1
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
2
|
Qian L, Li Q, Ding Z, Luo K, Su J, Chen J, Zhu G, Gan Z, Yu Q. Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56454-56470. [PMID: 36525559 DOI: 10.1021/acsami.2c14628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Clinical radiation therapy (RT) is often hindered by the low radiation energy absorption coefficient and the hypoxic features of tumor tissues. Among the tremendous efforts devoted to overcoming the barriers to efficient RT, the application of hypoxic radiosensitizers and cell-cycle-specific chemotherapeutics has shown great potential. However, their effectiveness is often compromised by their limited bioavailability, especially in the hypoxic region, which plays a major role in radioresistance. Herein, to simultaneously improve the delivery efficacy of both hypoxic radiosensitizer and cell-cycle-specific drug, a gambogic acid (GA) metronidazole (MN) prodrug (GM) was designed and synthesized based on GA, a naturally occurring chemotherapeutic and multiple pathway inhibitor, and MN, a typical hypoxic radiosensitizer. In combination with MN-containing block copolymers, the prodrug nanosensitizer (NS) of GM was obtained. Owing to the bioreduction of MN, the as-designed prodrug could be efficiently delivered to hypoxic cells and act on mitochondria to cause the accumulation of reactive oxygen species. The strong G2/M phase arrest caused by the prodrug NS could further sensitize treated cells to external radiation under hypoxic conditions by increasing DNA damage and delaying DNA repair. After coadministration of the NS with a well-established tissue-penetrating peptide, efficient tumor accumulation, deep tumor penetration, and highly potent chemoradiotherapy could be achieved.
Collapse
Affiliation(s)
- Lili Qian
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qian Li
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing100029, China
| | - Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiamin Su
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiawei Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
3
|
Liu J, Fan S, Xiang Y, Xia J, Jin H, Xu JF, Yang F, Cai J, Pi J. Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy. SCANNING 2022; 2022:1422185. [PMID: 35937670 PMCID: PMC9337977 DOI: 10.1155/2022/1422185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Gambogic acid (GA), a kind of polyprenylated xanthone derived from Garcinia hanburyi tree, has showed spectrum anticancer effects both in vitro and in vivo with low toxicity. However, up to now, there is little information about the effects of GA on esophageal cancer. In this study, we aim to test the anticancer effects of GA on esophageal cancer EC9706 cells. We established a nanoscale imaging method based on AFM to evaluate the reactive oxygen species- (ROS-) mediated anticancer effects of GA on esophageal cancer regarding the morphological and ultrastructural changes of esophageal cancer cells. The obtained results demonstrated that GA could inhibit cell proliferation, induce apoptosis, induce cell cycle arrest, and induce mitochondria membrane potential disruption in a ROS-dependent way. And using AFM imaging, we also found that GA could induce the damage of cellular morphology and increase of membrane height distribution and membrane roughness in EC9706 cells, which could be reversed by the removal of GA-induced excessive intracellular ROS. Our results not only demonstrated the anticancer effects of GA on EC9706 cells in ROS-dependent mechanism but also strongly suggested AFM as a powerful tool for the detection of ROS-mediated cancer cell apoptosis on the basis of imaging.
Collapse
Affiliation(s)
- Jianxin Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shuhao Fan
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yinhong Xiang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jiaojiao Xia
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-fa Xu
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Pi
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Zhou S, Sun X, Jin Z, Yang H, Ye W. The role of autophagy in initiation, progression, TME modification, diagnosis, and treatment of esophageal cancers. Crit Rev Oncol Hematol 2022; 175:103702. [PMID: 35577254 DOI: 10.1016/j.critrevonc.2022.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
Abstract
Autophagy is a highly conserved metabolic process with a cytoprotective function. Autophagy is involved in cancer, infection, immunity, and inflammation and may be a potential therapeutic target. Increasing evidence has revealed that autophagy has primary implications for esophageal cancer, including its initiation, progression, tumor microenvironment (TME) modification, diagnosis, and treatment. Notably, autophagy displayed excellent application potential in radiotherapy combined with immunotherapy. Radiotherapy combined with immunotherapy is a new potential therapeutic strategy for cancers, including esophageal cancer. Autophagy modulators can work as adjuvant enhancers in radiotherapy or immunotherapy of cancers. This review highlights the most recent data related to the role of autophagy regulation in esophageal cancer.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiation Oncology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, P.R. China
| | - Xuefeng Sun
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Zhicheng Jin
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Wenguang Ye
- Department of Gastroenterology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
5
|
Phang YL, Zheng C, Xu H. Structural diversity and biological activities of caged Garcinia xanthones: recent updates. ACTA MATERIA MEDICA 2022; 1. [DOI: 10.15212/amm-2022-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Caged xanthones are a class of natural compounds with approximately 200 members that are commonly isolated from the Garcinia genus in the Clusiaceae (formerly Guttiferae) family. They are often characterized by a notable 4-oxa-tricyclo[4.3.1.03,7]dec-2-one (caged) architecture with a common xanthone backbone. Because most caged xanthones have potent anticancer properties, they have become a target of interest in natural product chemistry. The unique chemical architectures and increasingly identified biological importance of these compounds have stimulated many studies and intense interest in their isolation, biological evaluation and mechanistic studies. This review summarizes recent progress and development in the chemistry and biological activity of caged Garcinia xanthones and of several compounds of non-Garcinia origin, from the years 2008 to 2021, providing an in-depth discussion of their structural diversity and medicinal potential. A preliminary discussion on structure-activity relationships is also provided.
Collapse
|
6
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
7
|
Sun Y, Chen K, Lin G, Wan F, Chen L, Zhu X. Silencing c-Jun inhibits autophagy and abrogates radioresistance in nasopharyngeal carcinoma by activating the PI3K/AKT/mTOR pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1085. [PMID: 34422997 PMCID: PMC8339856 DOI: 10.21037/atm-21-2563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023]
Abstract
Background Radioresistance plays an important role in the failure of radiotherapy (RT) for nasopharyngeal carcinoma (NPC), leading to poor prognosis. The purpose of this study was to explore the relationship between the expression of the c-Jun oncogene and the prognosis of NPC. In addition, we investigated the potential mechanisms of c-Jun in the regulation of tumor growth and radioresistance in NPC. Methods c-Jun expression in NPC tissues and nasopharyngeal mucosa tissues was evaluated using immunochemistry. c-Jun and its downstream targets were verified by dual-luciferase reporter assays. Inhibitors or activators were used to interfere with the PI3K/AKT/mTOR pathway. Protein expression was analyzed by western blotting. NPC nude mouse xenograft models were used to investigate the potential effects of c-Jun and ionizing radiation in vivo. Results The expression of c-Jun in NPC tissues was significantly higher than that in normal nasopharyngeal mucosa (NNM) tissues, and Cox regression analysis revealed that c-Jun overexpression was an independent risk factor for poor prognosis in NPC patients. Both in vitro and in vivo experiments verified that c-Jun targeted PI3K/AKT signaling. We also performed an in vivo study showing that c-Jun knockdown effectively suppressed NPC growth in a xenograft tumor model by autophagy inhibition, and these effects were accompanied by the upregulation of p-PI3K p-AKT, p-mTOR, and P62 and downregulation of LC3-II expression. Conclusions High expression of c-Jun was correlated with poor prognosis in NPC patients. c-Jun knockdown increased cell sensitivity to radiation by inhibiting autophagy activation via the PI3K/AKT/mTOR signaling pathway. The present study provides a theoretical basis for a promising treatment for radioresistant NPC by inhibiting c-Jun expression.
Collapse
Affiliation(s)
- Yongchu Sun
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guoxiang Lin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhu Wan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, China.,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Discovery of novel nitrogenous heterocyclic-containing quinoxaline-1,4-di-N-oxides as potent activator of autophagy in M.tb-infected macrophages. Eur J Med Chem 2021; 223:113657. [PMID: 34217060 DOI: 10.1016/j.ejmech.2021.113657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022]
Abstract
As a continuation of our research on antimycobacterial agents, a series of novel quinoxaline-1,4-di-N-oxides (QdNOs) containing various nitrogenous heterocyclic moieties at the R6 position were designed and synthesized. Antimycobacterial activities, as well as the cytotoxic effects, of the compounds were assayed. Four compounds (6b, 6f, 6n, and 6o), characterized by 2-carboxylate ethyl or benzyl ester, 6-imidazolyl or 1,2,4-triazolyl, and a 7-fluorine group, exhibited the most potent antimycobacterial activity against M.tb strain H37Rv (MIC ≤ 0.25 μg/mL) with low toxicity in VERO cells (SI = 169.3-412.1). Compound 6o also exhibited excellent antimycobacterial activity in an M.tb-infected macrophage model and was selected for further exploration of the mode of antimycobacterial action of QdNOs. The results showed that compound 6o was capable of disrupting membrane integrity and disturbing energy homeostasis in M.tb. Furthermore, compound 6o noticeably increased cellular ROS levels and, subsequently, induced autophagy in M.tb-infected macrophages, possibly indicating the pathways of QdNOs-mediated inhibition of intracellular M.tb replication. The in vivo pharmacokinetic (PK) profiles indicated that compounds 6o was acceptably safe and possesses favorable PK properties. Altogether, these findings suggest that compound 6o is a promising antimycobacterial candidate for further research.
Collapse
|
9
|
Zhang H, Si J, Yue J, Ma S. The mechanisms and reversal strategies of tumor radioresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:1275-1286. [PMID: 33687564 DOI: 10.1007/s00432-020-03493-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 01/16/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of most lethal malignancies with high aggressive potential in the world. Radiotherapy is used as one curative treatment modality for ESCC patients. Due to radioresistance, the 5-year survival rates of patients after radiotherapy is less than 20%. Tumor radioresistance is very complex and heterogeneous. Cancer-associated fibroblasts (CAFs), as one major component of tumor microenvironment (TME), play critical roles in regulating tumor radioresponse through multiple mechanisms and are increasingly considered as important anti-cancer targets. Cancer stemness, which renders cancer cells to be extremely resistant to conventional therapies, is involved in ESCC radioresistance due to the activation of Wnt/β-catenin, Notch, Hedgehog and Hippo (HH) pathways, or the induction of epithelial-mesenchymal transition (EMT), hypoxia and autophagy. Non-protein-coding RNAs (ncRNAs), which account for more than 90% of the genome, are involved in esophageal cancer initiation and progression through regulating the activation or inactivation of downstream signaling pathways and the expressions of target genes. Herein, we mainly reviewed the role of CAFs, cancer stemness, non-coding RNAs as well as others in the development of radioresistance and clarify the involved mechanisms. Furthermore, we summarized the potential strategies which were reported to reverse radioresistance in ESCC. Together, this review gives a systematic coverage of radioresistance mechanisms and reversal strategies and contributes to better understanding of tumor radioresistance for the exploitation of novel intervention strategies in ESCC.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingxing Si
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
11
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
12
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Gambogic acid increases the sensitivity to paclitaxel in drug‑resistant triple‑negative breast cancer via the SHH signaling pathway. Mol Med Rep 2019; 20:4515-4522. [PMID: 31545492 PMCID: PMC6797991 DOI: 10.3892/mmr.2019.10697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Paclitaxel is the most frequently used therapy regimen for triple-negative breast cancer (TNBC). However, chemoresistance frequently occurs, leading to enhanced failure rates of chemotherapy in TNBC; therefore, novel biological therapies are urgently needed. Gambogic acid (GA) has potent anticancer effects and inhibits tumor growth in several types of human cancer. However, the effects of GA on paclitaxel-resistant TNBC remain unknown. In the present study, the Cell Counting Kit-8 assay was used to examine the effect of GA and/or paclitaxel on the viability of TNBC cells; flow cytometry was used to examine the effects of GA on cell apoptosis; and western blotting and reverse transcription-quantitative PCR were used to determine the effects of GA on the expression of sonic hedgehog (SHH) signaling pathway target genes. The present results indicated that GA significantly inhibited the viability and enhanced the rate of apoptosis in paclitaxel-resistant MDA-MB-231 cells via activating the SHH signaling pathway. In vivo experiments confirmed that GA treatment enhanced the sensitivity of MDA-MB-231 cells to paclitaxel via the SHH signaling pathway. In conclusion, the combination of GA with paclitaxel may increase the antitumor effects on paclitaxel-resistant TNBC via downregulating the SHH signaling pathway.
Collapse
|
14
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Gao G, Bian Y, Qian H, Yang M, Hu J, Li L, Yu L, Liu B, Qian X. Gambogic acid regulates the migration and invasion of colorectal cancer via microRNA-21-mediated activation of phosphatase and tensin homolog. Exp Ther Med 2018; 16:1758-1765. [PMID: 30186399 PMCID: PMC6122420 DOI: 10.3892/etm.2018.6421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/22/2018] [Indexed: 01/14/2023] Open
Abstract
Gambogic acid (GA) has been reported to inhibit cancer cell proliferation and migration and enhance apoptosis. Several signaling pathways were identified to be involved in GA function, including PI3K/Akt, caspase-3 apoptosis and TNF-α/NF-κB. However, to the best of our knowledge, the association between miRNA and GA has not been explored. The present study initially demonstrated that GA could inhibit HT-29 cancer cell proliferation using an MTT assay. In addition, a Transwell assay and a wound-healing assay respectively indicated that GA inhibited HT-29 cancer cell invasion and migration, which was also confirmed by the increased MMP-9 protein expression. Furthermore, GA induced the apoptosis of HT-29 cancer cells in an Annexin V and PI double staining assay. Moreover, treatment with GA significantly decreased miR-21 expression in these cells. Additionally, western blot analysis demonstrated that GA treatment enhanced the activation of phosphatase and tensin homolog (PTEN) along with the suppression of PI3K and p-Akt. Furthermore, miR-21 mimics reversed all the aforementioned activities of GA, which indicated that miR-21 was the effector of GA and blocked PI3K/Akt signaling pathway via enhancing PTEN activity. In summary, GA induced HT-29 cancer cell apoptosis via decreasing miR-21 expression and blocking PI3K/Akt, which may be a useful novel insight for future CRC treatment.
Collapse
Affiliation(s)
- Guangyi Gao
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,Department of Traditional Chinese Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Yinzhu Bian
- Department of Oncology, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, P.R. China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Mi Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Li Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
16
|
Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials 2018. [DOI: 10.1016/j.biomaterials.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Raju GSR, Pavitra E, Merchant N, Lee H, Prasad GLV, Nagaraju GP, Huh YS, Han YK. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett 2018; 419:222-232. [DOI: 10.1016/j.canlet.2018.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
18
|
He F, Wei L, Luo W, Liao Z, Li B, Zhou X, Xiao X, You J, Chen Y, Zheng S, Li P, Murata M, Huang G, Zhang Z. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget 2018; 7:37000-37012. [PMID: 27203742 PMCID: PMC5095054 DOI: 10.18632/oncotarget.9454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Glutaredoxin 3 (GLRX3) is antioxidant enzyme, maintaining a low level of ROS, thus contributing to the survival and metastasis of several types of cancer. However, the expression and functions of GLRX3 have not been addressed in nasopharyngeal carcinoma (NPC). In this study, we found that GLRX3 was overexpressed in NPC. Knockdown of GLRX3 in NPC cell lines inhibited proliferation in vitro, tumorignesis in vivo, and colony formation. In addition, GLRX3 knockdown decreased the migration and invasion capacity of NPC cells by reversing the epithelial-mesenchymal transition (EMT). Furthermore, stabilization of GLRX3 was positively related to with epidermal growth factor receptor (EGFR) expression and negatively with ROS generation. Phosphorylation of Akt, a key downstream effector, was induced by EGFR signaling but did not rely on increasing ROS level in NPC cells. GLRX3 might be an oncoprotein in NPC, playing important roles in increasing redox reaction and activating EGFR/ Akt signals, so it may be a therapeutic target for NPC.
Collapse
Affiliation(s)
- Feng He
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lili Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping You
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufeng Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shixing Zheng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Banik K, Harsha C, Bordoloi D, Lalduhsaki Sailo B, Sethi G, Leong HC, Arfuso F, Mishra S, Wang L, Kumar AP, Kunnumakkara AB. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett 2017; 416:75-86. [PMID: 29246645 DOI: 10.1016/j.canlet.2017.12.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Natural compounds have enormous biological and clinical activity against dreadful diseases such as cancer, as well as cardiovascular and neurodegenerative disorders. In spite of the widespread research carried out in the field of cancer therapeutics, cancer is one of the most prevalent diseases with no perfect treatment till date. Adverse side effects and the development of chemoresistance are the imperative limiting factors associated with conventional chemotherapeutics. For this reason, there is an urgent need to find compounds that are highly safe and efficacious for the prevention and treatment of cancer. Gambogic acid (GA) is a xanthone structure extracted from the dry, brownish gamboge resin secreted from the Garcinia hanburyi tree in Southeast Asia and has inherent anti-cancer properties. In this review, the molecular mechanisms underlying the targets of GA that are liable for its effective anti-cancer activity are discussed that reveal the potential of GA as a pertinent candidate that can be appropriately developed and designed into a capable anti-cancer drug.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
20
|
Xin Y, Jiang F, Yang C, Yan Q, Guo W, Huang Q, Zhang L, Jiang G. Role of autophagy in regulating the radiosensitivity of tumor cells. J Cancer Res Clin Oncol 2017; 143:2147-2157. [PMID: 28786037 DOI: 10.1007/s00432-017-2487-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Autophagy is a metabolic response of cells to chemical and physical factors, such as nutrition or growth factor deprivation, proinflammatory state, hypoxia, accumulation of reactive oxygen species, presence of infectious agents, and DNA damage. Autophagy maintains the homeostasis of intracellular metabolism mainly by degrading cellular organelles and critical proteins. In a sense, autophagy protects cells from death. Radiotherapy is a powerful tool used to control tumor growth, and it can induce autophagy. The relationship between radiotherapy and autophagy is worthy of further investigation. METHODS We searched various electronic databases including PubMed for peer-reviewed English-language articles and selected articles on the mechanism of autophagy, its role in cancer development and cancer treatment, and the relationship between the effect of radiation therapy and autophagy intensity. RESULTS This review has recently shown that the sensitivity of tumor cells to radiation therapy can be increased by regulating autophagy. CONCLUSION The effects of autophagy vary, and autophagy provides various ways of enhancing radiosensitivity, including inhibition of autophagy, increase in autophagy, and altering the outcome of autophagy.
Collapse
Affiliation(s)
- Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Fan Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical, Huai'an, China
| | - Qiuyue Yan
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Wenwen Guo
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Qian Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
21
|
Tang JC, Feng YL, Liang X, Cai XJ. Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges. Chin Med J (Engl) 2017; 129:456-63. [PMID: 26879020 PMCID: PMC4800847 DOI: 10.4103/0366-6999.176069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: 5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice. This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system. Data Sources: All articles published in English from 1996 to date those assess the synergistic effect of autophagy and 5-FU in gastrointestinal cancer therapy were identified through a systematic online search by use of PubMed. The search terms were “autophagy” and “5-FU” and (“colorectal cancer” or “hepatocellular carcinoma” or “pancreatic adenocarcinoma” or “esophageal cancer” or “gallbladder carcinoma” or “gastric cancer”). Study Selection: Critical reviews on relevant aspects and original articles reporting in vitro and/or in vivo results regarding the efficiency of autophagy and 5-FU in gastrointestinal cancer therapy were reviewed, analyzed, and summarized. The exclusion criteria for the articles were as follows: (1) new materials (e.g., nanomaterial)-induced autophagy; (2) clinical and experimental studies on diagnostic and/or prognostic biomarkers in digestive system cancers; and (3) immunogenic cell death for anticancer chemotherapy. Results: Most cell and animal experiments showed inhibition of autophagy by either pharmacological approaches or via genetic silencing of autophagy regulatory gene, resulting in a promotion of 5-FU-induced cancer cells death. Meanwhile, autophagy also plays a pro-death role and may mediate cell death in certain cancer cells where apoptosis is defective or difficult to induce. The dual role of autophagy complicates the use of autophagy inhibitor or inducer in cancer chemotherapy and generates inconsistency to an extent in clinic trials. Conclusion: Autophagy might be a therapeutic target that sensitizes the 5-FU treatment in gastrointestinal cancer.
Collapse
Affiliation(s)
| | | | | | - Xiu-Jun Cai
- Department of General Surgery, Zhejiang Province Key Laboratory of Laparosopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
22
|
Dong B, Zheng YF, Wen HM, Wang XZ, Xiong HW, Wu H, Li W. Two new xanthone epimers from the processed gamboge. Nat Prod Res 2016; 31:817-821. [PMID: 27809607 DOI: 10.1080/14786419.2016.1247079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two new xanthones, gambogollic acid (1), epigambogollic acid (2), together with three rare compounds, gambogellic acid (3), epigambogellic acid (4) and gambogic acid (5), were isolated from the processed gamboge. The new structures were determined by 1D and 2D NMR spectroscopic analysis. And the cytotoxicity of these five compounds was evaluated against human hepatoma carcinoma and human lung adenocarcinoma cell. Two new compounds showed excellent antitumor activity. All five compounds exhibited inhibitory effect against SMMC-7221cell and A549 cell.
Collapse
Affiliation(s)
- Bang Dong
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| | - Yun-Feng Zheng
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| | - Hong-Mei Wen
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| | - Xin-Zhi Wang
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| | - Hai-Wei Xiong
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| | - Hao Wu
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| | - Wei Li
- a School of Pharmacy , Nanjing University of Chinese Medicine , China
| |
Collapse
|
23
|
Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumour Biol 2016; 37:12915-12925. [PMID: 27448303 DOI: 10.1007/s13277-016-5194-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
|
24
|
Zhang W, Zhou H, Yu Y, Li J, Li H, Jiang D, Chen Z, Yang D, Xu Z, Yu Z. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression. Onco Targets Ther 2016; 9:3359-68. [PMID: 27330316 PMCID: PMC4898431 DOI: 10.2147/ott.s100936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cisplatin resistance is a main clinical problem of lung cancer therapy. Gambogic acid (GA) could prohibit the proliferation of a variety of human cancer cells. However, the effects of GA on cisplatin-resistant lung cancer are still unclear. The objective of the present study was to find out the antitumor effects of GA on cisplatin-resistant human lung cancer A549/DDP cells and further explore its underlying mechanisms. Cell Counting Kit-8 assay was used to observe the impacts of GA and/or cisplatin on the proliferation of lung cancer cells; flow cytometry was used to detect the effects of GA on cell cycle and apoptosis; Western blot was used to examine the effects of GA on the expression of lung resistance protein (LRP) and multidrug resistance-associated protein 2 (MRP2) protein in A549/DDP cells. Our results showed that GA dose- and time-dependently prohibited the proliferation and induced significant cell apoptosis in A549 and A549/DDP cells. GA also induced G0/G1 arrest in both A549/DDP and A549 cells. Moreover, GA upregulated protein expression level of cleaved caspase-3 and Bax and downregulated protein expression level of pro-caspase-9 and Bcl-2 in time- and dose-dependent way in A549/DDP cells. GA combined with cisplatin enhanced the cells apoptotic rate and reduced the cisplatin resistance index in A549/DDP cells. In addition, GA reduced the MRP2 and LRP protein expression level in A549/DDP cells. GA inhibits the proliferation, induces cell cycle arrest and apoptosis in A549/DDP cells. Combination of GA with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression.
Collapse
Affiliation(s)
- Wendian Zhang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Hechao Zhou
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Ying Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Jingjing Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Haiwen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Danxian Jiang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zihong Chen
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Donghong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zhonghua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| |
Collapse
|
25
|
Gambogic Acid and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:375-395. [DOI: 10.1007/978-3-319-41334-1_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|