1
|
Aydoğdu GS, Gezmen Karadağ M. The Two Dimensions of Nutrition for the Planet: Environment and Health. Curr Nutr Rep 2025; 14:49. [PMID: 40111708 PMCID: PMC11926033 DOI: 10.1007/s13668-025-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW Protecting the planet is protecting the future. Food production systems are among the most important human activities threatening planetary health. Diet, food systems, the environment, and health are interconnected. Accordingly, this review aims to assess the effects of nutrition on the planet and the relationship between some types of diets defined as sustainable and the planet and human health. RECENT FINDINGS Many diets have been proposed to protect the planet and human health, but there is no consensus on which diet is best. It should not be forgotten that planetary health diets, plant-based diets, and vegetarian/vegan diets can reduce environmental pressure. Still, they cannot have the same effect in every country, and these diets may have different effects depending on the differences in the countries' income level, nutritional culture, and food systems. Moreover, it should not be overlooked that these diets may cause difficulties in terms of adaptation, cause deficiencies in some nutrients, and may not be suitable for all segments of society. Sustainable diets such as the Mediterranean and New Nordic, as well as Dietary Approaches to Stop Hypertension, are more flexible and acceptable. Instead of a globally recommended reference diet to protect the planet and human health, each country can analyze its food systems and choose the most appropriate food production methods and sustainable diet style to reduce environmental burden, improve health, and create policies accordingly, which can help achieve sustainable goals faster.
Collapse
Affiliation(s)
- Gökçe Sueda Aydoğdu
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Anadolu University, Eskişehir, Turkey.
| | - Makbule Gezmen Karadağ
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Roy P, Sethi S, New J, Lorilla KM, Maleski K, Ancheta A, Uhde-Stone C. Transcriptomic Response of White Lupin Roots to Short-Term Sucrose Treatment. PLANTS (BASEL, SWITZERLAND) 2025; 14:381. [PMID: 39942943 PMCID: PMC11821248 DOI: 10.3390/plants14030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
White lupin (Lupinus albus) has become a model plant for understanding plant adaptations to phosphorus (P) and iron (Fe) deficiency, two major limiting factors for plant productivity. In response to both nutrient deficiencies, white lupin forms cluster roots, bottle-brush-like root structures that aid in P and Fe acquisition from soil. While the cluster root function is well-studied, not much is known about the signaling pathways involved in sensing and responding to a P and Fe deficiency. Sucrose has been identified as a long-distance signal sent in increased concentrations from shoot to root in response to both a P and Fe deficiency. Thus, sucrose plays a dual role both as a signal and as a major source of energy for the root. To unravel the responses to sucrose as a signal, we performed an Illumina paired-end cDNA sequencing of white lupin roots treated with sucrose for 20, 40 or 80 min, compared to untreated controls (0 min). We identified 634 up-regulated and 956 down-regulated genes in response to sucrose. Twenty minutes of sucrose treatment showed the most responses, with the ethylene-activated signaling pathway as the most enriched Gene Ontology (GO) category. The number of up-regulated genes decreased at 40 min and 80 min, and protein dephosphorylation became the most enriched category. Taken together, our findings indicate active responses to sucrose as a signal at 20 min after a sucrose addition, but fewer responses and a potential resetting of signal transduction pathways by the dephosphorylation of proteins at 40 and 80 min.
Collapse
Affiliation(s)
- Proyasha Roy
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (P.R.); (J.N.)
| | - Shrey Sethi
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (P.R.); (J.N.)
| | - James New
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (P.R.); (J.N.)
| | - Kristina Mae Lorilla
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (P.R.); (J.N.)
| | - Karen Maleski
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (P.R.); (J.N.)
| | - Allan Ancheta
- College of Health Sciences, California Northstate University, Rancho Cordova, CA 95670, USA;
| | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (P.R.); (J.N.)
| |
Collapse
|
3
|
Zhang K, Khan MN, Khan Z, Luo T, Zhang B, Bi J, Hu L, Luo L. Seed priming with ascorbic acid and spermidine regulated auxin biosynthesis to promote root growth of rice under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1482930. [PMID: 39711584 PMCID: PMC11658984 DOI: 10.3389/fpls.2024.1482930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Introduction Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development. Methods Here, various seed priming treatments, viz., hydro priming, ascorbic acid priming (AsA), and spermidine priming (Spd), were adopted concerning root morphological, physiological, microstructural, and molecular studies under drought stress on rice variety Hanyou 73. Results and discussion Results demonstrated that drought severely suppressed seedling establishment, while AsA or Spd priming effectively alleviated the inhibitory effects of drought stress, and significantly increased shoot length (24.5-27.9%), root length (34.6-38.8%), shoot dry weight (56.1-97.1%), root dry weight (39.6-40.6%), total root length (47.0-57.8%), surface area (77.0-84.9%), root volume (106.5-109.8%), average diameter (16.4-19.7%), and root tips (46.8-61.1%); meanwhile, priming with AsA or Spd alleviated microscopic and ultrastructural damage from root cell, and improved root activity (183.8-192.0%). The mitigating effects of AsA or Spd priming on drought stress were primarily responsible for decreasing the accumulation of reactive oxygen species by increasing antioxidants activities and osmoprotectants contents, which reduced oxidative stress and osmotic cell potential and facilitated improved water and nutrients absorption in roots. Additionally, seed priming with AsA or Spd substantially improved auxin synthesis by upregulating of OsYUC7, OsYUC11 and, OsCOW1 expression. However, there were certain differences in the defense responses of plants and mechanisms of reducing the damage of drought stress after seed treatment with AsA or Spd. Under stress conditions, AsA had a greater impact on improving the fresh and dry weight of aboveground parts, while Spd affected the concentration of total sugar and total protein in plants. Likewise, the degree of oxidative damage was lowered, and POD and CAT activities were elevated due to Spd priming under water-deficient conditions.
Collapse
Affiliation(s)
- Kangkang Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Mohammad Nauman Khan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Tao Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Biaojin Zhang
- Institute of Quality Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| |
Collapse
|
4
|
Withers PJA, Rothwell SA, Ross KJ. Managing phosphorus input pressures for improving water quality at the catchment scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122792. [PMID: 39388820 DOI: 10.1016/j.jenvman.2024.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) pollution of freshwater is an endemic threat to water quality and aquatic biodiversity. To better define the contributions of the two main food system sectors (agriculture and wastewater) responsible for freshwater P pollution, we investigated how the magnitude and distribution of sector P input pressures calculated using Substance Flow Analysis (SFA) linked to the P pollution threat across four distinct physiographic regions of the River Stour catchment (1260 km2) in Dorset, England. Agricultural P input pressures (-1 to 7 kg ha-1 yr-1) were dependent on the amount of livestock feed imports and resulting manure loadings to land, whilst food imports and population densities were the main driver of the human net P inputs of up to 13 kg ha-1 yr-1. Total P input pressures (i.e. Net Anthropogenic P Inputs (NAPI)) were positively correlated (r2 0.8-0.9) to riverine P flux of up to 6 kg ha-1 yr-1 across the catchment. Using measured river P concentration (C) and flow discharge (Q) analysis to distinguish monitoring stations capturing mainly diffuse P sources (termed diffuse stations), estimated riverine P fluxes attributable to agriculture varied up to 0.92 kg ha-1 yr-1 depending on the surplus P inputs applied to land. A combination of enhanced wastewater P removal and reduced surplus agricultural P inputs was required to improve water quality. For example, the P pressure-river P flux relationship at diffuse stations suggested that in the catchment area dominated by livestock production, removing the agricultural P surplus of 7 kg ha-1 yr-1 would reduce annual average river SRP concentrations in this area by a third to 0.23 mg L-1, but still well above the target concentration for eutrophication control (0.08 mg L-1). Our approach of linking SFA outputs to measured river P data provides a potential complimentary and internationally relevant methodology to evidence effective sector mitigation targets and policies in catchments, and its further testing in other catchments is recommended.
Collapse
Affiliation(s)
- P J A Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - S A Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - K J Ross
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
5
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Mehrshahi P, Davey MP, Smith AG, Camargo-Valero MA, Baker A. Overexpression of PSR1 in Chlamydomonas reinhardtii induces luxury phosphorus uptake. FRONTIERS IN PLANT SCIENCE 2023; 14:1208168. [PMID: 37575910 PMCID: PMC10413257 DOI: 10.3389/fpls.2023.1208168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 08/15/2023]
Abstract
Remediation using micro-algae offers an attractive solution to environmental phosphate (PO4 3-) pollution. However, for maximum efficiency, pre-conditioning of algae to induce 'luxury phosphorus (P) uptake' is needed. To replicate this process, we targeted the global regulator PSR1 (Myb transcription factor: Phosphate Starvation Response 1) for over-expression in algae. Manipulating a single gene (PSR1) drove uptake of both PO4 3- and a Mg2+ counter-ion leading to increased PolyP granule size, raising P levels 4-fold to 8% dry cell weight, and accelerated removal of PO4 3- from the medium. Examination of the gene expression profile showed that the P-starvation response was mimicked under P-replete conditions, switching on luxury uptake. Hyper-accumulation of P depended on a feed-forward mechanism, where a small set of 'Class I' P-transporter genes were activated despite abundant external PO4 3- levels. The transporters drove a reduction in external PO4 3- levels, permitting more genes to be expressed (Class II), leading to more P-uptake. Our data pointed toward a PSR1-independent mechanism for detection of external PO4 3- which suppressed Class II genes. This model provided a plausible mechanism for P-overplus where prior P-starvation elevates PSR1 and on P-resupply causes luxury P-uptake. This is because the Class I genes, which include P-transporter genes, are not suppressed by the excess PO4 3-. Taken together, these discoveries facilitate a bio-circular approach of recycling nutrients from wastewater back to agriculture.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Matthew P. Davey
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Heyl K, Ekardt F, Roos P, Garske B. Achieving the nutrient reduction objective of the Farm to Fork Strategy. An assessment of CAP subsidies for precision fertilization and sustainable agricultural practices in Germany. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1088640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Farm to Fork Strategy of the EU aims at sustainable food systems. One objective of the Strategy is to reduce nutrient losses by at least 50% resulting in at least 20% less fertilizer use by 2030. To this end, Member States are expected to extend digital precision fertilization and sustainable agricultural practices through the Common Agricultural Policy. In this context, this article applies a qualitative governance analysis which aims to assess the extent to which the measures proposed by the Farm to Fork Strategy, i.e., digital precision fertilization and sustainable agricultural practices, contribute to the nutrient objective of the Farm to Fork Strategy. The article analyses how these measures are implemented through the Common Agricultural Policy in Germany and Saxony. Results show that the nutrient objective of the Farm to Fork Strategy itself offers shortcomings. Germany offers some, yet overall limited, support for sustainable agricultural practices and digital precision fertilization. Hence, the Common Agricultural Policy will to a limited extend only contribute to the objective of the Strategy. The results furthermore highlight some general shortcomings of digitalization as sustainability strategy in the agricultural sector including typical governance issues (rebound and enforcement problems), and point to the advantages of quantity-based policy instruments.
Collapse
|
7
|
Rothwell SA, Forber KJ, Dawson CJ, Salter JL, Dils RM, Webber H, Maguire J, Doody DG, Withers PJA. A new direction for tackling phosphorus inefficiency in the UK food system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115021. [PMID: 35483277 DOI: 10.1016/j.jenvman.2022.115021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The UK food system is reliant on imported phosphorus (P) to meet food production demand, though inefficient use and poor stewardship means P is currently accumulating in agricultural soils, wasted or lost with detrimental impacts on aquatic environments. This study presents the results of a detailed P Substance Flow Analysis for the UK food system in 2018, developed in collaboration with industry and government, with the key objective of highlighting priority areas for system interventions to improve the sustainability and resilience of P use in the UK food system. In 2018 the UK food system imported 174.6 Gg P, producing food and exportable commodities containing 74.3 Gg P, a P efficiency of only 43%. Three key system hotspots for P inefficiency were identified: Agricultural soil surplus and accumulation (89.2 Gg P), loss to aquatic environments (26.2 Gg P), and waste disposal to landfill and construction (21.8 Gg P). Greatest soil P accumulation occurred in grassland agriculture (85% of total accumulation), driven by loadings of livestock manures. Waste water treatment (12.5 Gg P) and agriculture (8.38 Gg P) account for most P lost to water, and incineration ashes from food system waste (20.3 Gg P) accounted for nearly all P lost to landfill and construction. New strategies and policy to improve the handling and recovery of P from manures, biosolids and food system waste are therefore necessary to improve system P efficiency and reduce P accumulation and losses, though critically, only if they effectively replace imported mineral P fertilisers.
Collapse
Affiliation(s)
- S A Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - K J Forber
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - J L Salter
- Agricultural Industries Confederation, Peterborough, UK
| | - R M Dils
- Environment Agency, Wallingford, UK
| | - H Webber
- Department for Environment, Food & Rural Affairs, London, UK
| | - J Maguire
- Department for Environment, Food & Rural Affairs, London, UK
| | - D G Doody
- Agri Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - P J A Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
8
|
Martin-Ortega J, Rothwell SA, Anderson A, Okumah M, Lyon C, Sherry E, Johnston C, Withers PJ, Doody DG. Are stakeholders ready to transform phosphorus use in food systems? A transdisciplinary study in a livestock intensive system. ENVIRONMENTAL SCIENCE & POLICY 2022; 131:177-187. [PMID: 35505912 PMCID: PMC8895547 DOI: 10.1016/j.envsci.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/18/2021] [Accepted: 01/18/2022] [Indexed: 05/13/2023]
Abstract
Food systems worldwide are vulnerable to Phosphorus (P) supply disruptions and price fluctuations. Current P use is also highly inefficient, generating large surpluses and pollution. Global food security and aquatic ecosystems are in jeopardy if transformative action is not taken. This paper pivots from earlier (predominantly conceptual) work to develop and analyse a P transdisciplinary scenario process, assessing stakeholders potential for transformative thinking in P use in the food system. Northern Ireland, a highly livestock-intensive system, was used as case study for illustrating such process. The stakeholder engagement takes a normative stance in that it sets the explicit premise that the food system needs to be transformed and asks stakeholders to engage in a dialogue on how that transformation can be achieved. A Substance Flow Analysis of P flows and stocks was employed to construct visions for alternative futures and stimulate stakeholder discussions on system responses. These were analysed for their transformative potential using a triple-loop social learning framework. For the most part, stakeholder responses remained transitional or incremental, rather than being fundamentally transformative. The process did unveil some deeper levers that could be acted upon to move the system further along the spectrum of transformational change (e.g. changes in food markets, creation of new P markets, destocking, new types of land production and radical land use changes), providing clues of what an aspirational system could look like. Replicated and adapted elsewhere, this process can serve as diagnostics of current stakeholders thinking and potential, as well as for the identification of those deeper levers, opening up avenues to work upon for global scale transformation.
Collapse
Affiliation(s)
- Julia Martin-Ortega
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Shane A. Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Aine Anderson
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG, United Kingdom
| | - Murat Okumah
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Christopher Lyon
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
- Department of Natural Resource Sciences, McGill University, Montréal, Canada
| | - Erin Sherry
- Sustainable Agri-food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Christopher Johnston
- Sustainable Agri-food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Paul J.A. Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Donnacha G. Doody
- Sustainable Agri-food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| |
Collapse
|
9
|
Galey B, Gautier M, Kim B, Blanc D, Chatain V, Ducom G, Dumont N, Gourdon R. Trace metal elements vaporization and phosphorus recovery during sewage sludge thermochemical treatment - A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127360. [PMID: 34638074 DOI: 10.1016/j.jhazmat.2021.127360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) plays essential roles in crops growth. Natural mineral sources of phosphate are non-renewable, overexploited and unevenly distributed worldwide, making P a strategic resource for agricultural systems. The search for sustainable ways to secure P supply for fertilizer production has therefore become a critical issue worldwide. Sewage sludge (SS) is an organic waste material considered as a key alternative source of P. Switzerland and the European Union are about to make it mandatory to recover P from SS or its treatment residues. Among the many technical options to achieve this objective, SS thermochemical treatments spiked with Cl-donors appear as a promising approach to recover P from SS and separate it from mineral pollutants such as trace metal elements (TME). The purpose of Cl-donor additives is to fix P within the mineral residues, possibly in bioavailable P species forms, while promoting TME vaporization by chlorination mechanisms. This review paper compares the various thermochemical treatments investigated worldwide over the past two decades. The influence of process conditions and Cl-donor nature is discussed. The presented results show that, except for nickel and chromium, most TME can be significantly vaporized during a high temperature treatment (over 900 °C) with Cl addition. In addition, the fixation rate and solubility of P is increased when a Cl-donor such as MgCl2 is added.
Collapse
Affiliation(s)
- B Galey
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - M Gautier
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France.
| | - B Kim
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - D Blanc
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - V Chatain
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - G Ducom
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - N Dumont
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - R Gourdon
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| |
Collapse
|
10
|
Effect of Consecutive Application of Phosphorus-Enriched Biochar with Different Levels of P on Growth Performance of Maize for Two Successive Growing Seasons. SUSTAINABILITY 2022. [DOI: 10.3390/su14041987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable management of phosphorus (P) is one of the burning issues in agriculture because the reported P losses, when applied in the form of mineral fertilizer, give rise to another issue of water pollution as P is considered one of the limiting nutrients for eutrophication and so results in costly water treatments. In the present study, the enrichment of biochar with mineral P fertilizer was supposed to reduce such losses from the soil. Additionally, P can also be recycled through this technique at the same time as biochar is derived from biomass. Biochar was prepared using wheat straw followed by its enrichment with di-ammonium phosphate (DAP) at the ratio of 1:1 on a w/w basis. The first pot trial for spring maize (cv. Neelam) was conducted using phosphorus-enriched biochar (PEB) at 0% and 1% with different levels of recommended P (0%, 25%, 50%, and 100%). The treatments were arranged factorially under a complete randomized design (CRD) with three replications. After harvesting the spring maize, pots were kept undisturbed, and a second pot trial was conducted for autumn maize in the same pots to assess the residual impact of 1% PEB. In the second pot trial, only inorganic P was applied to respective treatments because the pots contained 1% PEB supplied to spring maize. The results revealed that the application of 1% PEB at P level 50% significantly increased all the recorded plant traits (growth, yield, and physiological and chemical parameters) and some selected properties of post-harvest soil (available P, organic matter, and EC) but not soil pH. In terms of yield, 1% PEB at 50% P significantly increased both the number of grains and 100-grain weight by around 30% and 21% in spring and autumn maize, respectively, as compared to 100% P without PEB. It is therefore recommended that P-enriched biochar should be used to reduce the inorganic P fertilizer inputs; however, its application under field conditions should be assessed in future research.
Collapse
|
11
|
Harder R, Mullinix K, Smukler S. Assessing the Circularity of Nutrient Flows Across Nested Scales for Four Food System Scenarios in the Okanagan Bioregion, BC Canada. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.661870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In light of continued nutrient pollution in water bodies and anticipated insecurities related to future nutrient supplies, there is an increasing awareness of the need to use nutrients in a more circular way. As part of a food system design study in the Okanagan bioregion, BC Canada we set out to evaluate different food system scenarios for the year 2050 in terms of nutrient circularity. In doing so, the objective was to evaluate the circularity of nutrient flows not only in the Okanagan, but also in relation to exogenous regions, insofar as nutrient flows relate to feed and food consumption and production in the Okanagan. This is important because feed and food trade means that nutrient inputs to crop production in the Okanagan may make their way into organic residuals outside the Okanagan, and vice versa. If not accounted for, this may lead to a distorted picture when analyzing nutrient circularity. To this effect, we applied an analytical framework and calculation model that explicitly tracks nutrients from crop production to organic residual generation. The results of the study suggest that assessing nutrient circularity across nested scales was critical for two reasons. First, changes in overall nutrient flows in response to population increase and dietary change were found to be more pronounced outside the Okanagan. Second, our analysis clearly revealed the extent to which feed and food trade boost nutrient self-reliance in the Okanagan at the expense of nutrient self-reliance outside the Okanagan. This kind of analysis should therefore be useful to explore, ideally together with food system and organic residual management actors, how different food system and organic residual management scenarios perform in terms of nutrient circularity, in the geographical area being considered, but also how it impacts nutrient flows and circularity in the places with which feed and food are traded.
Collapse
|
12
|
Tasmeea T, Roy BB, Chowdhury RB, Hossain MM, Sujauddin M. Urban metabolism of phosphorus in the food production-consumption system of Bangladesh. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112715. [PMID: 33992870 DOI: 10.1016/j.jenvman.2021.112715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic disruption of the global phosphorus (P) cycle has already pushed it beyond the planetary boundary. Understanding P metabolism at global, regional and local scales is critical to close the loop of P for the safekeeping of mankind. Investigating the effects of urbanization-induced income growth on the natural nutrient (especially P) cycles contribute to that end. Bangladesh, a lower-middle-income agrarian economy seeing rapid urbanization and stunning GDP growth, presents itself as a good case for P-metabolism research. Past efforts to quantify P flows in the country have not addressed the effects of urbanization thereon. This time-series study quantifies the P flows in rural and urban Bangladesh using substance flow analysis after outlining the urbanization indicators (viz. GDP, income per capita, percentage of income spent on food, change in urban population and built-up area) which affects urban metabolism of P. Urbanization caused a dietary transition from cereal-based to animal-based diet resulting in 50% more P consumption from the latter by urban individuals than their rural counterparts in 2010. Comparing the P flows among the 19 expenditure groups of the urban population, an individual belonging to a higher expenditure group (USD 71-82) consumed 38% more P than one of the lower groups (USD 17-21) in 2016. Future forecasting was conducted for (i) future demand of P fertilizer using human appropriation of net primary productivity (HANPP) and (ii) P recovery potential from urban household food waste for the policymakers to get a glimpse of the future demand and recovery potential of P. The projections suggested approximately 145% rise in the national P inflow by 2030. Moreover, the universal adoption of source separation of household food waste in the two largest cities of Bangladesh can cycle back almost 1.2 × 103 tonnes of P to the system by 2030. As Bangladesh poises to faster economic growth in decades ahead, the study provides a basis for policy formulation for an appropriate P management plan to achieve circularity in nutrient use.
Collapse
Affiliation(s)
- Tahana Tasmeea
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Bidhan Bhuson Roy
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh; Department of Wood Science, Faculty of Forestry, The University of British Columbia, Canada
| | | | - Mohammad Mosharraf Hossain
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Mohammad Sujauddin
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
13
|
Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agri-food systems (AFS) have been central in the debate on sustainable development. Despite this growing interest in AFS, comprehensive analyses of the scholarly literature are hard to find. Therefore, the present systematic review delineated the contours of this growing research strand and analyzed how it relates to sustainability. A search performed on the Web of Science in January 2020 yielded 1389 documents, and 1289 were selected and underwent bibliometric and topical analyses. The topical analysis was informed by the SAFA (Sustainability Assessment of Food and Agriculture systems) approach of FAO and structured along four dimensions viz. environment, economy, society and culture, and policy and governance. The review shows an increasing interest in AFS with an exponential increase in publications number. However, the study field is north-biased and dominated by researchers and organizations from developed countries. Moreover, the analysis suggests that while environmental aspects are sufficiently addressed, social, economic, and political ones are generally overlooked. The paper ends by providing directions for future research and listing some topics to be integrated into a comprehensive, multidisciplinary agenda addressing the multifaceted (un)sustainability of AFS. It makes the case for adopting a holistic, 4-P (planet, people, profit, policy) approach in agri-food system studies.
Collapse
|
14
|
Weiß TM, Leiser WL, Reineke AJ, Li D, Liu W, Hahn V, Würschum T. Optimizing the P balance: How do modern maize hybrids react to different starter fertilizers? PLoS One 2021; 16:e0250496. [PMID: 33886688 PMCID: PMC8062099 DOI: 10.1371/journal.pone.0250496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphorus (P) is an essential macronutrient for plants, but also a limited resource worldwide. Strict regulations for fertilizer applications in the European Union are a consequence of the negative environmental effects in case of improper use. Maize is typically grown with the application of P starter fertilizer, which, however, might be reduced or even omitted if suitable varieties were available. This study was performed with the 20 commercially most important maize hybrids in Germany evaluated in multi-location field trials with the aim to investigate the potential to breed for high-performing maize hybrids under reduced P starter fertilizer. At the core location, three starter fertilizers with either phosphate (triple superphosphate, TSP), ammonium nitrate (calcium ammonium nitrate, CAN), or a combination of ammonium and phosphate (diammonium phosphate, DAP) were evaluated relative to a control and traits from youth development to grain yield were assessed. Significant differences were mainly observed for the DAP starter fertilizer, which was also reflected in a yield increase of on average +0.67 t/ha (+5.34%) compared to the control. Correlations among the investigated traits varied with starter fertilizer, but the general trends remained. As expected, grain yield was negatively correlated with grain P concentration, likely due to a dilution effect. Importantly, the genotype-by-starter fertilizer interaction was always non-significant in the multi-location analysis. This indicates that best performing genotypes can be identified irrespective of the starter fertilizer. Taken together, our results provide valuable insights regarding the potential to reduce starter fertilizers in maize cultivation as well as for breeding maize for P efficiency under well-supplied conditions.
Collapse
Affiliation(s)
- Thea Mi Weiß
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Alice-J. Reineke
- Institute of Agricultural Engineering in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany
| | - Dongdong Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P.R. China
| | - Wenxin Liu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P.R. China
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
15
|
Ding Y, Sabatini DA, Butler EC. Phosphorus recovery and recycling from model animal wastewaters using materials prepared from rice straw and corn cobs. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1893-1906. [PMID: 33905360 DOI: 10.2166/wst.2021.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthropogenic loss of phosphorus to surface waters not only causes environmental problems but depletes valuable phosphorus reserves. In this study, magnesium amended biochars and magnesium silicate, synthesized from corn cobs and rice straw, respectively, were evaluated for phosphorus uptake including the effects of pH and alkalinity. The overall goal was to close the phosphorus loop by recovering phosphorus from animal waste and reusing it as fertilizer. After phosphorus uptake, spent materials were tested for phosphorus release using modified soil tests representing different soil pH and alkalinity conditions. In experiments using model animal wastewaters containing both ammonia and bicarbonate alkalinity, dissolved phosphorus was removed by struvite (MgNH4PO4·6H2O) formation, whereas in deionized water, dissolved phosphorus was removed by adsorption. Alkalinity in the model animal wastewaters competed with phosphate for dissolved or solid-associated magnesium, thereby reducing phosphorus uptake. Spent materials released significant phosphorus in waters with bicarbonate alkalinity. This work shows that abundant agricultural wastes can be used to synthesize solids for phosphorus uptake, with the spent materials having potential application as fertilizers.
Collapse
Affiliation(s)
- Yifan Ding
- School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK, 73019-1024, USA E-mail:
| | - David A Sabatini
- School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK, 73019-1024, USA E-mail:
| | - Elizabeth C Butler
- School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK, 73019-1024, USA E-mail:
| |
Collapse
|
16
|
Baldovi AA, de Barros Aguiar AR, Benassi RF, Vymazal J, de Jesus TA. Phosphorus removal in a pilot scale free water surface constructed wetland: hydraulic retention time, seasonality and standing stock evaluation. CHEMOSPHERE 2021; 266:128939. [PMID: 33248733 DOI: 10.1016/j.chemosphere.2020.128939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) are decentralized wastewater treatment systems considered to be green and low cost. They have the potential to effectively remove pollutants and recycle nutrients with plant composting. However, they need large areas to implement them due to the usual high Hydraulic Retention Times (HRT), reaching up to 50 days. The main objective of the present study was to evaluate the influence of HRT (HRT = 3, 7, and 10 days), and seasonality on Total Phosphorus (TP) removal, and standing stock in a pilot scale free water surface CW (FWS CW). Unplanted and planted (Eichhornia crassipes) tanks were evaluated in wet and dry seasons. The FWS CW was set up as a complementary treatment to a secondary level wastewater treatment plant. The system was monitored weekly for ten months, totalizing 29 replicate samplings (n = 58). Planted tanks were harvested every week to keep free space for plant reproduction (∼40%). The mean removal efficiency of TP ranged between 82% and 95% without a significant difference between HRT (pvalue > 0.05). However, when the effects of the sedimentation of the unplanted tanks were disregarded, the lowest HRT (3 days) tank presented the highest standing stock of TP. The wet season presented a significant difference in TP removal results (pvalue < 0.05), associated with higher macrophyte growth rate due to more intense solar irradiation and incorporation of TP by E. crassipes. The results point out advances in P removal and recycling by a low-cost ecological engineering system.
Collapse
Affiliation(s)
- Aldrew Alencar Baldovi
- Post-graduation Program in Environmental Science and Technology, Federal University of ABC, CTA/UFABC, Av. dos Estados, 5001 - Bangú, Santo André, SP, 09210-580, Brazil.
| | - André Ribeiro de Barros Aguiar
- Post-graduation Program in Space Science and Technology, Technological Institute of Aeronautics, DCTA/ITA, Praça Marechal Eduardo Gomes, 50 - Vila das Acacias, São José dos Campos, SP, 12228-900, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001 - Bangú, Santo André, SP, 09210-580, Brazil.
| | - Jan Vymazal
- Head (Applied Ecology), Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Tatiane Araujo de Jesus
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001 - Bangú, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
17
|
Ganta PB, Kühn O, Ahmed AA. Ab Initio Molecular Dynamics Simulations of the Interaction between Organic Phosphates and Goethite. Molecules 2020; 26:E160. [PMID: 33396506 PMCID: PMC7795625 DOI: 10.3390/molecules26010160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Today's fertilizers rely heavily on mining phosphorus (P) rocks. These rocks are known to become exhausted in near future, and therefore effective P use is crucial to avoid food shortage. A substantial amount of P from fertilizers gets adsorbed onto soil minerals to become unavailable to plants. Understanding P interaction with these minerals would help efforts that improve P efficiency. To this end, we performed a molecular level analysis of the interaction of common organic P compounds (glycerolphosphate (GP) and inositol hexaphosphate (IHP)) with the abundant soil mineral (goethite) in presence of water. Molecular dynamics simulations are performed for goethite-IHP/GP-water complexes using the multiscale quantum mechanics/molecular mechanics method. Results show that GP forms monodentate (M) and bidentate mononuclear (B) motifs with B being more stable than M. IHP interacts through multiple phosphate groups with the 3M motif being most stable. The order of goethite-IHP/GP interaction energies is GP M < GP B < IHP M < IHP 3M. Water is important in these interactions as multiple proton transfers occur and hydrogen bonds are formed between goethite-IHP/GP complexes and water. We also present theoretically calculated infrared spectra which match reasonably well with frequencies reported in literature.
Collapse
Affiliation(s)
- Prasanth B. Ganta
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany; (P.B.G.); (O.K.)
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany; (P.B.G.); (O.K.)
- Department of Life, Light, and Matter (LLM), University of Rostock, Albert-Einstein-Str. 25, D-18059 Rostock, Germany
| | - Ashour A. Ahmed
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany; (P.B.G.); (O.K.)
- Department of Life, Light, and Matter (LLM), University of Rostock, Albert-Einstein-Str. 25, D-18059 Rostock, Germany
| |
Collapse
|
18
|
Rothwell S, Doody D, Johnston C, Forber K, Cencic O, Rechberger H, Withers P. Phosphorus stocks and flows in an intensive livestock dominated food system. RESOURCES, CONSERVATION, AND RECYCLING 2020; 163:105065. [PMID: 33273754 PMCID: PMC7534034 DOI: 10.1016/j.resconrec.2020.105065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023]
Abstract
Current use and management of phosphorus (P) in our food systems is considered unsustainable and considerable improvements in the efficiency of P use are required to mitigate the environmental impact of poor P stewardship. The inherent low P use efficiency of food production from animals means food systems dominated by livestock agriculture can pose unique challenges for improving P management. This paper presents the results of a substance flow analysis for P in the Northern Ireland (NI) food system for the year 2017 as a case study for examining P stewardship in a livestock dominated agricultural system. Imported livestock feed was by far the largest flow of P into the NI food system in 2017 (11,700 t ± 1300 t) and P from livestock excreta the largest internal flow of P (20,400 ± 1900t). The P contained in livestock slurries and manures alone that were returned to agricultural land exceeded total crop and grass P requirement by 20% and were the largest contributor to an annual excess soil P accumulation of 8.5 ± 1.4 kg ha-1. This current livestock driven P surplus also limits the opportunities for P circularity and reuse from other sectors within the food system, e.g. wastewater biosolids and products from food processing waste. Management of livestock P demand (livestock numbers, feed P content) or technological advancements that facilitate the processing and subsequent export of slurries and manures are therefore needed.
Collapse
Affiliation(s)
- S.A. Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - D.G. Doody
- Agri Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - C. Johnston
- Agri Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - K.J. Forber
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - O. Cencic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - H. Rechberger
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - P.J.A. Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
19
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A. Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. FRONTIERS IN PLANT SCIENCE 2020; 11:982. [PMID: 32695134 PMCID: PMC7339613 DOI: 10.3389/fpls.2020.00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Phosphorus (P), in the form of phosphate derived from either inorganic (Pi) or organic (Po) forms is an essential macronutrient for all life. P undergoes a biogeochemical cycle within the environment, but anthropogenic redistribution through inefficient agricultural practice and inadequate nutrient recovery at wastewater treatment works have resulted in a sustained transfer of P from rock deposits to land and aquatic environments. Our present and near future supply of P is primarily mined from rock P reserves in a limited number of geographical regions. To help ensure that this resource is adequate for humanity's food security, an energy-efficient means of recovering P from waste and recycling it for agriculture is required. This will also help to address excess discharge to water bodies and the resulting eutrophication. Microalgae possess the advantage of polymeric inorganic polyphosphate (PolyP) storage which can potentially operate simultaneously with remediation of waste nitrogen and phosphorus streams and flue gases (CO2, SOx, and NOx). Having high productivity in photoautotrophic, mixotrophic or heterotrophic growth modes, they can be harnessed in wastewater remediation strategies for biofuel production either directly (biodiesel) or in conjunction with anaerobic digestion (biogas) or dark fermentation (biohydrogen). Regulation of algal P uptake, storage, and mobilization is intertwined with the cellular status of other macronutrients (e.g., nitrogen and sulphur) in addition to the manufacture of other storage products (e.g., carbohydrate and lipids) or macromolecules (e.g., cell wall). A greater understanding of controlling factors in this complex interaction is required to facilitate and improve P control, recovery, and reuse from waste streams. The best understood algal genetic model is Chlamydomonas reinhardtii in terms of utility and shared resources. It also displays mixotrophic growth and advantageously, species of this genus are often found growing in wastewater treatment plants. In this review, we focus primarily on the molecular and genetic aspects of PolyP production or turnover and place this knowledge in the context of wastewater remediation and highlight developments and challenges in this field.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Wood
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Centre for Doctoral Training in Bioenergy, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Lyon C, Cordell D, Jacobs B, Martin-Ortega J, Marshall R, Camargo-Valero MA, Sherry E. Five pillars for stakeholder analyses in sustainability transformations: The global case of phosphorus. ENVIRONMENTAL SCIENCE & POLICY 2020; 107:80-89. [PMID: 32362787 PMCID: PMC7171702 DOI: 10.1016/j.envsci.2020.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 05/26/2023]
Abstract
Phosphorus is a critical agricultural nutrient and a major pollutant in waterbodies due to inefficient use. In the form of rock phosphate it is a finite global commodity vulnerable to price shocks and sourcing challenges. Transforming toward sustainable phosphorus management involves local to global stakeholders. Conventional readings of stakeholders may not reflect system complexity leaving it difficult to see stakeholder roles in transformations. We attempt to remedy this issue with a novel stakeholder analysis method based on five qualitative pillars: stakeholder agency, system roles, power and influence, alignment to the problem, and transformational potential. We argue that our approach suits case studies of individual stakeholders, stakeholder groups, and organisations with relationships to sustainability challenges.
Collapse
Affiliation(s)
- Christopher Lyon
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT UK
| | - Dana Cordell
- Institute for Sustainable Futures, University of Technology Sydney, Broadway NSW, 2007, Australia
| | - Brent Jacobs
- Institute for Sustainable Futures, University of Technology Sydney, Broadway NSW, 2007, Australia
| | - Julia Martin-Ortega
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT UK
| | - Rachel Marshall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | | | - Erin Sherry
- Agri-Food and Biosciences Institute, Belfast, BT9 5PQ, UK
| |
Collapse
|