1
|
Albaseer SS, Jaspers VLB, Orsini L, Vlahos P, Al-Hazmi HE, Hollert H. Beyond the field: How pesticide drift endangers biodiversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125526. [PMID: 39672369 DOI: 10.1016/j.envpol.2024.125526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Airborne pesticide drift poses a substantial environmental threat in agriculture, affecting ecosystems far from the application sites. This process, in which up to 25% of applied pesticides are carried by air currents, can transport chemicals over hundreds or even thousands of kilometers. Drift rates peak during the summer months, reaching as high as 60%, and are influenced by various factors, including wind speed, temperature, humidity, and soil type. Pesticide volatilization is a significant concern, occurring 25 times more frequently than surface runoff. Under certain conditions, it can result in chemical losses of compounds like metolachlor and atrazine that are up to 150 times higher. These drifting pesticides have profound impacts on biodiversity, harming non-target plants, insects, fungi, and other organisms both near application sites and in distant ecosystems. Pesticide drift has been linked to over 50% reductions in wild plant diversity within 500 m of fields, reducing floral resources for pollinators. Despite growing evidence of these effects, the long-term consequences of airborne pesticides on biodiversity remain poorly understood, especially in complex field conditions with multiple pesticide applications. Addressing this requires urgent measures, such as improved meteorological tracking during applications, adoption of biopesticides, and integrated pest management strategies. This review highlights the pressing need for research to quantify airborne pesticides' ecological impacts, advocating for sustainable practices to mitigate environmental damage.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Faculty Biological Sciences (FB15), Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Department of Chemistry, Faculty of Education, Thamar University, Dhamar, 87246, Yemen; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Luisa Orsini
- Department of Evolutionary Ecology & Environmental Toxicology, Faculty Biological Sciences (FB15), Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Robust Nature Excellence Initiative, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, B15 2TT, UK.
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, USA
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Henner Hollert
- Department of Evolutionary Ecology & Environmental Toxicology, Faculty Biological Sciences (FB15), Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Lan X, Wang J, Chen P, Liang Q, Zhang L, Ma C. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116675. [PMID: 38971099 DOI: 10.1016/j.ecoenv.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Unmanned aerial vehicle (UAV) sprayers are widely utilized in commercial aerial application of plant protection products (PPPs) in East Asian countries due to their high flexibility, high efficiency and low cost, but spray drift can lead to low utilization of UAV sprayers application, environmental pollution and bystander exposure risk. Droplet size and spray volume are critical factors affecting spray drift. Currently, the high temperature and humidity environment under the influence of the tropical monsoon climate brings new challenges for UAV sprayers. Therefore, in this study, pesticides were simulated with seduction red solution, and spraying trials were conducted using the DJI commercial T40 UAV sprayers for a typical tropical crop, coconut. In this study, the spray drift distribution of droplets on the ground and in the air, as well as the bystander exposure risk, were comparatively analyzed using droplet size (VF, M, and C) and spray volume (75 L/hm2 and 60 L/hm2) as trial variables. The results indicated that the spray drift characteristics of UAV sprayers were significantly affected by droplet size and spray volume. The spray drift percentage was negatively correlated with the downwind distance and the sampling height. The smaller the droplet size, the farther the buffer zone distance, up to more than 30 m, and the cumulative drift percentage is also greater, resulting in a significant risk of spray drift. The reduction in spray volume helped to reduce the spray drift, and the cumulative drift percentage was reduced by 73.87 % with a droplet size of M. The region of the body where spray drift is deposited the most on bystanders is near chest height. This study provides a reference for the rational and safe use of multirotor UAV sprayers application operations in the tropics and enriches the spray drift database in the tropics.
Collapse
Affiliation(s)
- Xinguo Lan
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Juan Wang
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Pengchao Chen
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, College of Electronic Engineering and Artificial Intelligence, South China Agricultural University, Guangzhou, China
| | - Qifu Liang
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Linjia Zhang
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Chao Ma
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. TOXICS 2023; 11:858. [PMID: 37888709 PMCID: PMC10611335 DOI: 10.3390/toxics11100858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.
Collapse
Affiliation(s)
- Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| |
Collapse
|
4
|
Global Warming and Toxicity Impacts: Peanuts in Georgia, USA Using Life Cycle Assessment. SUSTAINABILITY 2022. [DOI: 10.3390/su14063671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fertilizers and pesticides have been widely used in agriculture production, causing polluted soil, water, and atmosphere. This study aims to quantify air emissions from pesticides and fertilizers applied for peanut production in Georgia during selected years (1991, 1999, 2004, 2013, and 2018). Specifically, the oral and dermal potential impacts from pesticide emissions and the global warming potential (GWP) impact from fertilizers to air were investigated. This study followed the ISO 14040 series standards for life cycle assessment (LCA) methodology to assess six active ingredients (AIs) (2,4-DB, Bentazon, Chlorothalonil, Ethalfluralin, Paraquat, and Pendimethalin) and one greenhouse gas (nitrous oxide N2O). Their physical and chemical characteristics and the temporal scales greatly influenced the oral and dermal toxicity impacts. According to the low values obtained for Henry’s law (KH) and vapor pressure (VP), 2,4-dichlorophenoxy butanoic (DB), Pendimethalin, and Chlorothalonil have a higher impact on the continental air scale. The effect factor (EF) from oral exposure was higher in 2,4-DB, Bentazon, and Pendimethalin than dermal exposure, according to the relatively low lethal dose (LD50) for oral exposure, while the EF of Ethalfluralin and Chlorothalonil was the same for oral and dermal exposure according to their similar LD50.
Collapse
|
5
|
Langenbach T, Mager AH, Campos MM, De Falco A, Aucélio R, Campos TM, Caldas LQA. The use of hedgerows to mitigate pesticide exposure of a population living in a rural area. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:19-24. [PMID: 34002477 DOI: 10.1002/ieam.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Farmer populations living in houses inside vegetable gardens are exposed to indoor pesticide pollution. The pulverization drift and volatile pesticides transported by wind are important sources of indoor pollution, which can be mitigated by hedgerows. This study was the first attempt in Brazil to investigate the efficiency of six different hedgerow species in reducing pesticide residues in air. A fluorescent compound (p-aminobenzoic acid or PABA) was introduced in the sprayed pesticide fluid that traced the pesticide in the water. Samples were collected in Petri dishes positioned on stakes at different heights in front of and behind the hedgerows. Data indicated barrier efficiency of up to 99%. Simulation of nontarget drift contamination with herbicide concentrations exhibited reduced senescence effects on leaves and posed no threat to survival. Hedgerows are feasible, simple, and inexpensive techniques, which may be used easily by farmers, independent of external support and efficiently mitigating indoor pesticide pollution, thus protecting human health. Integr Environ Assess Manag 2022;18:19-24. © 2021 SETAC.
Collapse
Affiliation(s)
| | | | | | - Anna De Falco
- Pontificial Catholic University, Rio de Janeiro, RJ, Brazil
| | | | - Tácio M Campos
- Pontificial Catholic University, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
6
|
Gentil-Sergent C, Basset-Mens C, Gaab J, Mottes C, Melero C, Fantke P. Quantifying pesticide emission fractions for tropical conditions. CHEMOSPHERE 2021; 275:130014. [PMID: 33662717 DOI: 10.1016/j.chemosphere.2021.130014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The inventory model 'PestLCI Consensus', originally developed for temperate conditions, estimates initial pesticide emission fractions to air, to off-field surfaces by drift deposition, and to field crop and field soil surfaces according to crop foliar interception characteristics. Since crop characteristics and application techniques differ in tropical conditions, these aspects need to be included in the model in support of evaluating pesticide emissions under tropical conditions. Based on published literature, a consistent set of crop foliar interception fractions was developed as function of crop characteristics and spraying techniques for tropical crops. In addition, we derived drift deposition fractions from published drift experiments specifically conducted under tropical conditions. Finally, we compiled a consistent set of pesticide emission fractions for application in life cycle assessment (LCA). Foliar interception fractions are strongly influenced by the spraying technique, particularly for hand-operated applications. Drift deposition fractions to off-field surfaces were derived for air blast sprayer on papaya and coffee, for boom sprayer on bean and soybean, for aerial application on soybean, sorghum, millet, corn and cotton, and for hand-operated application on cotton. Emission fractions vary for each combination of crop and application method. Drift deposition curves for missing crop-application method combinations can only partly be extrapolated from the set of considered combinations. Overall, our proposed foliar interception fractions and drift deposition fractions for various crops grown under tropical conditions allow to estimate pesticide emissions in support of assessing the environmental performance of agrifood systems in LCA with focus on tropical regions.
Collapse
Affiliation(s)
- Céline Gentil-Sergent
- CIRAD, UPR HortSys, ELSA, F-97232, Le Lamentin, Martinique, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | - Claudine Basset-Mens
- HortSys, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR HortSys, ELSA, F-34398, Montpellier, France.
| | - Juliette Gaab
- CIRAD, UPR HortSys, ELSA, F-97232, Le Lamentin, Martinique, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | - Charles Mottes
- CIRAD, UPR HortSys, ELSA, F-97232, Le Lamentin, Martinique, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | - Carlos Melero
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark.
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Galon L, Bragagnolo L, Korf EP, Dos Santos JB, Barroso GM, Ribeiro VHV. Mobility and environmental monitoring of pesticides in the atmosphere - a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14258-x. [PMID: 33959837 DOI: 10.1007/s11356-021-14258-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the partition mechanisms in the agrochemical environment is fundamental for understanding their behavior within an ecosystem and mitigating possible adverse effects of these products. In this review, the objective was to present the main transport mechanisms, physical-chemical properties, and atmospheric monitoring methodologies of the most diverse types of agrochemicals used in agriculture that can reach the atmosphere and affect different compartments. It has been verified that volatilization is one of more considerable significance of the various forms of transport since a significant part of the applied pesticides can volatilize in a few days. As for monitoring these compounds in the atmosphere, both passive and active sampling have their advantages and disadvantages. Passive samplers allow sampling in large quantities and at remote locations, in addition to making continuous measurements, while active samplers have the advantage of being able to detect low concentrations and continuously. Since a significant portion of the applied pesticides is directed to the atmosphere, monitoring makes it possible to understand some properties of the pesticides present in the air. This monitoring can be done from different existing methodologies based on adopted criteria and existing technical standards. Graphical representation of mobility and environmental monitoring of atmospheric pollutants from pesticides.
Collapse
Affiliation(s)
- Leandro Galon
- Federal University of Fronteira Sul (UFFS), Postgraduate Program in Environmental Science and Technology, ERS 135, km 72, n. 200, 99.700-000, Erechim, Rio Grande do Sul, Brazil.
| | - Lucimara Bragagnolo
- Federal University of Fronteira Sul (UFFS), Postgraduate Program in Environmental Science and Technology, ERS 135, km 72, n. 200, 99.700-000, Erechim, Rio Grande do Sul, Brazil
| | - Eduardo Pavan Korf
- Federal University of Fronteira Sul (UFFS), Postgraduate Program in Environmental Science and Technology, ERS 135, km 72, n. 200, 99.700-000, Erechim, Rio Grande do Sul, Brazil
| | - José Barbosa Dos Santos
- Federal University of the Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367, km 583, n. 5000, zip code 39.100-000, Alto da Jacuba, Diamantina, Minas Gerais, Brazil
| | - Gabriela Madureira Barroso
- Federal University of the Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367, km 583, n. 5000, zip code 39.100-000, Alto da Jacuba, Diamantina, Minas Gerais, Brazil
| | | |
Collapse
|
8
|
Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110587. [PMID: 32325327 DOI: 10.1016/j.ecoenv.2020.110587] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia.
| |
Collapse
|
9
|
Daam MA, Chelinho S, Niemeyer JC, Owojori OJ, De Silva PMCS, Sousa JP, van Gestel CAM, Römbke J. Environmental risk assessment of pesticides in tropical terrestrial ecosystems: Test procedures, current status and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:534-547. [PMID: 31234068 DOI: 10.1016/j.ecoenv.2019.06.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Despite the increasing use of pesticides in tropical countries, research and legislative efforts have focused on their temperate counterparts. This paper presents a review of the literature on environmental risk assessment of pesticides for tropical terrestrial agroecosystems. It aims at evaluating potential differences in pesticide risk between temperate and tropical regions as well as to highlight research needs in the latter. Peculiarities of pesticide risks in tropical terrestrial agroecosystems are discussed in subsections 1) agricultural practices; 2) research efforts; 3) fate and exposure; 4) toxicity testing methods; and 5) sensitivity. The intensive and often inadequate pesticide application practices in tropical areas are likely to result in a relatively greater pesticide exposure in edge-of-field water bodies. Since pesticide fate may be different under tropical conditions, tropical scenarios for models estimating predicted environmental pesticide concentrations should be developed. Sensitivity comparisons do not indicate a consistent similar, greater or lower relative sensitivity of tropical soil organisms as compared to temperate organisms. However, several methods and procedures for application in the tropics need to be developed, which include: 1) identifying and collecting natural soils to be used as reference test substrates in tests; 2) identifying and discerning the range of sensitivity of native test species to soil contaminants; 3) developing test guidelines applicable to tropical/subtropical conditions; and 4) developing methods and procedures for higher tier testing for full development and implementation of environmental risk assessment schemes.
Collapse
Affiliation(s)
- Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal.
| | - Sónia Chelinho
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, P-3000 456, Coimbra, Portugal
| | - Júlia C Niemeyer
- Centre of Curitibanos, Federal University of Santa Catarina, Curitibanos, Santa Catarina, Brazil
| | - Olugbenga J Owojori
- Department of Zoology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - P Mangala C S De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | - Jóse Paulo Sousa
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, P-3000 456, Coimbra, Portugal
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, 65439, Flörsheim, Germany
| |
Collapse
|