1
|
Kanner AM. Major depression, anxiety disorder and suicidality in epilepsy: What should neurologists do? Epilepsy Behav Rep 2025; 30:100758. [PMID: 40162063 PMCID: PMC11950782 DOI: 10.1016/j.ebr.2025.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Four to five patients with epilepsy (PWE) can suffer from Major Depressive episodes (MDE). Comorbid anxiety disorders (AD) frequently occur together with MDE. Failure to treat MDE can negatively affect several aspects of their life as well as the management of the epilepsy. Often, suicidal ideation is among its symptoms, which need to be addressed without delay to prevent suicidal attempts or a completed suicide. Unfortunately, access to health care professionals is very limited and, in many communities, non-existent. Accordingly, it falls upon the treating neurologist to begin a pharmacologic trial with psychotropic drugs. The purpose of this manuscript is to provide neurologists with very useful strategies on how to screen and identify MDEs with and without AD in the outpatient clinic and how to select the appropiate psychotropic drugs. Using an illustrative case, we discuss its differential diagnosis, particularly the recognition of iatrogenic episodes, and demonstrate the selection and mode of use of commonly used antidepressant in PWE. Finally, we provide a guide on how the neurologist can assess the suicidal risk of a patient that endorses suicidal ideation and the steps that need to be taken to minimize the risk of suicidal behavior.
Collapse
Affiliation(s)
- Andres M. Kanner
- Epilepsy Division and Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW, 14th Street, Room 1324, Miami, FL 33136, USA
| |
Collapse
|
2
|
Hagemann A, Kuramochi I, Bien CG, Brandt C. Screening for depression, anxiety, and suicidality in outpatients of a tertiary epilepsy center: How frequent are increased scores and what is recommended? Epilepsy Behav 2025; 164:110289. [PMID: 39893701 DOI: 10.1016/j.yebeh.2025.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Psychiatric comorbidities are frequent in people with epilepsy (PWE) or psychogenic nonepileptic seizures (PNES), and the use of validated screening instruments to identify respective symptoms is recommended. Our aim was to investigate the recommendations resulting from routine screening for depression, anxiety and suicidality with the Neurological Disorders Depression Inventory for Epilepsy (NDDI-E) and the Generalized Anxiety Disorder Scale (GAD-7) in the outpatient clinic of a tertiary epilepsy center. METHODS We retrospectively analyzed NDDI-E and GAD-7 scores (German versions) of 264 outpatients at a tertiary epilepsy center and extracted recommendations regarding psychopathology from the outpatient letters. RESULTS The screening revealed a likely major depression (NDDI-E ≥17) in 15.2% of PWE (without PNES, 30/197) and an NDDI-E score ≥17 in 51.2% of patients with PNES ± epilepsy (21/41), moderate to severe symptoms of generalized anxiety (GAD-7 ≥10) in 20.3% of PWE (40/197) and 56.1% of patients with PNES (23/41), and a high risk of suicidality (NDDI-E item 4 ≥3) in 8.1% of PWE (16/197) and in 24.4% of patients with PNES (10/41). The most frequently given recommendations regarding depression or anxiety were a psychiatric/psychotherapeutic treatment for PWE and an admission to the psychotherapy ward of the epilepsy center for patients with PNES. No evidence for active suicidal tendencies was found in any of the patients with a positive screening for suicidality. CONCLUSION Routine screening with NDDI-E and GAD-7 for depression, anxiety and suicidality is efficient and feasible and leads to individual recommendations for further assessment and treatment.
Collapse
Affiliation(s)
- Anne Hagemann
- Society for Epilepsy Research, Maraweg 21, 33617 Bielefeld, Germany.
| | - Izumi Kuramochi
- Department of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Maraweg 21, 33617 Bielefeld, Germany.
| | - Christian G Bien
- Society for Epilepsy Research, Maraweg 21, 33617 Bielefeld, Germany; Department of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Maraweg 21, 33617 Bielefeld, Germany.
| | - Christian Brandt
- Society for Epilepsy Research, Maraweg 21, 33617 Bielefeld, Germany; Department of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Maraweg 21, 33617 Bielefeld, Germany.
| |
Collapse
|
3
|
Alonso C, García-Culebras A, Satta V, Hernández-Fisac I, Sierra Á, Guimaré JA, Lizasoain I, Fernández-Ruiz J, Sagredo O. Investigation in blood-brain barrier integrity and susceptibility to immune cell penetration in a mouse model of Dravet syndrome. Brain Behav Immun Health 2025; 44:100955. [PMID: 40028233 PMCID: PMC11869101 DOI: 10.1016/j.bbih.2025.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Dravet Syndrome (DS) is a pediatric encephalopathy caused by mutations in Scn1a gene encoding the α1 subunit of the NaV1.1 voltage-gated sodium channel, which lead to early febrile seizures that progress to severe tonic-clonic seizures and several long-term behavioural comorbidities. In the present study, we have investigated whether a possible early deterioration in the blood-brain barrier (BBB) may facilitate the infiltration of immune cells to the brain parenchyma, which may contribute to these pathogenic events. In this study, conditional knock-in Scn1a-A1783V mice and their controls were used at the postnatal day (PND25): (i) to compare their levels of several immune cell populations in the bone marrow and blood; and (ii) to analyze several BBB proteins, as well as the occurrence of immune cell infiltration and endogenous immunoglobulin G (IgG) extravasation into the brain parenchyma. Our data revealed an elevation in the number of neutrophils in the blood of DS mice, but not of B- and T-cells, despite the levels of these immune cells were significantly reduced in the bone marrow. The elevated number of blood neutrophils did not apparently originate their infiltration into the hippocampus of DS mice as an immunofluorescence analysis indicated, and the same happened in B- and T-cells. However, the levels of endogenous IgG in this brain structure were significantly elevated in DS mice compared to controls, directly indicating the occurrence of extravasation into the brain parenchyma and indirectly that the BBB in DS mice may be relatively affected, a fact confirmed by the reduction in the levels of BBB-related proteins such as ZO-1 in these mice. In conclusion, our results support the occurrence of certain degree of deterioration in the BBB in DS, which may facilitate the infiltration of immune cells to the brain, then contributing to the pathogenesis in this disease.
Collapse
Affiliation(s)
- Cristina Alonso
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alicia García-Culebras
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Unidad de Investigación Neurovascular and Instituto Universitario de Investigación en Neuroquímica, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Álvaro Sierra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José A. Guimaré
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular and Instituto Universitario de Investigación en Neuroquímica, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
4
|
Ayoub D, Al-Hajje A, Salameh P, Jost J, Hmaimess G, Jaafar F, Halabi T, Boumediene F, Beydoun A. Beyond Seizures: Psychiatric comorbidities in children with epilepsy. Epilepsy Behav 2025; 163:110234. [PMID: 39740255 DOI: 10.1016/j.yebeh.2024.110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
PURPOSE Children with epilepsy are at an increased risk of developing psychiatric comorbidities, which exacerbate the overall disease burden. However, these disorders are often underreported in developing countries. This study, conducted in a developing country, aims to evaluate the frequency of psychiatric disorders and associated factors in a large cohort of children with epilepsy. METHODS This study is part of a large, ongoing prospective study on a cohort of children with epilepsy in Lebanon. Children were recruited at the onset of their seizures between March 2010 and May 2016 and were followed for periods ranging from 2 to 12 years. The medical records of 598 children with new-onset seizures were analyzed throughout their follow-up period to identify the presence of any psychiatric disorders. Psychiatric disorders were classified as internalizing or externalizing disorders based on DSM-5 criteria and were considered present if the child had been referred and diagnosed by a pediatric psychiatrist, therapist, or neurologist, or if the medical record provided clear evidence of the child taking medication for a psychiatric disorder. Multivariable logistic regression was used to identify factors associated with psychiatric disorders. RESULTS Of the 598 children with new onset seizures, 75 (12.5 %) were diagnosed with a psychiatric disorder, with 30 (5.0 %) having an internalizing disorder and 47 (7.9 %) having an externalizing disorder. Externalizing psychiatric disorders were most commonly reported children with developmental epileptic encephalopathies (18.2 %) compared to other epilepsy groups. Intellectual and developmental delay was the most important factor associated with externalizing disorders (OR 3.36, 95 %CI 1.48-7.62, p = 0.004). In contrast, the frequency of internalizing disorders didn't differ across epilepsy groups. The most significant factors associated with the occurrence of internalizing psychiatric comorbidity were the failure of at least two antiseizure medications (OR 3.25, 95 % CI 1.37-7.71, p = 0.007) and an older age at seizure onset (> 10 years vs. < 2 years, OR 6.86, 95 % CI 1.49-31.57, p = 0.013). CONCLUSION The prevalence of diagnosed psychiatric comorbidities in children with epilepsy in this study was lower than previously reported in developed countries. This may indicate potential underreporting of psychiatric disorders in Lebanon, where local practices may prioritize epilepsy management over mental health. This study highlights the need for systematic psychiatric screening during routine clinic visits, particularly for children with intellectual or developmental delays and those with poor seizure control.
Collapse
Affiliation(s)
- Dana Ayoub
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France; Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Beirut, Lebanon; School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Amal Al-Hajje
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Beirut, Lebanon; INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon
| | - Pascale Salameh
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Beirut, Lebanon; Department of Primary Care and Population Health, University of Nicosia Medical School, 2417, Nicosia, Cyprus; School of Medicine, Lebanese American University, Lebanon
| | - Jeremy Jost
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Ghassan Hmaimess
- Department of Pediatrics, St George Hospital Medical University Center, St George University of Beirut, Beirut, Lebanon
| | - Fatima Jaafar
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Halabi
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Farid Boumediene
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
5
|
Mukhtar I. Unravelling the critical role of neuroinflammation in epilepsy-associated neuropsychiatric comorbidities: A review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111135. [PMID: 39237022 DOI: 10.1016/j.pnpbp.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Epilepsy is a complex neurological disorder characterized not only by seizures but also by significant neuropsychiatric comorbidities, affecting approximately one-third of those diagnosed. This review explores the intricate relationship between epilepsy and its associated psychiatric and cognitive disturbances, with a focus on the role of inflammation. Recent definitions of epilepsy emphasize its multifaceted nature, linking it to neurobiological, psychiatric, cognitive, and social deficits. Inflammation has emerged as a critical factor influencing both seizure activity and neuropsychiatric outcomes in epilepsy patients. This paper critically examines how dysregulated inflammatory pathways disrupt neurotransmitter transmission and contribute to depression, mood disorders, and anxiety prevalent among individuals with epilepsy. It also evaluates current therapeutic approaches and underscores the potential of anti-inflammatory therapies in managing epilepsy and related neuropsychiatric conditions. Additionally, the review highlights the importance of the anti-inflammatory effects of anti-seizure medications, antidepressants, and antipsychotics and their therapeutic implications for mood disorders. Also, the role of ketogenic diet in managing epilepsy and its psychiatric comorbidities is briefly presented. Furthermore, it briefly discusses the role of the gut-brain axis in maintaining neurological health and how its dysregulation is associated with epilepsy. The review concludes that inflammation plays a pivotal role in linking epilepsy with its neuropsychiatric comorbidities, suggesting that targeted anti-inflammatory interventions may offer promising therapeutic strategies. Future research should focus on longitudinal studies comparing outcomes between epileptic patients with and without neuropsychiatric comorbidities, the development of diagnostic tools, and the exploration of novel anti-inflammatory treatments to better manage these complex interactions.
Collapse
Affiliation(s)
- Iqra Mukhtar
- Faculty of Pharmacy, Iqra University, Karachi, Pakistan.
| |
Collapse
|
6
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Palumbo L, Carinci M, Guarino A, Asth L, Zucchini S, Missiroli S, Rimessi A, Pinton P, Giorgi C. The NLRP3 Inflammasome in Neurodegenerative Disorders: Insights from Epileptic Models. Biomedicines 2023; 11:2825. [PMID: 37893198 PMCID: PMC10604217 DOI: 10.3390/biomedicines11102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation represents a dynamic process of defense and protection against the harmful action of infectious agents or other detrimental stimuli in the central nervous system (CNS). However, the uncontrolled regulation of this physiological process is strongly associated with serious dysfunctional neuronal issues linked to the progression of CNS disorders. Moreover, it has been widely demonstrated that neuroinflammation is linked to epilepsy, one of the most prevalent and serious brain disorders worldwide. Indeed, NLRP3, one of the most well-studied inflammasomes, is involved in the generation of epileptic seizures, events that characterize this pathological condition. In this context, several pieces of evidence have shown that the NLRP3 inflammasome plays a central role in the pathophysiology of mesial temporal lobe epilepsy (mTLE). Based on an extensive review of the literature on the role of NLRP3-dependent inflammation in epilepsy, in this review we discuss our current understanding of the connection between NLRP3 inflammasome activation and progressive neurodegeneration in epilepsy. The goal of the review is to cover as many of the various known epilepsy models as possible, providing a broad overview of the current literature. Lastly, we also propose some of the present therapeutic strategies targeting NLRP3, aiming to provide potential insights for future studies.
Collapse
Affiliation(s)
- Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Kessing LV, Ziersen SC, Gerds T, Budtz-Jørgensen E. Response to lithium and anticonvulsants among patients with bipolar disorder with and without comorbid epilepsy - A nation-wide population-based longitudinal study. J Affect Disord 2022; 308:369-374. [PMID: 35460731 DOI: 10.1016/j.jad.2022.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In a nation-wide population-based longitudinal register linkage study for the first time 1) to investigate long-term response to lithium in patients with bipolar disorder with and without comorbid epilepsy, and 2) within patients with bipolar disorder and comorbid epilepsy to compare differences in responses between lithium, valproate and lamotrigine. METHODS We used Danish nation-wide population-based longitudinal register linkage to identify 154 patients with bipolar disorder and comorbid epilepsy and 8381 patients with bipolar disorder without comorbid epilepsy during a study period from 1995 to 2017. Response was defined as continuous monotherapy with lithium, valproate or lamotrigine without switch to or add-on of an antipsychotic drug or an antidepressant or hospitalization during an up to ten-year follow-up period. We calculated standardized absolute risks and differences thereof with respect to age, gender, socioeconomic status and comorbidity with other physical disorders than epilepsy. RESULTS Response to lithium was decreased in patients with bipolar disorder with versus without comorbid epilepsy during the ten-year follow-up period and the difference remained after standardization for comorbidity with other physical disorders than epilepsy. Within patients with bipolar disorder and comorbid epilepsy, response to lithium was decreased compared with responses to valproate and lamotrigine. CONCLUSIONS The findings suggest that valproate and lamotrigine should be given priority in patients with comorbid bipolar disorder and epilepsy. The study highlights the need for closely clinical monitoring and psychological support for patients with bipolar disorder and comorbid epilepsy and emphasize the need for further long-term studies of effect of interventions.
Collapse
Affiliation(s)
- Lars Vedel Kessing
- Copenhagen Affective disorder Research Center (CADIC), Psychiatric Center Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Simon Christoffer Ziersen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Gerds
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Rainer L, Granbichler C, Kobulashvili T, Kuchukhidze G, Rauscher C, Renz N, Langthaler P, Braun M, Linehan C, Christensen J, Siebert U, Trinka E. Prevalence of Comorbidities, and Affective Disorders in Epilepsy: A Latent Class Analysis Approach. Epilepsy Res 2022; 182:106917. [DOI: 10.1016/j.eplepsyres.2022.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/27/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
|
11
|
Lopez MR, Kanner AM. Neuropsychiatric Treatments for Epilepsy: Nonpharmacological Approaches. Semin Neurol 2022; 42:182-191. [PMID: 35213901 DOI: 10.1055/s-0042-1742582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuropsychiatric conditions are frequently found in patients with epilepsy (PWE). These entities can be as disabling as epilepsy resulting in a significant negative impact on the quality of life of this population if not addressed and treated appropriately. In this article, we provide an overview of non-pharmacological treatments currently available to these patients-and review their effect on mood and anxiety disorders as well as epilepsy. These treatment strategies will allow the practitioner to optimize clinical care during the initial evaluation, which begins with the recognition of the neuropsychiatric condition followed by the appropriate individualized psychotherapeutic approach and/or neuromodulation therapy. To plan a comprehensive treatment for PWE, practitioners must be familiar with these therapeutic tools. Additional clinical research is needed to further create a multidisciplinary team in the assessment and management of neuropsychiatric disorders in PWE.
Collapse
Affiliation(s)
- Maria Raquel Lopez
- Division of Epilepsy and Comprehensive Epilepsy Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida.,Department of Neurology. Division of Epilepsy, Epilepsy Center of Excellence, Miami VA Medical Center, Miami, Florida
| | - Andres M Kanner
- Division of Epilepsy and Comprehensive Epilepsy Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
12
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
13
|
Kessing LV, Ziersen SC, Budtz-Jørgensen E, Gerds T. Response to antidepressants among patients with unipolar depression with and without comorbid epilepsy-a nation-wide population-based longitudinal study. J Affect Disord 2022; 299:1-5. [PMID: 34822917 DOI: 10.1016/j.jad.2021.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVE In a nation-wide population-based longitudinal register linkage study to investigate long-term response to antidepressants in patients with depression with and without comorbid epilepsy. METHODS We used Danish nation-wide population-based longitudinal register linkage to identify 1487 patients with depression and comorbid epilepsy and 71,163 patients with depression without comorbid epilepsy during a study period from 1995 to 2017. Response was defined as continuous monotherapy with an antidepressant drug without switch to or add-on of another antidepressant drug, an antipsychotic drug or lithium or hospitalization during an up to ten-year follow-up period. We calculated standardized absolute risks and differences thereof with respect to age, gender, socioeconomic status and comorbidity with other physical disorders than epilepsy. RESULTS In patients with depression, response to antidepressants was decreased with versus without comorbid epilepsy during the ten-year follow-up period. One year after start of antidepressant treatment the proportion of responders was 12% (CI: 10%-14%) lower in patients with versus without comorbid epilepsy in the standardized population. Response to antidepressants were specifically decreased among younger and unemployed patients with depression and comorbid epilepsy. LIMITATIONS We did not include sub-analyses according to subtypes of epilepsy. CONCLUSIONS Response to antidepressants was decreased in patients with comorbid epilepsy versus without comorbid epilepsy at all time points during a ten-year follow-up period. The study highlights the need for closely clinical monitoring and psychological support for patients with depression and comorbid epilepsy and emphasize the need for further long-term studies of effect of interventions.
Collapse
Affiliation(s)
- Lars Vedel Kessing
- Copenhagen Affective disorder Research Center (CADIC), Psychiatric Center Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Thomas Gerds
- Section of Biostatistics, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Kanner AM, Irving LT, Cajigas I, Saporta A, Cordeiro JG, Ribot R, Velez-Ruiz N, Detyniecki K, Melo-Bicchi M, Rey G, Palomeque M, King-Aponte T, Theodotou C, Ivan ME, Jagid JR. Long-term seizure and psychiatric outcomes following laser ablation of mesial temporal structures. Epilepsia 2022; 63:812-823. [PMID: 35137956 DOI: 10.1111/epi.17183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postsurgical seizure outcome following laser interstitial thermal therapy (LiTT) for the management of drug-resistant mesial temporal lobe epilepsy (MTLE) has been limited to 2 years. Furthermore, its impact on presurgical mood and anxiety disorders has not been investigated. The objectives of this study were (1) to identify seizure outcome changes over a period ranging from 18 to 81 months; (2) to investigate the seizure-free rate in the last follow-up year; (3) to identify the variables associated with seizure freedom; and (4) to identify the impact of LiTT on presurgical mood and anxiety disorders. METHODS Medical records of all patients who underwent LiTT for MTLE from 2013 to 2019 at the University of Miami Comprehensive Epilepsy Center were retrospectively reviewed. Demographic, epilepsy-related, cognitive, psychiatric, and LiTT-related data were compared between seizure-free (Engel Class I) and non-seizure-free (Engel Class II + III + IV) patients. Statistical analyses included univariate and multivariate stepwise logistic regression analyses. RESULTS Forty-eight patients (mean age = 43 ± 14.2 years, range = 21-78) were followed for a mean period of 50 ± 20.7 months (range = 18-81); 29 (60.4%) achieved an Engel Class I outcome, whereas 11 (22.9%) had one to three seizures/year. Seizure-freedom rate decreased from 77.8% to 50% among patients with 24- and >61-month follow-up periods, respectively. In the last follow-up year, 83% of all patients were seizure-free. Seizure freedom was associated with having mesial temporal sclerosis (MTS), no presurgical focal to bilateral tonic-clonic seizures, and no psychopathology in the last follow-up year. Presurgical mood and/or anxiety disorder were identified in 30 patients (62.5%) and remitted after LiTT in 19 (62%). SIGNIFICANCE LiTT appears to be a safe and effective surgical option for treatment-resistant MTLE, particularly among patients with MTS. Remission of presurgical mood and anxiety disorders can also result from LiTT.
Collapse
Affiliation(s)
- Andres M Kanner
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Le Treice Irving
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Iahn Cajigas
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Anita Saporta
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Ramses Ribot
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Naymee Velez-Ruiz
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kamil Detyniecki
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Manuel Melo-Bicchi
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Gustavo Rey
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Maru Palomeque
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tricia King-Aponte
- Epilepsy Division, Departments of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Christian Theodotou
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jonathan R Jagid
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
15
|
Bidirectional Relations Among Depression, Migraine, and Epilepsy: Do They Have an Impact on Their Response to Treatment? Curr Top Behav Neurosci 2021; 55:251-265. [PMID: 34964936 DOI: 10.1007/7854_2021_286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The evaluation and treatment of patients with epilepsy is not limited to the type of epilepsy, but it must incorporate the common comorbid neurologic, psychiatric, and medical disorders, as the latter can bare an impact on the course and response to treatment of the seizure disorder and vice versa. In this article we review the bidirectional relations among epilepsy and two of its most common comorbidities, mood disorders and migraine and examine the implications of these relations on the selection of therapies of these three disorders and their response to treatment. We also review the most salient common pathogenic mechanisms that may explain such relations.
Collapse
|
16
|
Vinti V, Dell'Isola GB, Tascini G, Mencaroni E, Cara GD, Striano P, Verrotti A. Temporal Lobe Epilepsy and Psychiatric Comorbidity. Front Neurol 2021; 12:775781. [PMID: 34917019 PMCID: PMC8669948 DOI: 10.3389/fneur.2021.775781] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Most focal seizures originate in the temporal lobe and are commonly divided into mesial and lateral temporal epilepsy, depending upon the neuronal circuitry involved. The hallmark features of the mesial temporal epilepsy are aura, unconsciousness, and automatisms. Symptoms often overlap with the lateral temporal epilepsy. However, the latter present a less evident psychomotor arrest, frequent clones and dystonic postures, and common focal to bilateral tonic–clonic seizures. Sclerosis of the hippocampus is the most frequent cause of temporal lobe epilepsy (TLE). TLE is among all epilepsies the most frequently associated with psychiatric comorbidity. Anxiety, depression, and interictal dysphoria are recurrent psychiatric disorders in pediatric patients with TLE. In addition, these alterations are often combined with cognitive, learning, and behavioral impairment. These comorbidities occur more frequently in TLE with hippocampal sclerosis and with pharmacoresistance. According to the bidirectional hypothesis, the close relationship between TLE and psychiatric features should lead to considering common pathophysiology underlying these disorders. Psychiatric comorbidities considerably reduce the quality of life of these children and their families. Thus, early detection and appropriate management and therapeutic strategies could improve the prognosis of these patients. The aim of this review is to analyze TLE correlation with psychiatric disorders and its underlying conditions.
Collapse
Affiliation(s)
- Valerio Vinti
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Giorgia Tascini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini (IRCCS "G. Gaslini") Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
17
|
PERMIT study: a global pooled analysis study of the effectiveness and tolerability of perampanel in routine clinical practice. J Neurol 2021; 269:1957-1977. [PMID: 34427754 PMCID: PMC8940799 DOI: 10.1007/s00415-021-10751-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
The PERaMpanel pooled analysIs of effecTiveness and tolerability (PERMIT) study was a pooled analysis of data from 44 real-world studies from 17 countries, in which people with epilepsy (PWE; focal and generalized) were treated with perampanel (PER). Retention and effectiveness were assessed after 3, 6, and 12 months, and at the last visit (last observation carried forward). Effectiveness assessments included 50% responder rate (≥ 50% reduction in seizure frequency from baseline) and seizure freedom rate (no seizures since at least the prior visit); in PWE with status epilepticus, response was defined as seizures under control. Safety and tolerability were assessed by evaluating adverse events (AEs) and discontinuation due to AEs. The Full Analysis Set included 5193 PWE. Retention, effectiveness and safety/tolerability were assessed in 4721, 4392 and 4617, respectively. Retention on PER treatment at 3, 6, and 12 months was 90.5%, 79.8%, and 64.2%, respectively. Mean retention time on PER treatment was 10.8 months. The 50% responder rate was 58.3% at 12 months and 50.0% at the last visit, and the corresponding seizure freedom rates were 23.2% and 20.5%, respectively; 52.7% of PWE with status epilepticus responded to PER treatment. Overall, 49.9% of PWE reported AEs and the most frequently reported AEs (≥ 5% of PWE) were dizziness/vertigo (15.2%), somnolence (10.6%), irritability (8.4%), and behavioral disorders (5.4%). At 12 months, 17.6% of PWEs had discontinued due to AEs. PERMIT demonstrated that PER is effective and generally well tolerated when used to treat people with focal and/or generalized epilepsy in everyday clinical practice.
Collapse
|
18
|
Peng W, Ding J, Zhan S, Wang X. A survey on doctors' cognition of depression in patients with epilepsy. Brain Behav 2021; 11:e2232. [PMID: 34087951 PMCID: PMC8413820 DOI: 10.1002/brb3.2232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This survey aimed to assess doctors' cognition on depressive symptoms in patients with epilepsy in Shanghai China. METHODS Questionnaires were handed out to doctors who have taken part in the epilepsy care, covering those from all third-grade hospitals and several second-grade hospitals in Shanghai China. Respondents were asked to make choices for their demographic profiles, clinical practices, acquired knowledge of, and attitudes toward the comorbidity of epilepsy and depression. RESULTS A total of 282 questionnaires were collected from 16 hospitals in Shanghai China, of which 280 copies were included in the statistical analysis. Respondents were mainly less than 50 years (260, 92.8%), mostly residents and attendings (206, 73.6%), and mostly master and doctor's degrees (225, 80.3%). The ratio of epileptologists and nonepileptologists was 56 (20.1%):224 (79.9%). Compared to nonepileptologists and residents, epileptologists and doctors with higher professional titles were more likely to answer that they received a higher percentage of patients with the comorbidity of epilepsy and depression (≥30%), and they knew very well about the knowledge, and held the view that depression exacerbated seizures (p < .05). Surprisingly, most doctors including chief doctors and epileptologists answered that they had difficulties in prescribing antidepressants. Quite a few doctors from lower class hospitals even preferred to use tricyclic antidepressants for controlling depressive symptoms in patients with epilepsy. SIGNIFICANCE Doctors, especially younger doctors and nonepileptologists, need more training to get knowledge of the comorbidity of epilepsy and depression. However, the therapeutic methods for depressive symptoms in patients with epilepsy were still limited and in a challenge.
Collapse
Affiliation(s)
- Weifeng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaokang Zhan
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Statistics and Public Health, Shanghai Medical College, Fudan University, Shanghai, China
| | -
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Singh T, Goel RK. Epilepsy Associated Depression: An Update on Current Scenario, Suggested Mechanisms, and Opportunities. Neurochem Res 2021; 46:1305-1321. [PMID: 33665775 DOI: 10.1007/s11064-021-03274-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Depression is one of the most frequent psychiatric comorbidities associated with epilepsy having a major impact on the patient's quality of life. Several screening tools are available to identify and follow up psychiatric disorders in epilepsy. Out of various psychiatric disorders, people with epilepsy (PWE) are at greater risk of developing depression. This bidirectional relationship further hinders pharmacotherapy of comorbid depression in PWE as some antiepileptic drugs (AEDs) worsen associated depression and coadministration of existing antidepressants (ADs) to alleviate comorbid depression has been reported to worsen seizures. Selective serotonin reuptake inhibitors (SSRIs) and selective serotonin and norepinephrine reuptake inhibitors (SNRIs) are first choice of ADs and are considered safe in PWE, but there are no high-quality evidences. Similar to observations in people with depression, PWE also showed pharmacoresistant to available SSRI/SNRIs, which further complicates the disease prognosis. Randomized double-blind placebo-controlled clinical trials are necessary to report efficacy and safety of available ADs in PWE. We should also move beyond ADs, and therefore, we reviewed common pathological mechanisms such as neuroinflammation, dysregulated hypothalamus pituitary adrenal (HPA) axis, altered neurogenesis, and altered tryptophan metabolism responsible for coexistent relationship of epilepsy and depression. Based on these common pertinent pathways involved in the genesis of epilepsy and depression, we suggested novel targets and therapeutic approaches for safe management of comorbid depression in epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
20
|
Abstract
The episodic nature of both epilepsy and psychiatric illnesses suggests that the brain switches between healthy and pathological states. The most obvious example of transitions between network states related to epilepsy is the manifestation of ictal events. In addition to seizures, there are more subtle changes in network communication within and between brain regions, which we propose may contribute to psychiatric illnesses associated with the epilepsies. This review will highlight evidence supporting aberrant network activity associated with epilepsy and the contribution to cognitive impairments and comorbid psychiatric illnesses. Further, we discuss potential mechanisms mediating the network dysfunction associated with comorbidities in epilepsy, including interneuron loss and hypothalamic–pituitary–adrenal axis dysfunction. Conceptually, it is necessary to think beyond ictal activity to appreciate the breadth of network dysfunction contributing to the spectrum of symptoms associated with epilepsy, including psychiatric comorbidities.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
van Dijk RM, Koska I, Bleich A, Tolba R, Seiffert I, Möller C, Di Liberto V, Talbot SR, Potschka H. Design of composite measure schemes for comparative severity assessment in animal-based neuroscience research: A case study focussed on rat epilepsy models. PLoS One 2020; 15:e0230141. [PMID: 32413036 PMCID: PMC7228039 DOI: 10.1371/journal.pone.0230141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
Comparative severity assessment of animal models and experimental interventions is of utmost relevance for harm-benefit analysis during ethical evaluation, an animal welfare-based model prioritization as well as the validation of refinement measures. Unfortunately, there is a lack of evidence-based approaches to grade an animal's burden in a sensitive, robust, precise, and objective manner. Particular challenges need to be considered in the context of animal-based neuroscientific research because models of neurological disorders can be characterized by relevant changes in the affective state of an animal. Here, we report about an approach for parameter selection and development of a composite measure scheme designed for precise analysis of the distress of animals in a specific model category. Data sets from the analysis of several behavioral and biochemical parameters in three different epilepsy models were subjected to a principal component analysis to select the most informative parameters. The top-ranking parameters included burrowing, open field locomotion, social interaction, and saccharin preference. These were combined to create a composite measure scheme (CMS). CMS data were subjected to cluster analysis enabling the allocation of severity levels to individual animals. The results provided information for a direct comparison between models indicating a comparable severity of the electrical and chemical post-status epilepticus models, and a lower severity of the kindling model. The new CMS can be directly applied for comparison of other rat models with seizure activity or for assessment of novel refinement approaches in the respective research field. The respective online tool for direct application of the CMS or for creating a new CMS based on other parameters from different models is available at https://github.com/mytalbot/cms. However, the robustness and generalizability needs to be further assessed in future studies. More importantly, our concept of parameter selection can serve as a practice example providing the basis for comparable approaches applicable to the development and validation of CMS for all kinds of disease models or interventions.
Collapse
Affiliation(s)
- Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Rene Tolba
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christina Möller
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Steven Roger Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
22
|
Leo A, De Caro C, Nesci V, Tallarico M, De Sarro G, Russo E, Citraro R. Modeling poststroke epilepsy and preclinical development of drugs for poststroke epilepsy. Epilepsy Behav 2020; 104:106472. [PMID: 31427267 DOI: 10.1016/j.yebeh.2019.106472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Stroke is a severe clinical issue for global public health, representing the third leading cause of death and a major cause of disability in developed countries. Progresses in the pharmacological treatment of the acute stroke have given rise to a significant decrease in its mortality rate. However, as a result, there has been an increasing number of stroke survivors living with disability worldwide. Poststroke epilepsy (PSE) is a common clinical complication following stroke. Seizures can arise in close temporal association with stroke damage and/or after a variably longer interval. Overall, PSE have a good prognosis; in fact, its responding rate to antiepileptic drugs (AEDs) is higher than other types of epilepsy. However, regarding pharmacological treatment, some issues are still unresolved. To this aim, a deeper understanding of mechanisms underlying the transformation of infarcted tissue into an epileptic focus or better from a nonepileptic brain to an epileptic brain is also mandatory for PSE. However, studying epileptogenesis in patients with PSE clearly has several limitations and difficulties; therefore, modeling PSE is crucial. Until now, different experimental models have been used to study the etiopathology of cerebrovascular stroke with or without infarction, but few studies focused on poststroke epileptogenesis and PSE. In this review, we show a brief overview on the features emerging from preclinical research into experimental PSE, which could affect the discovery of biomarkers and therapy strategies for poststroke epileptogenesis. This article is part of the Special Issue "Seizures & Stroke".
Collapse
Affiliation(s)
- Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Carmen De Caro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Valentina Nesci
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Martina Tallarico
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Viale Europa e Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Mazarati A. Can we and should we use animal models to study neurobehavioral comorbidities of epilepsy? Epilepsy Behav 2019; 101:106566. [PMID: 31699663 DOI: 10.1016/j.yebeh.2019.106566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/20/2022]
Abstract
Animal systems have been widely used to examine mechanisms of neurobehavioral comorbidities of epilepsy and to help in developing their effective therapies. Despite the progress made in the field, animal studies have their limitations stemming both from issues with modeling neuropsychiatric disorders in the laboratory and from drawbacks of animal models of epilepsy themselves. This review discusses advantages and weaknesses of experimental paradigms and approaches used to model and to analyze neurobehavioral comorbidities of epilepsy, from the perspectives of their needs, interpretation, ways of improvement, and clinical relevance. Developmental studies are required to adequately address age-specific aspects of the comorbidities. The deployment of preclinical Common Data Elements (pCDEs) for epilepsy research should facilitate the standardization and the harmonization of studies in question, while the application of Research Domain Criteria (RDoC) to characterize neurobehavioral disorders in animals with epilepsy should help in closing the bench-to-bedside gap. Special Issue: Epilepsy & Behavior's 20th Anniversary.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Beghi E. Social functions and socioeconomic vulnerability in epilepsy. Epilepsy Behav 2019; 100:106363. [PMID: 31300385 DOI: 10.1016/j.yebeh.2019.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Social functions are commonly impaired in people with epilepsy who are at increased risk of experiencing altered social cognition, communication problems, and interpersonal difficulties. Several factors are implicated, including developmental delay, seizure-related factors, somatic and psychiatric comorbidities, antiepileptic drugs (AEDs), and - not least - the effects of stigma. The variable interaction of all these factors can explain the differing pictures observed in the various epilepsy phenotypes but is also a source of interindividual variability depending on the strength of the effects of each factor on social cognition. This article is part of the Special Issue "Epilepsy and social cognition across the lifespan.
Collapse
Affiliation(s)
- Ettore Beghi
- Laboratory of Neurological Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
25
|
Lopez MR, Schachter SC, Kanner AM. Psychiatric comorbidities go unrecognized in patients with epilepsy: "You see what you know". Epilepsy Behav 2019; 98:302-305. [PMID: 31027939 DOI: 10.1016/j.yebeh.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
Abstract
Patients with epilepsy (PWE) have a significantly higher prevalence of psychiatric comorbid disorders involving depression, anxiety, psychotic, and attention-deficit disorders compared with the general population or patients with other chronic medical conditions. Currently, there is no systematic approach in the evaluation and management of psychiatric comorbidities in these patients. In addition, neurologists are not trained to recognize these disorders, and consequently, they remain undertreated. Despite the high prevalence of psychiatric comorbidities in patients evaluated for epilepsy surgery, most epilepsy centers in North America do not include a psychiatric evaluation as part of the presurgical work-up. Despite the intimate relationship between psychiatric comorbidities and epilepsy, collaboration between epileptologists and psychiatrists is sparse at best and nonexistent at worse. The purpose of this paper was to highlight and try to understand the causes behind the persistent lack in communication between neurologists and psychiatrists, the gap in the training of neurologists on psychiatric aspects of neurologic disorders and vice versa and to propose new initiatives to fix the problem. This article is part of the Special Issue "Obstacles of Treatment of Psychiatric Comorbidities in Epilepsy".
Collapse
Affiliation(s)
- Maria R Lopez
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Veteran Medical Affairs Epilepsy Center of Excellence, Miami, FL, USA.
| | | | - Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Ribot R, Kanner AM. Neurobiologic properties of mood disorders may have an impact on epilepsy: Should this motivate neurologists to screen for this psychiatric comorbidity in these patients? Epilepsy Behav 2019; 98:298-301. [PMID: 31182393 DOI: 10.1016/j.yebeh.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Abstract
Epilepsy and psychiatric comorbidities have a complex relation, which can be manifested by their relatively high comorbid occurrence and the existence of a bidirectional relation, whereby not only are people with epilepsy (PWE) at greater risk of developing psychiatric disorders, but patients with primary psychiatric disorders are at higher risk of developing epilepsy. The existence of common pathogenic mechanisms operant in primary psychiatric disorders and epilepsy has been postulated as one of the leading hypothesis to explain their close and very complex relation. The neurobiologic characteristics of mood disorders can be used as a model to test this hypothesis. In this manuscript, we highlight data that suggest how several neurobiologic aspects of mood disorders can facilitate the epileptogenic process in animal models and explain the increased risk of patients with primary mood disorders to develop epilepsy in general and treatment-resistant epilepsy in particular. It is our hope that the inclusion of these data in this Special Issue will motivate neurologists to screen common psychiatric comorbidities in PWE. This article is part of the Special Issue "Obstacles of Treatment of Psychiatric Comorbidities in Epilepsy".
Collapse
Affiliation(s)
- Ramses Ribot
- Comprehensive Epilepsy Center and Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Andres M Kanner
- Comprehensive Epilepsy Center and Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
27
|
Leo A, Citraro R, Tallarico M, Iannone M, Fedosova E, Nesci V, De Sarro G, Sarkisova K, Russo E. Cognitive impairment in the WAG/Rij rat absence model is secondary to absence seizures and depressive-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109652. [PMID: 31095993 DOI: 10.1016/j.pnpbp.2019.109652] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
Abstract
Neuropsychiatric comorbidities are common in patients with epilepsy, remaining still an urgent unmet clinical need. Therefore, the management of epileptic disorders should not only be restricted to the achievement of seizure-freedom but must also be able to counteract its related comorbidities. Experimental animal models of epilepsy represent a valid tool not only to study epilepsy but also its associated comorbidities. The WAG/Rij rat is a well-established genetically-based model of absence epilepsy with depressive-like comorbidity, in which learning and memory impairment was also recently reported. Aim of this study was to clarify whether this cognitive decline is secondary or not to absence seizures and/or depressive-like behavior. The behavioral performance of untreated and ethosuximide-treated (300 mg/kg/day; 17 days) WAG/Rij rats at 6 and 12 months of age were assessed in several tests: forced swimming test, objects recognition test, social recognition test, Morris water maze and passive avoidance. According to our results, it seems that cognitive impairment in this strain, similarly to depressive-like behavior, is secondary to the occurrence of absence seizures, which might be necessary for the expression of cognitive impairment. Furthermore, our results suggest an age-dependent impairment of cognitive performance in WAG/Rij rats, which could be linked to the age-dependent increase of spike wave discharges. Consistently, it is possible that absence seizures, depressive-like behavior and cognitive deficit may arise independently and separately in lifetime from the same underlying network disease, as previously suggested for the behavioral features associated with other epileptic syndromes.
Collapse
Affiliation(s)
- Antonio Leo
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| | - Rita Citraro
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy.
| | - Martina Tallarico
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy; CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Ekaterina Fedosova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Valentina Nesci
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| | | | - Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Emilio Russo
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| |
Collapse
|
28
|
Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15:459-472. [DOI: 10.1038/s41582-019-0217-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
|
29
|
Putra M, Sharma S, Gage M, Gasser G, Hinojo-Perez A, Olson A, Gregory-Flores A, Puttachary S, Wang C, Anantharam V, Thippeswamy T. Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis 2019; 133:104443. [PMID: 30940499 DOI: 10.1016/j.nbd.2019.03.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022] Open
Abstract
Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24 h, 48 h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24 h post-exposure. 1400W also prevented DFP-induced mortality in <24 h. The brain immunohistochemistry (IHC) at 7d post-exposure revealed a significant reduction in gliosis and neurodegeneration (NeuN+ FJB positive cells) in the 1400W-treated group. 1400W, in contrast to the vehicle, caused a significant reduction in the epileptiform spiking and spontaneous recurrent seizures (SRS) during 12 weeks of continuous video-EEG study. IHC of brain sections from the same animals revealed a significant reduction in reactive gliosis (both microgliosis and astrogliosis) and neurodegeneration across various brain regions in the 1400W-treated group when compared to the vehicle-treated group. A multiplex assay from hippocampal lysates at 6 weeks post-exposure showed a significant increase in several key pro-inflammatory cytokines/chemokines such as IL-1α, TNFα, IL-1β, IL-2, IL-6, IL-12, IL-17a, MCP-1, LIX, and Eotaxin, and a growth factor, VEGF in the vehicle-treated animals. 1400W significantly suppressed IL-1α, TNFα, IL-2, IL-12, and MCP-1 levels. It also suppressed DFP-induced serum nitrite levels at 6 weeks post-exposure. In the Morris water maze, the vehicle-treated animals spent significantly less time in the target quadrant in a probe trial at 9d post-exposure compared to their time spent in the same quadrant 11 days previously (i.e., 2 days prior to DFP exposure). Such a difference was not observed in the 1400W and control groups. However, learning and short-term memory were unaffected when tested at 10-16d and 28-34d post-exposure. Accelerated rotarod, horizontal bar test, and the forced swim test revealed no significant changes between groups. Overall, the findings from this study suggest that 1400W may be considered as a potential therapeutic agent as a follow-on therapy for CNA exposure, after controlling the acute symptoms, to prevent mortality and some of the long-term neurotoxicity parameters such as epileptiform spiking, SRS, neurodegeneration, reactive gliosis in some brain regions, and certain key proinflammatory cytokines and chemokine.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Andy Hinojo-Perez
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Ashley Olson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Adriana Gregory-Flores
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
30
|
Kanner AM, Ribot R, Mazarati A. Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: Do they have an impact on the course of the seizure disorder? Epilepsia Open 2018; 3:210-219. [PMID: 30564780 PMCID: PMC6293067 DOI: 10.1002/epi4.12278] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 01/13/2023] Open
Abstract
The treatment of epilepsy is not limited to the achievement of a seizure‐free state. It must also incorporate the management of common psychiatric and neurologic comorbidities, affecting on average between 30 and 50% of patients with epilepsy, which have a significant impact on their lives at various levels, including quality of life and the prognosis of the seizure disorder. Mood and anxiety disorders are the most frequent psychiatric comorbidities, whereas stroke and migraine are among the more common neurologic comorbidities, migraine among the younger patients and stroke among the older patients. Not only do these psychiatric and neurologic comorbidities each have a bidirectional relation with epilepsy, but primary mood disorders have a bidirectional relation with these 2 neurologic disorders. Furthermore, depression and migraine have been each associated with a more severe epilepsy course, whereas depression has been associated with a more severe course of stroke and migraines. The purpose of this article is to review the clinical implications of the complex relations among epilepsy and these 3 comorbid disorders, and to identify any clinical and/or experimental evidence that may suggest that having more than one of these comorbid disorders may increase the risk of and course of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Comprehensive Epilepsy Center and Epilepsy Division Department of Neurology Miller School of Medicine University of Miami Miami Florida U.S.A
| | - Ramses Ribot
- Comprehensive Epilepsy Center and Epilepsy Division Department of Neurology Miller School of Medicine University of Miami Miami Florida U.S.A
| | - Andrey Mazarati
- Department of Pediatrics and Children's Discovery and Innovation Institute D. Geffen School of Medicine at UCLA Los Angeles California U.S.A
| |
Collapse
|
31
|
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2018; 123:27-41. [PMID: 30059725 DOI: 10.1016/j.nbd.2018.07.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Akram Zamani
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia.
| | - Genevieve Rayner
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre (Austin Campus), Heidelberg, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Comprehensive Epilepsy Program, Alfred Health, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
32
|
Dehn LB, Pfäfflin M, Brückner S, Lutz MT, Steinhoff BJ, Mayer T, Bien CG, Nussbeck FW, May TW. Relationships of depression and anxiety symptoms with seizure frequency: Results from a multicenter follow-up study. Seizure 2017; 53:103-109. [DOI: 10.1016/j.seizure.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
|
33
|
Kanner AM, Scharfman H, Jette N, Anagnostou E, Bernard C, Camfield C, Camfield P, Legg K, Dinstein I, Giacobbe P, Friedman A, Pohlmann-Eden B. Epilepsy as a Network Disorder (1): What can we learn from other network disorders such as autistic spectrum disorder and mood disorders? Epilepsy Behav 2017; 77:106-113. [PMID: 29107450 PMCID: PMC9835466 DOI: 10.1016/j.yebeh.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 01/16/2023]
Abstract
Epilepsy is a neurologic condition which often occurs with other neurologic and psychiatric disorders. The relation between epilepsy and these conditions is complex. Some population-based studies have identified a bidirectional relation, whereby not only patients with epilepsy are at increased risk of suffering from some of these neurologic and psychiatric disorders (migraine, stroke, dementia, autism, depression, anxiety disorders, Attention deficit hyperactivity disorder (ADHD), and psychosis), but also patients with these conditions are at increased risk of suffering from epilepsy. The existence of common pathogenic mechanisms has been postulated as a potential explanation of this phenomenon. To reassess the relationships between neurological and psychiatric conditions in general, and specifically autism, depression, Alzheimer's disease, schizophrenia, and epilepsy, a recent meeting brought together basic researchers and clinician scientists entitled "Epilepsy as a Network Disorder." This was the fourth in a series of conferences, the "Fourth International Halifax Conference and Retreat". This manuscript summarizes the proceedings on potential relations between Epilepsy on the one hand and autism and depression on the other. A companion manuscript provides a summary of the proceedings about the relation between epilepsy and Alzheimer's disease and schizophrenia, closed by the role of translational research in clarifying these relationships. The review of the topics in these two manuscripts will provide a better understanding of the mechanisms operant in some of the common neurologic and psychiatric comorbidities of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL 33136, USA.
| | - Helen Scharfman
- New York University Langone Medical Center, New York, NY 10016, USA; The Nathan Kline Institute, Orangeburg, NY, USA
| | - Nathalie Jette
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON M4G 1R8, Canada
| | - Christophe Bernard
- NS - Institute de Neurosciences des Systemes, UMR INSERM 1106, Aix-Marseille Université, Equipe Physionet, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Carol Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Peter Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Karen Legg
- Division of Neurology, Department of Medicine, Halifax Infirmary, Halifax B3H4R2, Nova Scotia, Canada
| | - Ilan Dinstein
- Departments of Psychology and Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Peter Giacobbe
- Centre for Mental Health, University of Toronto, University Health Network, Canada
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Departments of Medical Neuroscience and Pediatrics, Faculty of Medicine, Dalhousie University Halifax, NS, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Center, Life Science Research Institute, Dalhousie University, Room 229, PO Box 15000, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|
34
|
Leo A, Citraro R, Amodio N, De Sarro C, Gallo Cantafio ME, Constanti A, De Sarro G, Russo E. Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics 2017; 14:1134-1147. [PMID: 28653281 PMCID: PMC5722759 DOI: 10.1007/s13311-017-0550-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the major challenges in the epilepsy field is identifying disease-modifying drugs in order to prevent or delay spontaneous recurrent seizure onset or to cure already established epilepsy. It has been recently reported that fingolimod, currently approved for the treatment of relapsing-remitting multiple sclerosis, has demonstrated antiepileptogenic effects in 2 different preclinical models of acquired epilepsy. However, to date, no data exist regarding the role of fingolimod against genetic epilepsy. Therefore, we have addressed this issue by studying the effects of fingolimod in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a well-established genetic model of absence epilepsy, epileptogenesis, and neuropsychiatric comorbidity. Our results have demonstrated that an early long-term treatment with fingolimod (1 mg/kg/day), started before absence seizure onset, has both antiepileptogenic and antidepressant-like effects in WAG/Rij rats. However, these effects were transitory, as 5 months after treatment discontinuation, both absence seizure and depressive like-behavior returned to control levels. Furthermore, a temporary reduction of mTOR signaling pathway activity, indicated by reduced phosphorylated mammalian target of rapamycin and phosphorylated p70S6k levels, and by increased phosphorylated Akt in WAG/Rij rats of 6 months of age accompanied the transitory antiepileptogenic effects of fingolimod. Surprisingly, fingolimod has demonstrated longer-lasting positive effects on cognitive decline in this strain. This effect was accompanied by an increased acetylation of lysine 8 of histone H4 (at both 6 and 10 months of age). In conclusion, our results support the antiepileptogenic effects of fingolimod. However, the antiepileptogenic effects were transitory. Moreover, fingolimod might also have a positive impact on animal behavior and particularly in protecting the development of memory decline.
Collapse
Affiliation(s)
- Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Caterina De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
35
|
Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav 2017; 73. [PMID: 28651171 PMCID: PMC5909069 DOI: 10.1016/j.yebeh.2017.05.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
36
|
Kanner AM. Can Neurochemical Changes of Mood Disorders Explain the Increase Risk of Epilepsy or its Worse Seizure Control? Neurochem Res 2017; 42:2071-2076. [PMID: 28667464 DOI: 10.1007/s11064-017-2331-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022]
Abstract
The existence of a bidirectional relation between mood disorders and epilepsy has been suggested by six population-based studies. Furthermore, three studies have associated a higher risk of treatment-resistant epilepsy with a history of depression preceding the onset of epilepsy. Common pathogenic mechanisms operant in depression and epilepsy may provide a possible explanation of these observations. This article reviews some of the leading pathogenic mechanisms of depression with respect to potential proconvulsant properties that may provide explanations for these phenomena.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL, 33136, USA.
| |
Collapse
|
37
|
Garcia-Cairasco N, Umeoka EHL, Cortes de Oliveira JA. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives. Epilepsy Behav 2017; 71:250-273. [PMID: 28506440 DOI: 10.1016/j.yebeh.2017.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the context of modeling epilepsy and neuropsychiatric comorbidities, we review the Wistar Audiogenic Rat (WAR), first introduced to the neuroscience international community more than 25years ago. The WAR strain is a genetically selected reflex model susceptible to audiogenic seizures (AS), acutely mimicking brainstem-dependent tonic-clonic seizures and chronically (by audiogenic kindling), temporal lobe epilepsy (TLE). Seminal neuroethological, electrophysiological, cellular, and molecular protocols support the WAR strain as a suitable and reliable animal model to study the complexity and emergent functions typical of epileptogenic networks. Furthermore, since epilepsy comorbidities have emerged as a hot topic in epilepsy research, we discuss the use of WARs in fields such as neuropsychiatry, memory and learning, neuroplasticity, neuroendocrinology, and cardio-respiratory autonomic regulation. Last, but not least, we propose that this strain be used in "omics" studies, as well as with the most advanced molecular and computational modeling techniques. Collectively, pioneering and recent findings reinforce the complexity associated with WAR alterations, consequent to the combination of their genetically-dependent background and seizure profile. To add to previous studies, we are currently developing more powerful behavioral, EEG, and molecular methods, combined with computational neuroscience/network modeling tools, to further increase the WAR strain's contributions to contemporary neuroscience in addition to increasing knowledge in a wide array of neuropsychiatric and other comorbidities, given shared neural networks. During the many years that the WAR strain has been studied, a constantly expanding network of multidisciplinary collaborators has generated a growing research and knowledge network. Our current and major wish is to make the WARs available internationally to share our knowledge and to facilitate the planning and execution of multi-institutional projects, eagerly needed to contribute to paradigm shifts in epileptology. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Eduardo H L Umeoka
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
38
|
Kanner AM. Psychiatric comorbidities in new onset epilepsy: Should they be always investigated? Seizure 2017; 49:79-82. [PMID: 28532711 DOI: 10.1016/j.seizure.2017.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
The new definition of epilepsy establishes that epilepsy is not only a disorder presenting with epileptic seizures but it can be often associated with cognitive and psychiatric comorbidities. In fact, the prevalence of psychiatric comorbidities is relatively high in patients with epilepsy (PWE), as one in three patients will have experienced a psychiatric disorder in the course of their life, with mood and anxiety disorders being the most frequent. Psychiatric comorbidities often precede the onset of the seizure disorder, and affect the life of these patients and the course of the seizure disorder at several levels, including a worse tolerance of pharmacotherapy with antiepileptic drugs (AEDs), in particular the development of iatrogenic psychiatric symptoms from pharmacologic and surgical treatments, an increased mortality risk, a worse quality of life and higher economic burdens of the patient, family and society as a hole. Accordingly, psychiatric comorbidities should be recognized at the time of the initial evaluation of every PWE and their treatment needs to be incorporated within the overall therapeutic plan. This question is addressed in this article.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW, 14th Street, Room #1324, Miami, FL 33136, United States.
| |
Collapse
|
39
|
Stavropoulos I, Pervanidou P, Gnardellis C, Loli N, Theodorou V, Mantzou A, Soukou F, Sinani O, Chrousos GP. Increased hair cortisol and antecedent somatic complaints in children with a first epileptic seizure. Epilepsy Behav 2017; 68:146-152. [PMID: 28189919 DOI: 10.1016/j.yebeh.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/27/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Stress is the most frequent seizure-precipitating factor reported by patients with epilepsy, while stressful life events may increase seizure susceptibility in humans. In this study, we investigated the relations between both biological and behavioral measures of stress in children with a first epileptic seizure (hereafter called seizure). We hypothesized that hair cortisol, a biomarker of chronic stress reflecting approximately 3months of preceding exposure, might be increased in children with a first seizure. We also employed standardized questionnaires to examine presence of stress-related behavioral markers. METHODS This was a cross-sectional clinical study investigating stress-related parameters in children with a first seizure (First Epileptic Seizure Group (FESG), n=22) in comparison to healthy children without seizures (Control Group, n=29). Within 24h after a first seizure, hair samples were collected from children for the determination of cortisol. In parallel, perceived stress and anxiety and depressive symptoms were examined with appropriate self- and parent-completed questionnaires, and history of stressful life events during the past year was recorded. Emotional and behavioral problems were also assessed by parent-reported validated and widely-used questionnaires. RESULTS Higher hair cortisol measurements were observed in the FESG than control children (7.5 versus 5.0pg/mg respectively, p=0.001). The former were more likely to complain of somatic problems than the latter (59.8 vs. 55.4 according to DSM-oriented Scale, p=0.021); however, there were no differences in perceived stress and anxiety or depressive symptoms between the two groups. Using ROC analysis of hair cortisol measurements for predicting disease status, the maximum sensitivity and specificity were observed for a cut-off point of 5.25pg/mg. SIGNIFICANCE Increased hair cortisol indicates chronic hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis prior to the first seizure. This might have contributed to the epileptogenesis process and may help explain the higher incidence of antecedent somatic complaints in the first seizure group.
Collapse
Affiliation(s)
- Ioannis Stavropoulos
- The Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens and Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Str. 4, 11527 Athens, Greece; Department of Pediatric Neurology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece.
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, 11527, Athens, Greece
| | | | - Nomiki Loli
- Department of Pediatric Neurology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Virginia Theodorou
- Department of Pediatric Neurology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Aimilia Mantzou
- Unit on Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, University of Athens, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Faye Soukou
- Unit on Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, University of Athens, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Olga Sinani
- Department of Pediatric Neurology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - George P Chrousos
- The Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens and Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Str. 4, 11527 Athens, Greece; Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, 11527, Athens, Greece; Unit on Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, University of Athens, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| |
Collapse
|
40
|
Kanner AM. Association Between Selective Serotonin-Reuptake Inhibitor Antidepressants and Increased Risk of Poststroke Epilepsy. Mayo Clin Proc 2017; 92:179-181. [PMID: 28160869 DOI: 10.1016/j.mayocp.2016.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023]
|
41
|
Ravizza T, Onat FY, Brooks-Kayal AR, Depaulis A, Galanopoulou AS, Mazarati A, Numis AL, Sankar R, Friedman A. WONOEP appraisal: Biomarkers of epilepsy-associated comorbidities. Epilepsia 2016; 58:331-342. [PMID: 28035782 DOI: 10.1111/epi.13652] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate with epilepsy-associated comorbidities. A reliable biomarker will allow a more accurate diagnosis and improved treatment of epilepsy-associated comorbidities.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milano, Italy
| | - Filiz Y Onat
- Department of Medical Pharmacology, Epilepsy Research Center, School of Medicine Marmara University, Istanbul, Turkey
| | - Amy R Brooks-Kayal
- Department of Pediatrics, Neurology and Pharmaceutical Sciences, Children's Hospital Colorado, University of Colorado Schools of Medicine and Pharmacy, Aurora, Colorado, U.S.A
| | | | - Aristea S Galanopoulou
- Laboratory of Developmental Neuroscience, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A.,Montefiore/Einstein Comprehensive Epilepsy Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | - Andrey Mazarati
- Neurology Division, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Adam L Numis
- Neurology Division, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Raman Sankar
- Neurology Division, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
42
|
Kanner AM. Psychiatric comorbidities in epilepsy: Should they be considered in the classification of epileptic disorders? Epilepsy Behav 2016; 64:306-308. [PMID: 27884642 DOI: 10.1016/j.yebeh.2016.06.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023]
Abstract
The prevalence of psychiatric comorbidities is relatively high in people with epilepsy (PWE), as one in three patients will have experienced a psychiatric disorder in the course of their life. The new definition of epilepsy recognizes these comorbidities as part of the seizure disorder, which need to be recognized and treated together with the actual epileptic seizures. Psychiatric comorbidities have a complex relation with epilepsy, being associated with a negative course of the seizure disorder, worse tolerance of pharmacotherapy with AEDs, development of iatrogenic psychiatric complications from pharmacologic and surgical treatments, and increased mortality risks. Given their negative impact at several levels of the lives of PWE, should psychiatric comorbidities be included in a classification of the epilepsies? This question is addressed in this article. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy".
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW, 14th Street, Room #1324, Miami, FL 33136, United States.
| |
Collapse
|
43
|
Brandt C, Rankovic V, Töllner K, Klee R, Bröer S, Löscher W. Refinement of a model of acquired epilepsy for identification and validation of biomarkers of epileptogenesis in rats. Epilepsy Behav 2016; 61:120-131. [PMID: 27343814 DOI: 10.1016/j.yebeh.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 01/23/2023]
Abstract
In rodent models in which status epilepticus (SE) is used to induce epilepsy, typically most animals develop spontaneous recurrent seizures (SRS). The SE duration for induction of epileptogenesis depends on the type of SE induction. In models with electrical SE induction, the minimum duration of SE to induce epileptogenesis in >90% of animals ranges from 3-4h. A high incidence of epilepsy is an advantage in the search of antiepileptogenic treatments, whereas it is a disadvantage in the search for biomarkers of epileptogenesis, because it does not allow a comparison of potential biomarkers in animals that either develop or do not develop epilepsy. The aim of this project was the refinement of an established SE rat model so that only ~50% of the animals develop epilepsy. For this purpose, we used an electrical model of SE induction, in which a self-sustained SE develops after prolonged stimulation of the basolateral amygdala. Previous experiments had shown that the majority of rats develop SRS after 4-h SE in this model so that the SE reduced duration to 2.5h by administering diazepam. This resulted in epilepsy development in only 50% of rats, thus reaching the goal of the project. The latent period to onset of SRS wa s >2weeks in most rats. Development of epilepsy could be predicted in most rats by behavioral hyperexcitability, whereas seizure threshold did not differentiate rats that did and did not develop SRS. The refined SE model may offer a platform to identify and validate biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Vladan Rankovic
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
44
|
Goldman AM, LaFrance WC, Benke T, Asato M, Drane D, Pack A, Syed T, Doss R, Lhatoo S, Fureman B, Dingledine R. 2014 Epilepsy Benchmarks Area IV: Limit or Prevent Adverse Consequence of Seizures and Their Treatment Across The Lifespan. Epilepsy Curr 2016; 16:198-205. [PMID: 27330453 PMCID: PMC4913859 DOI: 10.5698/1535-7511-16.3.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alica M. Goldman
- Associate Professor, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, NB222, Houston, TX, USA
| | - W. Curt LaFrance
- Associate Professor, Departments of Neurology and Psychiatry, Alpert Medical School, Brown University, Providence RI 02903-4923 USA
| | - Tim Benke
- Associate Professor, Departments of Pediatrics, Neurology, Pharmacology and Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | - Miya Asato
- Associate Professor, Pediatrics and Psychiatry, Divisionof Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Dan Drane
- Assistant Professor, Departments of Neurology and Pediatrics, Emory University School of Medicine and Department of Neurology, University of Washington School of Medicine
| | - Alison Pack
- Associate Professor of Neurology, Department of Neurology, Columbia University Medical Center, New York, NY
| | - Tanvir Syed
- Assistant Professor of Neurology, University Hospitals Case Medical Center, Cleveland, OH
| | - Robert Doss
- Clinical Neuropsychologist, Minnesota Epilepsy Group, P.A., St. Paul, MN and Department of Neurology, University of Minnesota-Twin Cities, MN
| | - Samden Lhatoo
- Professor and Chair, Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Brandy Fureman
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ray Dingledine
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta GA
| | - for the American Epilepsy Society (AES)/National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Benchmark Stewards.
- Associate Professor, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, NB222, Houston, TX, USA
- Associate Professor, Departments of Neurology and Psychiatry, Alpert Medical School, Brown University, Providence RI 02903-4923 USA
- Associate Professor, Departments of Pediatrics, Neurology, Pharmacology and Otolaryngology, University of Colorado School of Medicine, Aurora, CO
- Associate Professor, Pediatrics and Psychiatry, Divisionof Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, PA
- Assistant Professor, Departments of Neurology and Pediatrics, Emory University School of Medicine and Department of Neurology, University of Washington School of Medicine
- Associate Professor of Neurology, Department of Neurology, Columbia University Medical Center, New York, NY
- Assistant Professor of Neurology, University Hospitals Case Medical Center, Cleveland, OH
- Clinical Neuropsychologist, Minnesota Epilepsy Group, P.A., St. Paul, MN and Department of Neurology, University of Minnesota-Twin Cities, MN
- Professor and Chair, Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta GA
| |
Collapse
|
45
|
Gerez M, Suárez E, Serrano C, Castanedo L, Tello A. The crossroads of anxiety: distinct neurophysiological maps for different symptomatic groups. Neuropsychiatr Dis Treat 2016; 12:159-75. [PMID: 26848265 PMCID: PMC4723020 DOI: 10.2147/ndt.s89651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite the devastating impact of anxiety disorders (ADs) worldwide, long-lasting debates on causes and remedies have not solved the clinician's puzzle: who should be treated and how? Psychiatric classifications conceptualize ADs as distinct entities, with strong support from neuroscience fields. Yet, comorbidity and pharmacological response suggest a single "serotonin dysfunction" dimension. Whether AD is one or several disorders goes beyond academic quarrels, and the distinction has therapeutic relevance. Addressing the underlying dysfunctions should improve treatment response. By its own nature, neurophysiology can be the best tool to address dysfunctional processes. PURPOSE To search for neurophysiological dysfunctions and differences among panic disorder (PD), agoraphobia-social-specific phobia, obsessive-compulsive disorder (OCD) and generalized anxiety disorder. METHODS A sample population of 192 unmedicated patients and 30 aged-matched controls partook in this study. Hypothesis-related neurophysiological variables were combined into ten independent factors: 1) dysrhythmic patterns, 2) delta, 3) theta, 4) alpha, 5) beta (whole-head absolute power z-scores), 6) event-related potential (ERP) combined latency, 7) ERP combined amplitude (z-scores), 8) magnitude, 9) site, and 10) site of hyperactive networks. Combining single variables into representative factors was necessary because, as in all real-life phenomena, the complexity of interactive processes cannot be addressed through single variables and the multiplicity of potentially implicated variables would demand an extremely large sample size for statistical analysis. RESULTS The nonparametric analysis correctly classified 81% of the sample. Dysrhythmic patterns, decreased delta, and increased beta differentiated AD from controls. Shorter ERP latencies were found in several individual patients, mostly from the OCD group. Hyperactivities were found at the right frontorbital-striatal network in OCD and at the panic circuit in PD. CONCLUSIONS Our findings support diffuse cortical instability in AD in general, with individual differences in information processing deficits and regional hyperactivities in OCD and PD. Study limitations and the rationale behind the variable selection and combination strategy will be discussed before addressing the therapeutic implications of our findings.
Collapse
Affiliation(s)
- Montserrat Gerez
- Departamento de Neurofisiología Clínica, Hospital Español de México, Mexico City, Mexico
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| | - Enrique Suárez
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| | - Carlos Serrano
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| | - Lauro Castanedo
- Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico
| | - Armando Tello
- Departamento de Neurofisiología Clínica, Hospital Español de México, Mexico City, Mexico
- Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Neuropsychiatric Disease and Treatment 2016:12 159–175
| |
Collapse
|
46
|
Bröer S, Löscher W. Novel combinations of phenotypic biomarkers predict development of epilepsy in the lithium-pilocarpine model of temporal lobe epilepsy in rats. Epilepsy Behav 2015; 53:98-107. [PMID: 26539702 DOI: 10.1016/j.yebeh.2015.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
The discovery and validation of biomarkers in neurological and neurodegenerative diseases is an important challenge for early diagnosis of disease and for the development of therapeutics. Epilepsy is often a consequence of brain insults such as traumatic brain injury or stroke, but as yet no biomarker exists to predict the development of epilepsy in patients at risk. Given the complexity of epilepsy, it is unlikely that a single biomarker is sufficient for this purpose, but a combinatorial approach may be needed to overcome the challenge of individual variability and disease heterogeneity. The goal of the present prospective study in the lithium-pilocarpine model of epilepsy in rats was to determine the discriminative utility of combinations of phenotypic biomarkers by examining their ability to predict epilepsy. For this purpose, we used a recent model refinement that allows comparing rats that will or will not develop spontaneous recurrent seizures (SRS) after pilocarpine-induced status epilepticus (SE). Potential biomarkers included in our study were seizure threshold and seizure severity in response to timed i.v. infusion of pentylenetetrazole (PTZ) and behavioral alterations determined by a battery of tests during the three weeks following SE. Three months after SE, video/EEG monitoring was used to determine which rats had developed SRS. To determine whether a biomarker or combination of biomarkers performed better than chance at predicting epilepsy after SE, derived data underwent receiver operating characteristic (ROC) curve analyses. When comparing rats with and without SRS and sham controls, the best intergroup discrimination was obtained by combining all measurements, resulting in a ROC area under curve (AUC) of 0.9592 (P<0.01), indicating an almost perfect discrimination or accuracy to predict development of SRS. These data indicate that a combinatorial biomarker approach may overcome the challenge of individual variability in the prediction of epilepsy.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
47
|
|
48
|
Pitkänen A, Roivainen R, Lukasiuk K. Development of epilepsy after ischaemic stroke. Lancet Neurol 2015; 15:185-197. [PMID: 26597090 DOI: 10.1016/s1474-4422(15)00248-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022]
Abstract
For about 30% of patients with epilepsy the cause is unknown. Even in patients with a known risk factor for epilepsy, such as ischaemic stroke, only a subpopulation of patients develops epilepsy. Factors that contribute to the risk for epileptogenesis in a given individual generally remain unknown. Studies in the past decade on epilepsy in patients with ischaemic stroke suggest that, in addition to the primary ischaemic injury, existing difficult-to-detect microscale changes in blood vessels and white matter present as epileptogenic pathologies. Injury severity, location and type of pathological changes, genetic factors, and pre-injury and post-injury exposure to non-genetic factors (ie, the exposome) can divide patients with ischaemic stroke into different endophenotypes with a variable risk for epileptogenesis. These data provide guidance for animal modelling of post-stroke epilepsy, and for laboratory experiments to explore with increased specificity the molecular 'mechanisms, biomarkers, and treatment targets of post-stroke epilepsy in different circumstances, with the aim of modifying epileptogenesis after ischaemic stroke in individual patients without compromising recovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Reina Roivainen
- Department of Neurology, Hyvinkää Hospital, Hyvinkää, Finland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
The frequency of spontaneous seizures in rats correlates with alterations in sensorimotor gating, spatial working memory, and parvalbumin expression throughout limbic regions. Neuroscience 2015; 312:86-98. [PMID: 26582750 DOI: 10.1016/j.neuroscience.2015.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023]
Abstract
Cognitive deficits and psychotic symptoms are highly prevalent in patients with temporal lobe epilepsy (TLE). Imaging studies in humans have suggested that these comorbidities are associated with atrophy in temporal lobe structures and other limbic regions. It remains to be clarified whether TLE comorbidities are due to the frequency of spontaneous seizures or to limbic structural damage per se. Here, we used the pilocarpine model of chronic spontaneous seizures to evaluate the possible association of seizure frequency with sensorimotor gating, spatial working memory, and neuropathology throughout limbic regions. For TLE modeling, we induced a 2-h status epilepticus by the systemic administration of lithium-pilocarpine. Once spontaneous seizures were established, we tested the locomotor activity (open field), spatial working memory (eight-arm radial maze), and sensorimotor gating (prepulse inhibition of acoustic startle). After behavioral testing, the brains were sectioned for hematoxylin-eosin staining (cell density) and parvalbumin immunohistochemistry (GABAergic neuropil) in the prefrontal cortex, nucleus accumbens, thalamus, amygdala, hippocampus, and entorhinal cortex. The animal groups analyzed included chronic epileptic rats, their controls, and rats that received lithium-pilocarpine but eventually failed to express status epilepticus or spontaneous seizures. Epileptic rats showed deficits in sensorimotor gating that negatively correlated with the radial maze performance, and impairments in both behavioral tests correlated with seizure frequency. In addition to neuronal loss at several sites, we found increased parvalbumin immunostaining in the prefrontal cortex (infralimbic area), thalamus (midline and reticular nuclei), amygdala, Ammon's horn, dentate gyrus, and entorhinal cortex. These tissue changes correlated with seizure frequency and impairments in sensorimotor gating. Our work indicates that chronic seizures might impact the inhibitory-excitatory balance in the temporal lobe and its interconnected limbic regions, which could increase the likelihood of cognitive deficits and interictal psychiatric disorders.
Collapse
|
50
|
Abstract
Epileptogenesis is a chronic process that can be triggered by genetic or acquired factors, and that can continue long after epilepsy diagnosis. In 2015, epileptogenesis is not a treatment indication, and there are no therapies available in clinic to treat individuals at risk of epileptogenesis. However, thanks to active research, a large number of animal models have become available for search of molecular mechanisms of epileptogenesis. The first glimpses of treatment targets and biomarkers that could be developed to become useful in clinic are in sight. However, the heterogeneity of the epilepsy condition, and the dynamics of molecular changes over the course of epileptogenesis remain as challenges to overcome.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland Department of Neurology, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|