzyme-linked immunosorbent assay (ELISA) performed on supernatant fluids of LPS challenged MDM showed ImI-mediated upregulation of pro-inflammatory cytokine TNF-α in an ImI concentration-dependent manner from 0.5 to 5.0 µmol/L and for IL-8 up to 1.0 µmol/L. Levels of anti-inflammatory cytokine TGF-β remained practically unaffected in ImI treated MDMs. Nicotine at 10 µmol/L significantly downregulated the release of TNF-α, but showed a lesser effect on IL-8 secretion and no effect on TGF-β. Fluorescent competitive assays involving ImI, α-bungarotoxin and nicotine using MDM and the murine macrophage RAW 264.7 suggest a common binding site in the α7 receptor. This work extends the application of conotoxins as molecular probes to non-excitatory cells, such as macrophages and supports the involvement of the α7 nAChR in regulating the inflammatory response via the cholinergic anti-inflammatory pathway (CAP).
Collapse
|
15
|
Wang YJ, Yan J, Zou XL, Guo KJ, Zhao Y, Meng CY, Yin F, Guo L. Bone marrow mesenchymal stem cells repair cadmium-induced rat testis injury by inhibiting mitochondrial apoptosis. Chem Biol Interact 2017; 271:39-47. [PMID: 28457857 DOI: 10.1016/j.cbi.2017.04.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022]
Abstract
Cadmium is a highly toxic metal with widespread exposure to people that can cause tissue injuries that lack effective treatment. The aim of this project was to uncover whether bone marrow mesenchymal stem cells (BMSCs) can repair cadmium-induced rat testis injury and to explore the role of mitochondrial apoptosis in this process. To this end, 21 adult male Wistar rats were randomly divided into control, model and therapy groups, 7 each, and were administered 0, 0.4 and 0.4 mg/kg body weight CdCl2 saline solution, respectively, by intraperitoneal injection 5 times per week for 5 weeks. Then, rats in the therapy group were treated with 107 BMSCs by retro-orbital injections, while the others were given equal volumes of phosphate buffered saline. Following 2-week BMSCs-treatment, the therapy rats were heavier than the model rats, despite there being no difference in testicular cadmium contents between these groups, which were both significantly higher than the control group. BMSCs were observed in the testis of the therapy rats, in which pathological changes improved significantly compared with the model group. Expression of the apoptosis-associated proteins Bim, Bax, Cytochrome C, Caspase-3, active-Caspase-3 and AIF increased, while Bcl-2 was reduced significantly in rat testes of model group compared with the other groups. Based on these findings, we conclude that cadmium can accumulate in rat testes where it caused severe tissue injury, BMSCs can be localized to the injured testicular tissue of rats and repair the tissue injury, these reparative effects may be highly related with mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Jun Yan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xiao-Li Zou
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ke-Jun Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Yue Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Chun-Yang Meng
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Gaballah HH, Gaber RA, Mohamed DA. Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms. Toxicol Appl Pharmacol 2017; 316:27-35. [DOI: 10.1016/j.taap.2016.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
|
17
|
Dang N, Meng X, Song H. Nicotinic acetylcholine receptors and cancer. Biomed Rep 2016; 4:515-518. [PMID: 27123240 PMCID: PMC4840641 DOI: 10.3892/br.2016.625] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the primary addictive constituent of cigarettes, is believed to contribute to cancer promotion and progression through the activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated cation channels. nAChRs activation can be triggered by the neurotransmitter Ach, or certain other biological compounds, such as nicotine. In recent years, genome-wide association studies have indicated that allelic variation in the α5-α3-β4 nAChR cluster on chromosome 15q24-15q25.1 is associated with lung cancer risk. The role of nAChRs in other types of cancer has also been reported. The present review highlights the role of nAChRs in types of human cancer.
Collapse
Affiliation(s)
- Ningning Dang
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Haiyan Song
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
18
|
Tu CC, Huang CY, Cheng WL, Hung CS, Chang YJ, Wei PL. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment. Tumour Biol 2016; 37:9493-501. [PMID: 26790437 DOI: 10.1007/s13277-015-4751-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.
Collapse
Affiliation(s)
- Chao-Chiang Tu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, New Taipei Hospital, Taipei, Taiwan
| | - Chien-Yu Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| |
Collapse
|