1
|
Hashemi M, Khosroshahi EM, Chegini MK, Asadi S, Hamyani Z, Jafari YA, Rezaei F, Eskadehi RK, Kojoori KK, Jamshidian F, Nabavi N, Alimohammadi M, Rashidi M, Mahmoodieh B, Khorrami R, Taheriazam A, Entezari M. Mechanistic insights into cisplatin response in breast tumors: Molecular determinants and drug/nanotechnology-based therapeutic opportunities. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108513. [PMID: 39216513 DOI: 10.1016/j.mrrev.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer continues to be a major global health challenge, driving the need for effective therapeutic strategies. Cisplatin, a powerful chemotherapeutic agent, is widely used in breast cancer treatment. However, its effectiveness is often limited by systemic toxicity and the development of drug resistance. This review examines the molecular factors that influence cisplatin response and resistance, offering crucial insights for the scientific community. It highlights the significance of understanding cisplatin resistance's genetic and epigenetic contributors, which could lead to more personalized treatment approaches. Additionally, the review explores innovative strategies to counteract cisplatin resistance, including combination therapies, nanoparticle-based drug delivery systems, and targeted therapies. These approaches are under intensive investigation and promise to enhance breast cancer treatment outcomes. This comprehensive discussion is a valuable resource to advance breast cancer therapeutics and address the challenge of cisplatin resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Hamyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Yasamin Alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast Eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faranak Jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Shahcheraghi SH, Alimardani M, Lotfi M, Lotfi M, Uversky VN, Guetchueng ST, Palakurthi SS, Charbe NB, Hromić-Jahjefendić A, Aljabali AAA, Gadewar MM, Malik S, Goyal R, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol Res Pract 2024; 257:155285. [PMID: 38653089 DOI: 10.1016/j.prp.2024.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Stephanie Tamdem Guetchueng
- Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, PO Box 6163, Yaoundé, Cameroon
| | - Sushesh Shrivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School Of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Manoj M Gadewar
- Department of Pharmacology, School of medical and allied sciences, K.R. Mangalam University, Gurgaon, Haryana 122103, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
3
|
Hsu CM, Chang KC, Chuang TM, Chu ML, Lin PW, Liu HS, Kao SY, Liu YC, Huang CT, Wang MH, Yeh TJ, Gau YC, Du JS, Wang HC, Cho SF, Hsiao CE, Tsai Y, Hsiao SY, Hung LC, Yen CH, Hsiao HH. High G9a Expression in DLBCL and Its Inhibition by Niclosamide to Induce Autophagy as a Therapeutic Approach. Cancers (Basel) 2023; 15:4150. [PMID: 37627178 PMCID: PMC10452841 DOI: 10.3390/cancers15164150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a malignant lymphoid tumor disease that is characterized by heterogeneity, but current treatment does not benefit all patients, which highlights the need to identify oncogenic genes and appropriate drugs. G9a is a histone methyltransferase that catalyzes histone H3 lysine 9 (H3K9) methylation to regulate gene function and expression in various cancers. METHODS TCGA and GTEx data were analyzed using the GEPIA2 platform. Cell viability under drug treatment was assessed using Alamar Blue reagent; the interaction between G9a and niclosamide was assessed using molecular docking analysis; mRNA and protein expression were quantified in DLBCL cell lines. Finally, G9a expression was quantified in 39 DLBCL patient samples. RESULTS The TCGA database analysis revealed higher G9a mRNA expression in DLBCL compared to normal tissues. Niclosamide inhibited DLBCL cell line proliferation in a time- and dose-dependent manner, reducing G9a expression and increasing p62, BECN1, and LC3 gene expression by autophagy pathway regulation. There was a correlation between G9a expression in DLBCL samples and clinical data, showing that advanced cancer stages exhibited a higher proportion of G9a-expressing cells. CONCLUSION G9a overexpression is associated with tumor progression in DLBCL. Niclosamide effectively inhibits DLBCL growth by reducing G9a expression via the cellular autophagy pathway; therefore, G9a is a potential molecular target for the development of therapeutic strategies for DLBCL.
Collapse
Affiliation(s)
- Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Kung-Chao Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Man-Ling Chu
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
| | - Pei-Wen Lin
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
| | - Hsiao-Sheng Liu
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Yu Kao
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Hong Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Yuh-Ching Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-En Hsiao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Samuel Yien Hsiao
- Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA;
| | - Li-Chuan Hung
- Long-Term Care and Health Management Department, Cheng Shiu University, Kaohsiung 833, Taiwan;
| | - Chia-Hung Yen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Rai R, Dey DK, Benbrook DM, Chandra V. Niclosamide causes lysosome-dependent cell death in endometrial cancer cells and tumors. Biomed Pharmacother 2023; 161:114422. [PMID: 36841028 DOI: 10.1016/j.biopha.2023.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Endometrial cancer is the most common female cancer showing continuous rise in its incidence and mortality rate. Despite the extensive research efforts in cancer therapeutics, still there is a lack of effective treatment options and the outcome is poor for patients with advanced and recurrent endometrial cancers. In this study, we aimed to evaluate the efficacy of niclosamide (NIC) against endometrial cancer. NIC is an FDA-approved anti-helminthic drug, which has been recently extensively studied as a potent anti-cancerous agent in several cancers. The anti-cancerous activity of NIC was analyzed in-vitro (ANC3A, Hec1B, and Ishikawa endometrial cancer cell lines) by cell viability-, soft agar-, invasion- and migration- assay. The action mechanism of NIC was demonstrated by western blot analysis and immune-fluorescence imaging and validated by specific inhibitors. The in-vivo efficacy of NIC was studied in the Ishikawa xenograft animal model. NIC effectively suppressed the viability (IC50<1 μM), colony formation ability, migration, and invasion of all endometrial cancer cells tested. We demonstrated that NIC inhibited AKT/mTOR signaling pathway and induced apoptosis and autophagy in endometrial cancer cells. Further study demonstrated that although NIC induced autophagosome formation, it inhibits autolysosome formation. In addition, we observed that NIC induced BAX co-localization with lysosome and inhibited Cathepsin B maturation from pro-cathepsin B, thereby inducing the lysosomal membrane permeability and release of hydrolytic enzymes from the lysosome to cytosol, which eventually contributed cell death. NIC also inhibited tumor weight and volume in the Ishikawa xenograft animal model without having any evidence of toxicity. Due to its potent anti-cancerous activity and safety profile, NIC seems to be a promising agent for human endometrial cancer therapeutics.
Collapse
Affiliation(s)
- Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Debasish Kumar Dey
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Vishal Chandra
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA..
| |
Collapse
|
5
|
Amiran MR, Taghdir M, Abasi Joozdani F. Investigation of the inhibitory behavior of XFE and mitoxantrone molecules in interaction with AKT1 protein: a molecular dynamics simulation study. J Mol Model 2023; 29:153. [PMID: 37086344 DOI: 10.1007/s00894-023-05520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023]
Abstract
The PI3K/Akt/mTOR pathway is one of the important pathways in many cancers. Akt is a serine-threonine kinase protein identified as a drug target for cancer treatment. Therefore, anticancer drugs are essential therapeutic targets for this pathway. In the current study, the inhibitory effect of two anticancer molecules, XFE and mitoxantrone, on AKT1 protein that can impact the activity of the AKT1 protein was investigated by using molecular docking and molecular dynamics (MD) simulations. The molecular docking results presented a relatively higher binding affinity of the mitoxantrone molecule in interaction with AKT1 than the XFE molecule. These results were validated by the MM/PBSA technique that was performed on obtained trajectories of 25 ns MD simulations. The mitoxantrone molecule has an intense binding energy of - 880.536 kcal/mol with AKT1 protein, while the XFE molecule shows a binding energy value of - 83.569 kcal/mol. Our findings from molecular dynamics simulations indicated that both molecules have favorite interactions with AKT1 protein. Other analyses, such as RMSF and hydrogen binding on trajectories obtained from MD simulations, indicated that the mitoxantrone molecule could be a relatively potent inhibitor for AKT1. Based on the results of this study and the structure of mitoxantrone, it is expected to be a good candidate for cancer treatment as a (PI3K)/Akt/mTOR inhibitor.
Collapse
Affiliation(s)
- Mohammad Reza Amiran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115-111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115-111, Iran
| |
Collapse
|
6
|
Huang X, Wang W, Li Y. Niclosamide is a potential candidate for the treatment of chemo-resistant osteosarcoma. Genet Mol Biol 2023; 46:e20220136. [PMID: 36735625 PMCID: PMC9897237 DOI: 10.1590/1678-4685-gmb-2022-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/18/2022] [Indexed: 02/04/2023] Open
Abstract
Chemotherapy is the main treatment option for advanced osteosarcoma, which is the most common type of primary bone malignancy. However, patients develop resistance rapidly and many succumb to the disease. Niclosamide, an anthelmintic drug, has been recently identified to display potent and selective anti-cancer activity. In this work, we show that niclosamide at sub-micromolar concentrations inhibits proliferation and migration, and induces apoptosis in both parental and chemo-resistant osteosarcoma cells, with much less toxicity in normal osteoblastic cells. Interestingly, chemo-resistant osteosarcoma cells are more sensitive to niclosamide compared to parental cells. We further identify that inhibition of β-catenin is the underlying mechanism of niclosamide's action in osteosarcoma cells. In addition, we reveal that chemo-resistant osteosarcoma cells display increased β-catenin activity compared to parental cells, which might explain the hypersensitivity of chemo-resistant cells to niclosamide. Our work provides pre-clinical evidence that niclosamide can be repurposed for treating osteosarcoma. Our findings also suggest the therapeutic value of β-catenin to overcome osteosarcoma chemo-resistance.
Collapse
Affiliation(s)
- Xiaoling Huang
- Wuhan Fourth Hospital, Department of Pulmonary and Critical Care Medicine, Wuhan, Hubei, China.
| | - Wei Wang
- Wuhan Fourth Hospital, Department of Orthopaedics, Wuhan, Hubei, China
| | - Yong Li
- Wuhan Fourth Hospital, Department of Pharmacy, Wuhan, Hubei, China
| |
Collapse
|
7
|
Shi T, Yu H, Blair RH. Integrated regulatory and metabolic networks of the tumor microenvironment for therapeutic target prioritization. Stat Appl Genet Mol Biol 2023; 22:sagmb-2022-0054. [PMID: 37988745 DOI: 10.1515/sagmb-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/28/2023] [Indexed: 11/23/2023]
Abstract
Translation of genomic discovery, such as single-cell sequencing data, to clinical decisions remains a longstanding bottleneck in the field. Meanwhile, computational systems biological models, such as cellular metabolism models and cell signaling pathways, have emerged as powerful approaches to provide efficient predictions in metabolites and gene expression levels, respectively. However, there has been limited research on the integration between these two models. This work develops a methodology for integrating computational models of probabilistic gene regulatory networks with a constraint-based metabolism model. By using probabilistic reasoning with Bayesian Networks, we aim to predict cell-specific changes under different interventions, which are embedded into the constraint-based models of metabolism. Applications to single-cell sequencing data of glioblastoma brain tumors generate predictions about the effects of pharmaceutical interventions on the regulatory network and downstream metabolisms in different cell types from the tumor microenvironment. The model presents possible insights into treatments that could potentially suppress anaerobic metabolism in malignant cells with minimal impact on other cell types' metabolism. The proposed integrated model can guide therapeutic target prioritization, the formulation of combination therapies, and future drug discovery. This model integration framework is also generalizable to other applications, such as different cell types, organisms, and diseases.
Collapse
Affiliation(s)
- Tiange Shi
- University at Buffalo, Biostatistics, Buffalo, USA
| | - Han Yu
- Roswell Park Comprehensive Cancer Center, Biostatistics and Bioinformatics, Buffalo, USA
| | - Rachael Hageman Blair
- University at Buffalo, Biostatistics, Institute for Artificial Intelligence and Data Science, Buffalo, USA
| |
Collapse
|
8
|
Liu L, Chen Y, Chen L, Shi Y, Fang J, Zhao M, Wang M. Preparation and pharmacodynamics of Niclosamide-hydroxypropyl-β-cyclodextrin inclusion complex. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomed Pharmacother 2022; 155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
|
10
|
Cámara-Sánchez P, Díaz-Riascos ZV, García-Aranda N, Gener P, Seras-Franzoso J, Giani-Alonso M, Royo M, Vázquez E, Schwartz S, Abasolo I. Selectively Targeting Breast Cancer Stem Cells by 8-Quinolinol and Niclosamide. Int J Mol Sci 2022; 23:ijms231911760. [PMID: 36233074 PMCID: PMC9570236 DOI: 10.3390/ijms231911760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer maintenance, metastatic dissemination and drug resistance are sustained by cancer stem cells (CSCs). Triple negative breast cancer (TNBC) is the breast cancer subtype with the highest number of CSCs and the poorest prognosis. Here, we aimed to identify potential drugs targeting CSCs to be further employed in combination with standard chemotherapy in TNBC treatment. The anti-CSC efficacy of up to 17 small drugs was tested in TNBC cell lines using cell viability assays on differentiated cancer cells and CSCs. Then, the effect of 2 selected drugs (8-quinolinol -8Q- and niclosamide -NCS-) in the cancer stemness features were evaluated using mammosphere growth, cell invasion, migration and anchorage-independent growth assays. Changes in the expression of stemness genes after 8Q or NCS treatment were also evaluated. Moreover, the potential synergism of 8Q and NCS with PTX on CSC proliferation and stemness-related signaling pathways was evaluated using TNBC cell lines, CSC-reporter sublines, and CSC-enriched mammospheres. Finally, the efficacy of NCS in combination with PTX was analyzed in vivo using an orthotopic mouse model of MDA-MB-231 cells. Among all tested drug candidates, 8Q and NCS showed remarkable specific anti-CSC activity in terms of CSC viability, migration, invasion and anchorage independent growth reduction in vitro. Moreover, specific 8Q/PTX and NCS/PTX ratios at which both drugs displayed a synergistic effect in different TNBC cell lines were identified. The sole use of PTX increased the relative presence of CSCs in TNBC cells, whereas the combination of 8Q and NCS counteracted this pro-CSC activity of PTX while significantly reducing cell viability. In vivo, the combination of NCS with PTX reduced tumor growth and limited the dissemination of the disease by reducing circulating tumor cells and the incidence of lung metastasis. The combination of 8Q and NCS with PTX at established ratios inhibits both the proliferation of differentiated cancer cells and the viability of CSCs, paving the way for more efficacious TNBC treatments.
Collapse
Affiliation(s)
- Patricia Cámara-Sánchez
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Zamira V. Díaz-Riascos
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Natalia García-Aranda
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Petra Gener
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Micaela Giani-Alonso
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Miriam Royo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Esther Vázquez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
Zheng X, Zhang J, Li S, Gao X, Zhang Y, Wang M, Dong L, Sun L, Zhao N, Ma Z, Ding C, Wang Y. Low doses of niclosamide and quinacrine combination yields synergistic effect in melanoma via activating autophagy-mediated p53-dependent apoptosis. Transl Oncol 2022; 21:101425. [PMID: 35460941 PMCID: PMC9048101 DOI: 10.1016/j.tranon.2022.101425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/20/2023] Open
Abstract
Malignant melanoma is a highly aggressive, malignant, and drug-resistant tumor. It lacks an efficient treatment approach. In this study, we developed a novel anti-melanoma strategy by using anti-tapeworm drug niclosamide and anti-malarial drug quinacrine, and investigated the molecular mechanism by in vitro and in vivo assays. Meanwhile, other types of tumor cells, immortalized epithelial cells and bone marrow mesenchymal stem cells were used to evaluate the universal role of anti-cancer and safety of the strategy. The results showed, briefly, an exposure to niclosamide and quinacrine led to an increased apoptosis-related protein p53, cleaved caspase-3 and cleaved PARP and autophagy-related protein LC3B expression, and a decreased expression of autophagy-related protein p62, finally leading to cell apoptosis and autophage. After inhibiting autophagy by Baf-A1, flow cytometry and western blot showed that the expression of apoptosis-related proteins was down-regulated and the number of apoptotic cells decreased. Subsequently, in the siRNA-mediated p53 knockdown cells, the expression of apoptosis-related proteins and the number of apoptotic cells were also reduced, while the expression of autophagy-related proteins including LC3B, p62 did not change significantly. To sum up, we developed a new, safe strategy for melanoma treatment by using low doses of niclosamide and quinacrine to treat melanoma; and found a novel mechanism by which the combination application of low doses of niclosamide and quinacrine exerts an efficient anti-melanoma effect through activation of autophagy-mediated p53-dependent apoptosis. The novel strategy was verified to exert a universal anti-cancer role in other types of cancer.
Collapse
Affiliation(s)
- Xuan Zheng
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Shuangting Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Xiaolei Gao
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Yixin Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Meng Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liying Dong
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liangjie Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA; Shanghai Stomatological Hospital, Fudan University, No.356, Beijing Road East, Shanghai, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| |
Collapse
|
12
|
Sultana T, Jan U, Lee JI. Double Repositioning: Veterinary Antiparasitic to Human Anticancer. Int J Mol Sci 2022; 23:ijms23084315. [PMID: 35457127 PMCID: PMC9029030 DOI: 10.3390/ijms23084315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Drug repositioning, the approach of discovering different uses for existing drugs, has gained enormous popularity in recent years in the anticancer drug discovery field due to the increasing demand for anticancer drugs. Additionally, the repurposing of veterinary antiparasitic drugs for the treatment of cancer is gaining traction, as supported by existing literature. A prominent example is the proposal to implement the use of veterinary antiparasitics such as benzimidazole carbamates and halogenated salicylanilides as novel anticancer drugs. These agents have revealed pronounced anti-tumor activities and gained special attention for “double repositioning”, as they are repurposed for different species and diseases simultaneously, acting via different mechanisms depending on their target. As anticancer agents, these compounds employ several mechanisms, including the inhibition of oncogenic signal transduction pathways of mitochondrial respiration and the inhibition of cellular stress responses. In this review, we summarize and provide valuable information about the experimental, preclinical, and clinical trials of veterinary antiparasitic drugs available for the treatment of various cancers in humans. This review suggests the possibility of new treatment options that could improve the quality of life and outcomes for cancer patients in comparison to the currently used treatments.
Collapse
Affiliation(s)
- Tania Sultana
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
| | - Umair Jan
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6234
| |
Collapse
|
13
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
14
|
Newton EE, Mueller LE, Treadwell SM, Morris CA, Machado HL. Molecular Targets of Triple-Negative Breast Cancer: Where Do We Stand? Cancers (Basel) 2022; 14:482. [PMID: 35158750 PMCID: PMC8833442 DOI: 10.3390/cancers14030482] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its heterogeneity and lack of hormone receptor expression, this subtype is more likely to metastasize and resist treatment attempts than are other forms of breast cancer. Due to the absence of targetable receptors, chemotherapy and breast conserving surgery have been the predominant treatment options for patients. However, resistance to chemotherapy and local recurrence of the tumors is frequent. Emerging immunotherapies have begun to change treatment plans for patients diagnosed with TNBC. In this review, we discuss the various immune pathways identified in TNBC and the role they play as targets for new potential treatment choices. Various therapeutic options that inhibit key pathways in cellular growth cycles, DNA repair mechanisms, epithelial mesenchymal transition, and immunosuppression have been shown to improve survival in patients with this disease. With promising results thus far, continued studies of immunotherapy and neoadjuvant therapy options for TNBC are likely to alter the treatment course for these diagnoses in the future.
Collapse
Affiliation(s)
- Emma E. Newton
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (E.E.N.); (L.E.M.); (S.M.T.)
| | - Lauren E. Mueller
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (E.E.N.); (L.E.M.); (S.M.T.)
| | - Scout M. Treadwell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (E.E.N.); (L.E.M.); (S.M.T.)
| | - Cindy A. Morris
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (E.E.N.); (L.E.M.); (S.M.T.)
- Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Zhao D, Hu C, Fu Q, Lv H. Combined chemotherapy for triple negative breast cancer treatment by paclitaxel and niclosamide nanocrystals loaded thermosensitive hydrogel. Eur J Pharm Sci 2021; 167:105992. [PMID: 34517104 DOI: 10.1016/j.ejps.2021.105992] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
Triple negative breast cancer (TNBC) is the most dangerous subtype of breast cancer accompanying by unfavorable prognosis due to lack of specific therapeutic targets. Paclitaxel (PTX) is the first-line chemotherapeutic drug for TNBC and niclosamide (NLM) was identified as an inhibitor for TNBC and breast cancer stem cells (BCSCs). Intratumoral drug delivery system was a hopeful alternative for chemotherapeutic drug administration due to its targeting efficiency with lower systemic toxicity. Herein, an injectable PTX nanocrystals (PTX-NCs) and NLM nanocrystals (NLM-NCs) co-loaded PLGA-PEG-PLGA thermosensitive hydrogel (PNNCs-Ts Gel) was designed for TNBC intratumoral treatment. The final formulation realized high drug loading and appropriate particle size. PNNCs-Ts Gel displayed sustained drug release for up to 8 days in vitro. In vitro antitumor tests observed synergetic effects of combined therapy in terms of inhibiting cell proliferation and migration, inducing apoptosis. In vivo combined therapy presented a tumor growth inhibition rate about 68.8% and desired safety. Moreover, tumors after PNNCs-Ts Gel intratumoral injection possessed the lowest ratio of BCSCs, exhibiting this formulation had good ability in suppressing BCSCs and therefore could possibly prevent TNBC recurrence and metastasis. These results suggested that PNNCs-Ts Gel could be a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Deqian Zhao
- Beijing Leadingpharm Medical technology development Co. Ltd, Beijing 100094, China
| | - Chenlu Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Qiang Fu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| | - Huixia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
16
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
17
|
Liu J, Ding H, Quan H, Han J. Anthelminthic niclosamide inhibits tumor growth and invasion in cisplatin-resistant human epidermal growth factor receptor 2-positive breast cancer. Oncol Lett 2021; 22:666. [PMID: 34386088 PMCID: PMC8299033 DOI: 10.3892/ol.2021.12927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/02/2021] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-resistant breast cancer displays aggressive clinical behavior, is poorly differentiated and is associated with the occurrence of epithelial-mesenchymal transition and the presence of cancer stem cells. The anthelmintic drug niclosamide has been shown to have numerous clinical applications in the treatment of malignant tumors, in addition to its traditional use in tapeworm disease. Our previous study demonstrated that niclosamide had an antiproliferative effect and could inhibit the stem-like phenotype of the breast cancer cells, suggesting that it might have the potential to be used in the treatment of triple-negative breast cancer. However, the specific function and underlying mechanism of action of niclosamide in chemoresistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer remain unknown. The present study aimed to determine whether niclosamide can inhibit cell proliferation, invasion and epithelial-to-mesenchymal transition, as well as the stem-like phenotype in cisplatin-resistant HER2-positive breast cancer. Alamar Blue and Annexin V/7-AAD staining, mammosphere formation and Transwell assays were performed to assess the viability, apoptosis, stem-like phenotype and invasion ability of breast cancer cell lines, respectively. Signaling molecule expression was detected via western blotting and a xenograft model was used to verify the inhibitory effect of niclosamide in vivo. The results from the present study demonstrated that niclosamide inhibited the resistance of HER2-positive breast cancer to cisplatin both in vitro and in vivo. Furthermore, niclosamide combined with cisplatin could inhibit breast cancer cell invasion, epithelial-mesenchymal transition and cell stemness. The inhibitory effect of niclosamide was mediated by apoptosis induction and Bcl-2 downregulation. Taken together, the results of the present study suggested that niclosamide combined with cisplatin may be considered as a novel treatment for chemoresistant HER2-positive breast cancer.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Breast Surgery, Shanghai East Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Hanzhi Ding
- Department of Breast Surgery, Shanghai East Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Hong Quan
- Department of Breast Surgery, Shanghai East Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Jing Han
- Department of Breast Surgery, Shanghai East Hospital, Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
18
|
Discovery of degradable niclosamide derivatives able to specially inhibit small cell lung cancer (SCLC). Bioorg Chem 2020; 107:104574. [PMID: 33383327 DOI: 10.1016/j.bioorg.2020.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC) is exceedingly tough to treat and easy to develop resistance upon long use of the first-line drug carboplatin or radiotherapy. Novel medicines effective and specific against SCLC are greatly needed. Herein, we focused on the discovery of such a medicine by exploring a drug niclosamide with repurposing strategy. Initial screening efforts revealed that niclosamide, an anthelmintic drug, possessed the in vitro anticancer activity and an obvious sensitivity towards SCLC. This observation inspired the evaluation for two different kinds of niclosamide derivatives. 2 with a degradable ester as a linker exhibited the comparable activity but slightly inferior selectivity to SCLC, by contrast, the cytotoxicities of 4 and 5 with non-degradable ether linkages completely disappeared, clearly validating the importance of 2-free hydroxyl group or 2-hydroxyl group released in the antitumor activity. Mechanism study unfolded that, similar to niclosamide, 2 inhibited growth of cancer cells via p 53 activation and subsequent underwent cytochrome c dependent apoptosis. Further structural modification to afford phosphate sodium 8 with significantly enhanced aqueous solubility (22.1 mg/mL) and a good selectivity towards SCLC demonstrated more promising druggability profiles. Accordingly, niclosamide as an attractive lead hold a huge potential for developing targeted anti-SCLC drugs.
Collapse
|
19
|
Silvestri S, Cirilli I, Marcheggiani F, Dludla P, Lupidi G, Pettinari R, Marchetti F, Di Nicola C, Falcioni G, Marchini C, Orlando P, Tiano L, Amici A. Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models. Mitochondrion 2020; 56:25-34. [PMID: 33220497 DOI: 10.1016/j.mito.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Platinum-based compounds are the most widely used anticancer drugs but, their elevated toxicity and chemoresistance has stimulated the study of others, such as ruthenium-based compounds. NAMI-A and UNICAM-1 were tested in vitro, comparing the mechanisms of toxicity, in terms of mitochondrial functionality and cellular oxidative stress. UNICAM-1, showed a clear mitochondrial target and a cytotoxic dose-dependent response thanks to its ability to promote an imbalance of cellular redox status. It impaired directly mitochondrial respiratory chain, promoting mitochondrial superoxide anion production, leading to mitochondrial membrane depolarization. All these aspects, could make UNICAM-1 a valid alternative for chemotherapy treatment of breast cancer.
Collapse
Affiliation(s)
- Sonia Silvestri
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy; Biomedfood srl, Ex-Spinoff of Polytechnic University of Marche, 60125 Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy; School of Pharmacy, University of Camerino, Camerino, MC, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Phiwayinkosi Dludla
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy
| | | | - Fabio Marchetti
- School of Sciences and Technology, University of Camerino, Camerino, MC, Italy
| | - Corrado Di Nicola
- School of Sciences and Technology, University of Camerino, Camerino, MC, Italy
| | | | - Cristina Marchini
- University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Augusto Amici
- University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
20
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
21
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
22
|
Wei W, Liu H, Yuan J, Yao Y. Targeting Wnt/β‐catenin by anthelmintic drug niclosamide overcomes paclitaxel resistance in esophageal cancer. Fundam Clin Pharmacol 2020; 35:165-173. [PMID: 32579788 DOI: 10.1111/fcp.12583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Wei
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Hongfang Liu
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Jia Yuan
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Yang Yao
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| |
Collapse
|
23
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
24
|
Fu Q, Jin X, Zhang Z, Lv H. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm 2020; 584:119432. [DOI: 10.1016/j.ijpharm.2020.119432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
|
25
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
26
|
Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 Cell-derived Exosomes Increase the Resistance of Recipient Cells in an Exosomal miR-423-5p-dependent Manner. Curr Drug Metab 2019; 20:804-814. [PMID: 31424364 DOI: 10.2174/1389200220666190819151946] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Chemoresistance blunts the therapeutic effect of cisplatin (DDP) on Triple-Negative Breast
Cancer (TNBC). Researchers have not determined to date whether exosomes confer DDP resistance to other breast
cancer cells or whether exosomal transfer of miRNAs derived from DDP-resistant TNBC cells confer DDP resistance.
Objective:
The aim of this study was to investigate the role of exosomes in chemoresistance in breast cancer.
Methods:
MDA-MB-231 cells resistant to DDP (231/DDP) were established. Exosomes were isolated from 231/DDP
cells (DDP/EXO) and characterized by measuring the levels of protein markers, nanoparticle tracking analysis and
transmission electron microscopy. MDA-MB-231, MCF-7 and SKBR-3 cell lines were treated with the isolated
DDP/EXOs and cell proliferation and cytotoxicity to DDP were evaluated using MTT assays and apoptosis analyses.
Western blotting was used to examine P-glycoprotein (P-gp) expression. Additionally, a microarray was used to
analyse microRNA (miRNA) expression profiles in MDA-MB-231 and 231/DDP exosomes. The effects on miRNAs
were determined using RT-PCR. Exosomal miR-423-5p was extracted, and differential expression was verified. The
MTT cell viability assay, flow cytometry, and Transwell and immunofluorescence assays were performed to determine
if differential expression of miR-423-5p sensitized cells to DDP in vitro.
Results:
Under a transmission electron microscope, the isolated exosomes exhibited a round or oval shape with a
diameter ranging between 40 and 100 nm. DDP/EXOs labelled with PKH67 were taken up by MDA-MB-231 cells.
After an incubation with DDP/EXOs, the cell lines exhibited a higher IC50 value for cisplatin, P-gp expression, migration
and invasion capabilities and a lower apoptosis rate. Furthermore, 60 miRNAs from exosomes derived from
231/DDP cells were significantly up-regulated compared to exosomes from MDA-MB-231 cells. Notably, compared
to the corresponding sensitive exosomes, miR-370-3p, miR-423-5p and miR-373 were the most differentially expressed
miRNAs in DDP-resistant exosomes. We chose miR-423-5p, and up-regulation and down-regulation of
exosomal miR-423-5p expression significantly affected DDP resistance.
Conclusions:
Exosomes from DDP-resistant TNBC cells (231/DDP) altered the sensitivity of other breast cancer
cells to DDP in an exosomal miR-423-5p dependent manner. Our research helps to elucidate the mechanism of DDP
resistance in breast cancer.
Collapse
Affiliation(s)
- Bing Wang
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Yuzhu Zhang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated with Shanghai University of TCM, Shanghai 200032, China
| |
Collapse
|
27
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
28
|
Baicalein Suppresses Stem Cell-Like Characteristics in Radio- and Chemoresistant MDA-MB-231 Human Breast Cancer Cells through Up-Regulation of IFIT2. Nutrients 2019; 11:nu11030624. [PMID: 30875792 PMCID: PMC6471144 DOI: 10.3390/nu11030624] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to both chemotherapy and radiation therapy is frequent in triple-negative breast cancer (TNBC) patients. We established treatment-resistant TNBC MDA-MB-231/IR cells by irradiating the parental MDA-MB-231 cells 25 times with 2 Gy irradiation and investigated the molecular mechanisms of acquired resistance. The resistant MDA-MB-231/IR cells were enhanced in migration, invasion, and stem cell-like characteristics. Pathway analysis by the Database for Annotation, Visualization and Integrated Discovery revealed that the NF-κB pathway, TNF signaling pathway, and Toll-like receptor pathway were enriched in MDA-MB-231/IR cells. Among 77 differentially expressed genes revealed by transcriptome analysis, 12 genes involved in drug and radiation resistance, including interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were identified. We found that baicalein effectively reversed the expression of IFIT2, which is reported to be associated with metastasis, recurrence, and poor prognosis in TNBC patients. Baicalein sensitized radio- and chemoresistant cells and induced apoptosis, while suppressing stem cell-like characteristics, such as mammosphere formation, side population, expression of Oct3/4 and ABCG2, and CD44highCD24low population in MDA-MB-231/IR cells. These findings improve our understanding of the genes implicated in radio- and chemoresistance in breast cancer, and indicate that baicalein can serve as a sensitizer that overcomes treatment resistance.
Collapse
|
29
|
Eduardo Sanabria-Chanaga E, Betancourt-Conde I, Hernández-Campos A, Téllez-Valencia A, Castillo R. In silico hit optimization toward AKT inhibition: fragment-based approach, molecular docking and molecular dynamics study. J Biomol Struct Dyn 2019; 37:4301-4311. [DOI: 10.1080/07391102.2018.1546618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Irene Betancourt-Conde
- Durango, Facultad de Medicina y Nutrición Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango, Mexico
| | - Alicia Hernández-Campos
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfredo Téllez-Valencia
- Durango, Facultad de Medicina y Nutrición Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango, Mexico
| | - Rafael Castillo
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
30
|
Pindiprolu SKSS, Chintamaneni PK, Krishnamurthy PT, Ratna Sree Ganapathineedi K. Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev Ind Pharm 2018; 45:304-313. [DOI: 10.1080/03639045.2018.1539496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sai Kiran S. S. Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, Ooty (Constituent College), JSS Academy of Higher Education and Research, Mysuru, India
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy, Ooty (Constituent College), JSS Academy of Higher Education and Research, Mysuru, India
| | - Praveen T. Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, Ooty (Constituent College), JSS Academy of Higher Education and Research, Mysuru, India
| | - Kinnera Ratna Sree Ganapathineedi
- Department of Pharmacology, JSS College of Pharmacy, Ooty (Constituent College), JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
31
|
Chan MM, Chen R, Fong D. Targeting cancer stem cells with dietary phytochemical - Repositioned drug combinations. Cancer Lett 2018; 433:53-64. [PMID: 29960048 PMCID: PMC7117025 DOI: 10.1016/j.canlet.2018.06.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is complex with the cancer stem cell (CSC) as a member within its community. This population possesses the capacity to self-renew and to cause cellular heterogeneity of the tumor. CSCs are resistant to conventional anti-proliferative drugs. In order to be curative, it is imperative that CSCs must be eliminated by cancer therapy. A variety of dietary phytochemicals and repositioned drugs can act synergistically with conventional anti-cancer agents. In this review, we advocate the development of a novel approach, namely combination therapy by incorporating both phytochemicals and repositioned drugs to target CSCs. We cover select dietary phytochemicals (curcumin, resveratrol, EGCG, genistein) and repurposed drugs (metformin, niclosamide, thioridazine, chloroquine). Five of the eight (curcumin, resveratrol, EGCG, genistein, metformin) are listed in "The Halifax Project", that explores "the concept of a low-toxicity 'broad-spectrum' therapeutic approach that could simultaneously target many key pathways and mechanisms" [1]. For these compounds, we discuss their mechanisms of action, in which models their anti-CSC activities were identified, as well as advantages, challenges and potentials of combination therapy.
Collapse
Affiliation(s)
- Marion M Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Rensa Chen
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, 3400 North Broad Street, Philadelphia, PA, 19140, USA; Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Dunne Fong
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
32
|
Involvement of Up-Regulation of DR5 Expression and Down-Regulation of c-FLIP in Niclosamide-Mediated TRAIL Sensitization in Human Renal Carcinoma Caki Cells. Molecules 2018; 23:molecules23092264. [PMID: 30189637 PMCID: PMC6225471 DOI: 10.3390/molecules23092264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Niclosamide is used to treat intestinal parasite infections, as being an anthelmintic drug. Recently, several papers suggest the niclosamide inhibits multiple signaling pathways, which are highly activated and mutated in cancer. Here, niclosamide was evaluated for identifying strategies to overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance. Although niclosamide (100–200 nM) alone did not bring about cell death, combinations of niclosamide and TRAIL led to apoptotic cell death in carcinoma cells, but not in normal cells. Niclosamide markedly increased DR5 protein levels, including cell-surface DR5, and decreased c-FLIP protein levels. Down-regulation of DR5 by specific small interfering RNA (siRNA) and ectopic expression of c-FLIP markedly blocked niclosamide plus TRAIL-induced apoptosis. Our findings provide that niclosamide could overcome resistance to TRAIL through up-regulating DR5 on the cell surface and down-regulating c-FLIP in cancer cells. Taken together, niclosamide may be an attractive candidate to overcome TRAIL resistance.
Collapse
|
33
|
Hsu HY, Lin TY, Hu CH, Shu DTF, Lu MK. Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Lett 2018; 432:112-120. [DOI: 10.1016/j.canlet.2018.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/24/2022]
|
34
|
The Antihelminthic Niclosamide Inhibits Cancer Stemness, Extracellular Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear β-catenin/c-Myc axis in OSCC. Sci Rep 2018; 8:12776. [PMID: 30143678 PMCID: PMC6109047 DOI: 10.1038/s41598-018-30692-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Niclosamide is an oral chlorinated salicylanilide antihelminthic agent with potential anticancer activity suggested in several cancer types, however, its anticancer action and likely molecular mechanism in malignant oral cells remain unclear. In the present study, we demonstrated that ALDH+ human oral squamous cell carcinoma (OSCC) cells are characterized by upregulated expression of the pluripotency transcription factors OCT4, Nanog and Sox2, as well as exhibit enhanced cancer stemness, as demonstrated by enhanced tumorsphere formation. We also showed that niclosamide effectively inhibits activation of the Wnt/β-catenin signaling pathway by targeting multiple components of this pathway, including downregulating the expression β-catenin, Dishevelled 2 (DVL2), phosphorylated glycogen synthase kinase-3β (p-GSK3β) and Cyclin D1, in human OSCC SCC4 and SCC25 cell lines, as well as reduced the formation of primary and secondary tumorspheres. In addition, we showed that niclosamide inhibits the epithelial-to-mesenchymal transition (EMT), migration and colony formation of the OSCC cells, by dose-dependently upregulating E-cadherin and the tissue inhibitor of metalloproteinases 2 (TIMP2) mRNA levels, while reducing the expression levels of vimentin, snail, MMP2 and MMP9 mRNA. These anticancer activities of niclosamide were similar to those caused by interference with nuclear β-catenin/c-Myc expression using the siRNA transfection. Finally, we demonstrated that niclosamide inhibits cisplatin-induced OSCC stem cell enrichment and enhances sensitivity to cisplatin in ALDH+ tumorspheres. These experimental data, combined with accumulated evidence, are suggestive of the potential and efficacy of niclosamide in the treatment of OSCC.
Collapse
|
35
|
Chien MH, Ho YC, Yang SF, Yang YC, Lai SY, Chen WS, Chen MJ, Yeh CB. Niclosamide, an oral antihelmintic drug, exhibits antimetastatic activity in hepatocellular carcinoma cells through downregulating twist-mediated CD10 expression. ENVIRONMENTAL TOXICOLOGY 2018; 33:659-669. [PMID: 29480568 DOI: 10.1002/tox.22551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, especially, in eastern Asia, and its prognosis is poor once metastasis occurs. Niclosamide, a US Food and Drug Administration-approved antihelmintic drug, was shown to inhibit the growth of various cancers including HCC, but the effect of niclosamide on cell motility and the underlying mechanism have not yet been completely defined. The present study demonstrated that niclosamide, at 0-40 nM, concentration-dependently inhibited wound closure and the migratory/invasive capacities of human Huh7 and SK-Hep-1 HCC cells without exhibiting cytotoxicity. A protease array analysis showed that CD10 was dramatically downregulated in Huh7 cells after niclosamide treatment. Western blot and flow cytometric assays further demonstrated that CD10 expression was concentration-dependently downregulated in Huh7 and SK-Hep-1 cells after niclosamide treatment. Mechanistic investigations found that niclosamide suppressed Twist-mediated CD10 transactivation. Moreover, knockdown of CD10 expression by CD10 small interfering RNA in HCC cells suppressed cell migratory/invasive abilities and overexpression of CD10 relieved the migration inhibition induced by niclosamide. Taken together, our results indicated that niclosamide could be a potential agent for inhibiting metastasis of HCC, and CD10 is an important target of niclosamide for suppressing the motility of HCC cells.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Szu-Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Shen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jenn Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Kadri H, Lambourne OA, Mehellou Y. Niclosamide, a Drug with Many (Re)purposes. ChemMedChem 2018; 13:1088-1091. [PMID: 29603892 PMCID: PMC7162286 DOI: 10.1002/cmdc.201800100] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Niclosamide is an anthelmintic drug that has been used for over 50 years mainly to treat tapeworm infections. However, with the increase in drug repurposing initiatives, niclosamide has emerged as a true hit in many screens against various diseases. Indeed, from being an anthelmintic drug, it has now shown potential in treating Parkinson's disease, diabetes, viral and microbial infections, as well as various cancers. Such diverse pharmacological activities are a result of niclosamide's ability to uncouple mitochondrial phosphorylation and modulate a selection of signaling pathways, such as Wnt/β-catenin, mTOR and JAK/STAT3, which are implicated in many diseases. In this highlight, we discuss the plethora of diseases that niclosamide has shown promise in treating.
Collapse
Affiliation(s)
- Hachemi Kadri
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Olivia A Lambourne
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
37
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
38
|
Zuo Y, Yang D, Yu Y, Xiang M, Li H, Yang J, Li J, Jiang D, Zhou H, Xu Z, Yu Z. Niclosamide enhances the cytotoxic effect of cisplatin in cisplatin-resistant human lung cancer cells via suppression of lung resistance-related protein and c-myc. Mol Med Rep 2017; 17:3497-3502. [PMID: 29257330 PMCID: PMC5802146 DOI: 10.3892/mmr.2017.8301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is a leading cause of cancer-associated mortality worldwide. The cisplatin (DDP)-based chemotherapy remains the foundation of treatment for the majority of patients affected by advanced non-small cell lung cancer (NSCLC). However, DDP-resistance limits the clinical utility of this drug in patients with advanced NSCLC. The aim of the present study was to investigate the inhibitory effect of niclosamide on human lung cancer cell growth and to investigate the possible underlying mechanism. The effects of niclosamide on the proliferation of human lung adenocarcinoma (A549) and DDP-resistant (CR) human lung adenocarcinoma (A549/DDP) cells were examined by Cell Counting kit-8 assay. The impact of niclosamide on the apoptosis of A549/DDP cells was detected by Annexin V-fluorescein isothiocyanate/propidium iodide assay. The expression levels of cisplatin-resistant-associated molecules (lung resistance-related protein and c-myc) following niclosamide treatment in A549/DDP cells were evaluated by western blot analysis. The results indicated that niclosamide in combination with DDP demonstrated a synergistic effect in A549/DDP cells and directly induced apoptosis, which may be associated with caspase-3 activation. Furthermore, niclosamide decreased the expression level of c-myc protein, which may influence DDP sensitivity of A549/DDP cells. Thus, the present study indicates that niclosamide combined with DDP exerts a synergistic effect in cisplatin-resistant lung cancer cells and may present as a promising drug candidate in lung cancer therapy.
Collapse
Affiliation(s)
- Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Dongyan Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yin Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Mei Xiang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Haiwen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jun Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jingjing Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Danxian Jiang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Hechao Zhou
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhonghua Yu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
39
|
Li X, Ding R, Han Z, Ma Z, Wang Y. Targeting of cell cycle and let-7a/STAT3 pathway by niclosamide inhibits proliferation, migration and invasion in oral squamous cell carcinoma cells. Biomed Pharmacother 2017; 96:434-442. [PMID: 29031202 DOI: 10.1016/j.biopha.2017.09.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
The low median survival rate of oral squamous cell carcinoma (OSCC) is associated with chemotherapeutic resistance. Niclosamide is an oral anti-helminthic drug, its anti-cancer effect has been reported in recent years. However, the effect of niclosamide on OSCC remains largely unknown. In this study, we, for the first time, investigated the underlying mechanisms from cell cycle arrest and let-7a/STAT3 axis through CCK-8, cell cycle, apoptosis, wound healing, Transwell invasion, generation of stable cell line, real-time PCR, and western blot assays using two OSCC cell lines WSU-HN6 and Tca83. We showed that niclosamide could inhibit OSCC cells proliferation through causing cell cycle arrest in G1 phase and promoting apoptosis, while the cell cycle-related proteins MCM2, MCM7, CDK2 and CDK4 were downregulated and the apoptosis-related proteins p53 and cleaved caspase-3 were upregulated. Furthermore, niclosamide could inhibit migration and invasion of OSCC through upregulation of let-7a expression and downregulation of p-STAT3 expression. What is more, we established the stably expressing let-7a cell line (HN6-let-7a). Like niclosamide, HN6-let-7a could decrease the ability of the cell migration, invasion as well as the expression of p-STAT3. Collectively, our study finds the new mechanisms that niclosamide inhibits OSCC proliferation through causing cell cycle arrest in G1 phase via downregulation of the above cell cycle-related genes; promotes OSCC apoptosis through upregulation of pro-apoptotic genes; decreases migration and invasion of OSCC by let-7a/STAT3 axis, thus providing a preferred therapeutic candidate for OSCC in future.
Collapse
Affiliation(s)
- Xiaoxu Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China, China
| | - Ruiyu Ding
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zewen Han
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China, China.
| |
Collapse
|
40
|
Wu G, Li Y, Tan B, Fan L, Zhao Q, Liu Y, Zhang Z. Overexpression of stromal interaction molecule 1 may promote epithelial‑mesenchymal transition and indicate poor prognosis in gastric cancer. Mol Med Rep 2017; 16:151-158. [PMID: 28534934 PMCID: PMC5482137 DOI: 10.3892/mmr.2017.6607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate the prognostic significance of stromal interaction molecule 1 (STIM1) expression in gastric cancer (GC) and examine the association between STIM1 and epithelial-mesenchymal transition (EMT). Immunohistochemical staining was performed to detect STIM1, E-cadherin, β-catenin and matrix metalloproteinase-9 (MMP-9) in 170 GC and 35 adjacent healthy gastric tissue samples. Positive staining of STIM1, E-cadherin, β-catenin and MMP-9 in GC tissues was significantly greater compared with adjacent healthy tissues (P<0.05). Clinicopathological analysis revealed that STIM1 expression was significantly associated with LNM (P<0.001) and tumor-node-metastasis stage (P=0.01). The overall survival rate was significantly reduced in STIM1-positive compared with STIM1-negative patients (P=0.043). Cox regression analysis indicated that STIM1 expression and LNM were independent prognostic factors for GC. Chi-square tests suggested that STIM1 expression in GC tissues was significantly associated with E-cadherin (P<0.001) and β-catenin (P<0.001), whereas no association was observed between STIM1 and MMP-9 expression (P>0.05). In conclusion, the results of the present study suggested that STIM1 may be a valuable prognostic marker in GC patients, and that STIM1 may increase GC motility and invasiveness by promoting epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Guobin Wu
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yong Li
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Bibo Tan
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liqiao Fan
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Qun Zhao
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yü Liu
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhidong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
41
|
Shi L, Zheng H, Hu W, Zhou B, Dai X, Zhang Y, Liu Z, Wu X, Zhao C, Liang G. Niclosamide inhibition of STAT3 synergizes with erlotinib in human colon cancer. Onco Targets Ther 2017; 10:1767-1776. [PMID: 28367059 PMCID: PMC5370071 DOI: 10.2147/ott.s129449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Niclosamide, an anthelmintic drug approved by the US Food and Drug Administration against cestodes, is used to treat tapeworm infection. In this study, we show that niclosamide can potentially inhibit signal transducer and activator of transcription 3 (STAT3) in colon cancer cell lines. Combined inhibition of epidermal growth factor receptor and STAT3 by erlotinib and niclosamide synergistically induces apoptosis and antiproliferation in colon cancer cell lines. Our findings suggest that erlotinib and niclosamide combination provides an effective therapeutic approach to improving the prognosis of colon cancer.
Collapse
Affiliation(s)
- Lingyi Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Hailun Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Wanle Hu
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital
| | - Bin Zhou
- Department of Coloproctology, The Second Affiliated Hospital and Yuying Children's Hospital
| | - Xuanxuan Dai
- Department of Oncological Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yi Zhang
- Department of Oncological Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Xiaoping Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| |
Collapse
|
42
|
Chen L, Wang L, Shen H, Lin H, Li D. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem Biophys Res Commun 2017; 484:416-421. [PMID: 28137584 DOI: 10.1016/j.bbrc.2017.01.140] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsiveness of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-l-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer.
Collapse
Affiliation(s)
- Liping Chen
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China
| | - Haibin Shen
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China
| | - Hui Lin
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China.
| | - Dan Li
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China.
| |
Collapse
|
43
|
Arend RC, Londoño-Joshi AI, Gangrade A, Katre AA, Kurpad C, Li Y, Samant RS, Li PK, Landen CN, Yang ES, Hidalgo B, Alvarez RD, Michael Straughn J, Forero A, Buchsbaum DJ. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016; 7:86803-86815. [PMID: 27888804 PMCID: PMC5349955 DOI: 10.18632/oncotarget.13466] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer mortality worldwide. Platinum-based therapy is the standard first line treatment and while most patients initially respond, resistance to chemotherapy usually arises. Major signaling pathways frequently upregulated in chemoresistant cells and important in the maintenance of cancer stem cells (CSCs) include Wnt/β-catenin, mTOR, and STAT3. The major objective of our study was to investigate the treatment of ovarian cancer with targeted agents that inhibit these three pathways. Here we demonstrate that niclosamide, a salicylamide derivative, and two synthetically manufactured niclosamide analogs (analog 11 and 32) caused significant inhibition of proliferation of two chemoresistant ovarian cancer cell lines (A2780cp20 and SKOV3Trip2), tumorspheres isolated from the ascites of EOC patients, and cells from a chemoresistant patient-derived xenograft (PDX). This work shows that all three agents significantly decreased the expression of proteins in the Wnt/β-catenin, mTOR and STAT3 pathways and preferentially targeted cells that expressed the ovarian CSC surface protein CD133. It also illustrates the potential of drug repurposing for chemoresistant EOC and can serve as a basis for pathway-oriented in vivo studies.
Collapse
Affiliation(s)
- Rebecca C. Arend
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Birmingham, AL, USA
| | | | - Abhishek Gangrade
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Ashwini A. Katre
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Chandrika Kurpad
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Yonghe Li
- Southern Research Institute, Department of Oncology, Birmingham, AL, USA
| | - Rajeev S. Samant
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular & Cellular Pathology, Birmingham, AL, USA
| | - Pui-Kai Li
- Ohio State University, Department of Medicinal Chemistry and Pharmacognosy, Columbus, OH, USA
| | - Charles N. Landen
- University of Virginia, Department of Oncology, Division of Gynecologic Oncology, Charlottesville, VA, USA
| | - Eddy S. Yang
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Bertha Hidalgo
- University of Alabama at Birmingham, Department of Epidemiology, Birmingham, AL, USA
| | - Ronald D. Alvarez
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Birmingham, AL, USA
| | - John Michael Straughn
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Birmingham, AL, USA
| | - Andres Forero
- University of Alabama at Birmingham, Department of Medicine, Division of Hematology & Oncology, Birmingham, AL, USA
| | - Donald J. Buchsbaum
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| |
Collapse
|
44
|
Miura K. [Histopathologic studies on epithelial proliferation in the peripheral region of the lung with special consideration of tumorlets]. Cell Signal 1968; 41:89-96. [PMID: 28389414 PMCID: PMC5628105 DOI: 10.1016/j.cellsig.2017.04.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Niclosamide is an oral antihelminthic drug used to treat parasitic infections in millions of people worldwide. However recent studies have indicated that niclosamide may have broad clinical applications for the treatment of diseases other than those caused by parasites. These diseases and symptoms may include cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, and systemic sclerosis. Among the underlying mechanisms associated with the drug actions of niclosamide are uncoupling of oxidative phosphorylation, and modulation of Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways. Here we provide a brief overview of the biological activities of niclosamide, its potential clinical applications, and its challenges for use as a new therapy for systemic diseases. Niclosamide is an oral antihelminthic drug used to treat parasitic infections. Niclosamide is a multifunctional drug inhibiting multiple signaling pathways and biological processes. Niclosamide has biological activities potentially against systemic diseases.
Collapse
|