1
|
Kaymak A, Colucci F, Ahmadipour M, Andreasi NG, Rinaldo S, Israel Z, Arkadir D, Telese R, Levi V, Zorzi G, Carpaneto J, Carecchio M, Prokisch H, Zech M, Garavaglia B, Bergman H, Eleopra R, Mazzoni A, Romito LM. Spiking Patterns in the Globus Pallidus Highlight Convergent Neural Dynamics across Diverse Genetic Dystonia Syndromes. Ann Neurol 2025; 97:826-844. [PMID: 39887724 PMCID: PMC12010065 DOI: 10.1002/ana.27185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Genetic dystonia is a complex movement disorder with diverse clinical manifestations resulting from pathogenic mutations in associated genes. A recent paradigm shift emphasizes the functional convergence among dystonia genes, hinting at a shared pathomechanism. However, the neural dynamics supporting this convergence remain largely unexplored. METHODS Herein, we analyzed microelectrode recordings acquired during pallidal deep brain stimulation surgery from 31 dystonia patients with pathogenic mutations in the AOPEP, GNAL, KMT2B, PANK2, PLA2G6, SGCE, THAP1, TOR1A, and VPS16 genes. We identified 1,694 single units whose activity was characterized by a broad set of neural features. RESULTS AOPEP, PANK2, and THAP1 displayed higher firing regularity, whereas GNAL, PLA2G6, KMT2B, and SGCE shared a large fraction of bursting neurons (> 26.6%), significantly exceeding the rate in other genes. TOR1A and VPS16 genes constituted an intermediate group, bridging these 2 groups, due to having the highest degree of spiking irregularity. Hierarchical clustering algorithms based on these dynamics confirmed the results obtained with first-order comparisons. INTERPRETATION Despite lacking common molecular pathways, dystonia genes share largely overlapping structures of neural patterns, in particular the degree of pallidal spiking regularity and bursting activity. We propose that the degree of desynchronization facilitated by pallidal neural bursts may explain the variability in deep brain stimulation (DBS) of the globus pallidus internus (GPi) surgery outcomes across genetic dystonia syndromes. Lastly, investigating the effects of genetic mutations on low-frequency pallidal activity could optimize personalized adaptive DBS treatments in patients with genetic dystonia. ANN NEUROL 2025;97:826-844.
Collapse
Affiliation(s)
- Ahmet Kaymak
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Fabiana Colucci
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
| | - Mahboubeh Ahmadipour
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Nico Golfrè Andreasi
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Sara Rinaldo
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Zvi Israel
- Department of NeurosurgeryHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - David Arkadir
- Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
- Department of NeurologyHadassah Medical CenterJerusalemIsrael
| | - Roberta Telese
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Vincenzo Levi
- Neurosurgery Department, Functional Neurosurgery UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Giovanna Zorzi
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Jacopo Carpaneto
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | | | - Holger Prokisch
- Institute of NeurogenomicsHelmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Michael Zech
- Institute of NeurogenomicsHelmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| | - Barbara Garavaglia
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Hagai Bergman
- Department of NeurosurgeryHadassah Medical CenterJerusalemIsrael
- Department of Medical NeuroscienceInstitute of Medical Research Israel‐Canada (IMRIC), The Hebrew University‐Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew UniversityJerusalemIsrael
| | - Roberto Eleopra
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alberto Mazzoni
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Luigi M. Romito
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
2
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
3
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Ding B, Tang Y, Ma S, Akter M, Liu ML, Zang T, Zhang CL. Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. J Neurosci 2021; 41:2024-2038. [PMID: 33468570 PMCID: PMC7939088 DOI: 10.1523/jneurosci.2507-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A (TOR1A), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear "blebs" that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregulated in DYT1 cells and exhibits abnormal subcellular distribution in a cholinergic MNs-specific manner. Such dysregulation of LMNB1 can be recapitulated by either ectopic expression of the mutant TOR1A gene or shRNA-mediated downregulation of endogenous TOR1A in healthy control MNs. Interestingly, downregulation of LMNB1 can largely ameliorate all the cellular defects in DYT1 MNs. These results reveal the value of disease modeling with human patient-specific neurons and indicate that dysregulation of LMNB1, a crucial component of the nuclear lamina, may constitute a major molecular mechanism underlying DYT1 pathology.SIGNIFICANCE STATEMENT Inaccessibility to patient neurons greatly impedes our understanding of the pathologic mechanisms for dystonia. In this study, we employ reprogrammed human patient-specific motor neurons (MNs) to model DYT1, the most severe hereditary form of dystonia. Our results reveal disease-dependent deficits in nuclear morphology and nucleocytoplasmic transport (NCT). Most importantly, we further identify LMNB1 dysregulation as a major contributor to these deficits, uncovering a new pathologic mechanism for DYT1 dystonia.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Yu Tang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masuma Akter
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tong Zang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
5
|
Gómez-Garre P, Jesús S, Periñán MT, Adarmes A, Alonso-Canovas A, Blanco-Ollero A, Buiza-Rueda D, Carrillo F, Catalán-Alonso MJ, Del Val J, Escamilla-Sevilla F, Espinosa-Rosso R, Fernández-Moreno MC, García-Moreno JM, García-Ruiz PJ, Giacometti-Silveira S, Gutiérrez-García J, López-Valdés E, Macías-García D, Martínez-Castrillo JC, Martínez-Torres I, Medialdea-Natera MP, Mínguez-Castellanos A, Moya MÁ, Ochoa-Sepulveda JJ, Ojea T, Rodríguez N, Sillero-Sánchez M, Tejera-Parrado C, Mir P. Mutational spectrum of GNAL, THAP1 and TOR1A genes in isolated dystonia: study in a population from Spain and systematic literature review. Eur J Neurol 2020; 28:1188-1197. [PMID: 33175450 DOI: 10.1111/ene.14638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature. METHODS A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing. In addition, an extensive literature search to identify original articles (published before 10 August 2020) reporting mutations in TOR1A, THAP1 or GNAL associated to dystonia was performed. RESULTS Pathogenic or likely pathogenic variants in TOR1A, THAP1 and GNAL were identified in 0.48%, 0.57% and 0.29% of our patients, respectively. Five patients carried the variation p.Glu303del in TOR1A. A very rare variant in GNAL (p.Ser238Asn) was found as a putative risk factor for dystonia. In the literature, variations in TOR1A, THAP1 and GNAL accounted for about 6%, 1.8% and 1.1% of published dystonia patients, respectively. CONCLUSIONS There is a different genetic contribution to dystonia of these three genes in our patients (about 1.3% of patients) and in the literature (about 3.6% of patients), probably due the high proportion of adult-onset cases in our cohort. As regards age at onset, site of dystonia onset, and final distribution, in our population there is a clear differentiation between DYT-TOR1A and DYT-GNAL, with DYT-THAP1 likely to be an intermediate phenotype.
Collapse
Affiliation(s)
- Pilar Gómez-Garre
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | - Silvia Jesús
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | - María Teresa Periñán
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | - Astrid Adarmes
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | - Araceli Alonso-Canovas
- Movement Disorders Unit, Neurology Department, Ramón y Cajal Hospital, IRYCIS, Madrid, Spain
| | | | - Dolores Buiza-Rueda
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | - Fátima Carrillo
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | | | - Javier Del Val
- Movement Disorders Unit, Neurology Department, San Carlos Clinical Hospital, Madrid, Spain
| | | | | | | | | | - Pedro José García-Ruiz
- Movement Disorders Unit, Neurology Department, San Carlos Clinical Hospital, Madrid, Spain
| | | | | | - Eva López-Valdés
- Movement Disorders Unit, Neurology Department, La Fe Hospital, Valencia, Spain
| | - Daniel Macías-García
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| | | | | | | | | | - Miguel Ángel Moya
- Neurology Department, Puerta del Mar University Hospital, Cádiz, Spain
| | | | - Tomás Ojea
- Neurology Department, Virgen Macarena University Hospital, Seville, Spain
| | - Nuria Rodríguez
- Neurology Department, Puerto Real University Hospital, Cádiz, Spain
| | | | - Cristina Tejera-Parrado
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Pablo Mir
- Movement Disorders Unit, Clinical Neurology and Neurophysiology Department, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED, Madrid, Spain
| |
Collapse
|
6
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
7
|
Geoghegan AR, Al Hussona M, Beauchamp NJ, Hutchinson M, Sean O'Riordan MB, Lynch T, Webb D. A novel GNAL mutation in familial dystonia presenting with childhood tremor and myoclonus. Mov Disord 2019; 34:923-924. [DOI: 10.1002/mds.27694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | - Nick J. Beauchamp
- Sheffield Diagnostic Genetics Services, Sheffield Children's NHS Foundation Trust Sheffield United Kingdom
| | | | | | - Tim Lynch
- Mater Misericordiae University Hospital Dublin Ireland
| | - David Webb
- Tallaght University Hospital Tallaght, Dublin 24 Ireland
- Our Lady's Children's Hospital Crumlin, Dublin Ireland
| |
Collapse
|
8
|
Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet 2019; 27:407-420. [PMID: 29186574 DOI: 10.1093/hmg/ddx405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
Collapse
Affiliation(s)
| | | | - Sumin Kim
- Cellular and Molecular Biology Program
| | | | - William T Dauer
- Department of Neurology.,Cellular and Molecular Biology Program.,Department of Cell and Developmental Biology.,VA Ann Arbor Health System, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Weisheit CE, Pappas SS, Dauer WT. Inherited dystonias: clinical features and molecular pathways. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:241-254. [PMID: 29325615 DOI: 10.1016/b978-0-444-63233-3.00016-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL.
Collapse
Affiliation(s)
- Corinne E Weisheit
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
10
|
Yellajoshyula D, Liang CC, Pappas SS, Penati S, Yang A, Mecano R, Kumaran R, Jou S, Cookson MR, Dauer WT. The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage. Dev Cell 2017; 42:52-67.e4. [PMID: 28697333 DOI: 10.1016/j.devcel.2017.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
The childhood-onset motor disorder DYT6 dystonia is caused by loss-of-function mutations in the transcription factor THAP1, but the neurodevelopmental processes in which THAP1 participates are unknown. We find that THAP1 is essential for the timing of myelination initiation during CNS maturation. Conditional deletion of THAP1 in the CNS retards maturation of the oligodendrocyte (OL) lineage, delaying myelination and causing persistent motor deficits. The CNS myelination defect results from a cell-autonomous requirement for THAP1 in the OL lineage and is recapitulated in developmental assays performed on OL progenitor cells purified from Thap1 null mice. Loss of THAP1 function disrupts a core set of OL maturation genes and reduces the DNA occupancy of YY1, a transcription factor required for OL maturation. These studies establish a role for THAP1 transcriptional regulation at the inception of myelination and implicate abnormal timing of myelination in the pathogenesis of childhood-onset dystonia.
Collapse
Affiliation(s)
- Dhananjay Yellajoshyula
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Silvia Penati
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Angela Yang
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Rodan Mecano
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Stephanie Jou
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; VAAAHS, University of Michigan Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Relationship of Cognitive Function to Motor Symptoms and Mood Disorders in Patients With Isolated Dystonia. Cogn Behav Neurol 2017; 30:16-22. [DOI: 10.1097/wnn.0000000000000117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Pratt D, Mente K, Rahimpour S, Edwards NA, Tinaz S, Berman BD, Hallett M, Ray-Chaudhury A. Diminishing evidence for torsinA-positive neuronal inclusions in DYT1 dystonia. Acta Neuropathol Commun 2016; 4:85. [PMID: 27531128 PMCID: PMC4988029 DOI: 10.1186/s40478-016-0362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022] Open
|
13
|
Abstract
Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells.
Collapse
Affiliation(s)
- Richik N Mukherjee
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Pan Chen
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| | - Daniel L Levy
- a Department of Molecular Biology , University of Wyoming , Laramie , WY USA
| |
Collapse
|
14
|
Albanese A, Romito LM, Calandrella D. Therapeutic advances in dystonia. Mov Disord 2015; 30:1547-56. [DOI: 10.1002/mds.26384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alberto Albanese
- Istituto Clinico Humanitas; Rozzano Milano Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore; Milano Italy
| | - Luigi M. Romito
- Neurologia I, Istituto Neurologico Carlo Besta; Milano Italy
| | | |
Collapse
|
15
|
Pappas SS, Darr K, Holley SM, Cepeda C, Mabrouk OS, Wong JMT, LeWitt TM, Paudel R, Houlden H, Kennedy RT, Levine MS, Dauer WT. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. eLife 2015; 4:e08352. [PMID: 26052670 PMCID: PMC4473728 DOI: 10.7554/elife.08352] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022] Open
Abstract
Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI:http://dx.doi.org/10.7554/eLife.08352.001 Dystonia is disorder of the nervous system that causes people to suffer from abnormal and involuntary twisting movements. These movements are triggered, in part, by irregularities in a part of the brain called the striatum. The most common view among researchers is that dystonia is caused by abnormal activity in an otherwise structurally normal nervous system. But, recent findings indicate that the degeneration of small populations of nerve cells in the brain may be important. The striatum is made up of several different types of nerve cells, but it is poorly understood which of these are affected in dystonia. One type of dystonia, which most often occurs in children, is caused by a defect in a protein called torsinA. Pappas et al. have now discovered that deleting the gene for torsinA from particular populations of nerve cells in the brains of mice (including a population in the striatum) causes abnormal twisting movements. Like people with dystonia, these mice developed the abnormal movements as juveniles, and the movements were suppressed with ‘anti-cholinergic’ medications. Pappas et al. then analyzed brain tissue from these mice and revealed that the twisting movements began at the same time that a single type of cell in the striatum—called ‘cholinergic interneurons’—degenerated. Postmortem studies of brain tissue from dystonia patients also revealed abnormalities of these neurons. Together these findings challenge the notion that dystonia occurs in a structurally normal nervous system and reveal that cholinergic interneurons in the striatum specifically require torsinA to survive. Following on from this work, the next challenges are to identify what causes the selective loss of cholinergic interneurons, and to investigate how this cell loss affects the activity within the striatum. DOI:http://dx.doi.org/10.7554/eLife.08352.002
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Katherine Darr
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Omar S Mabrouk
- Department of Pharmacology, University of Michigan, Ann Arbor, United States
| | - Jenny-Marie T Wong
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Tessa M LeWitt
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Reema Paudel
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
16
|
VanGompel MJW, Nguyen KCQ, Hall DH, Dauer WT, Rose LS. A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import. Mol Biol Cell 2015; 26:1752-63. [PMID: 25739455 PMCID: PMC4436785 DOI: 10.1091/mbc.e14-07-1239] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/24/2015] [Indexed: 12/03/2022] Open
Abstract
Mutation in the human AAA+ protein torsinA leads to DYT1 dystonia. Loss of a Caenorhabditis elegans torsin, OOC-5, leads to defects in nucleoporin localization and nuclear import, a novel phenotype for a torsin mutant. NE ultrastructural defects similar to those in mouse and fly torsin mutants are also found, showing conservation of function. Torsin proteins are AAA+ ATPases that localize to the endoplasmic reticular/nuclear envelope (ER/NE) lumen. A mutation that markedly impairs torsinA function causes the CNS disorder DYT1 dystonia. Abnormalities of NE membranes have been linked to torsinA loss of function and the pathogenesis of DYT1 dystonia, leading us to investigate the role of the Caenorhabditis elegans torsinA homologue OOC-5 at the NE. We report a novel role for torsin in nuclear pore biology. In ooc-5–mutant germ cell nuclei, nucleoporins (Nups) were mislocalized in large plaques beginning at meiotic entry and persisted throughout meiosis. Moreover, the KASH protein ZYG-12 was mislocalized in ooc-5 gonads. Nups were mislocalized in adult intestinal nuclei and in embryos from mutant mothers. EM analysis revealed vesicle-like structures in the perinuclear space of intestinal and germ cell nuclei, similar to defects reported in torsin-mutant flies and mice. Consistent with a functional disruption of Nups, ooc-5–mutant embryos displayed impaired nuclear import kinetics, although the nuclear pore-size exclusion barrier was maintained. Our data are the first to demonstrate a requirement for a torsin for normal Nup localization and function and suggest that these functions are likely conserved.
Collapse
Affiliation(s)
- Michael J W VanGompel
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Ken C Q Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, New York, NY 10461
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, New York, NY 10461
| | - William T Dauer
- Departments of Neurology and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
17
|
Abstract
Mutations in genes encoding nuclear envelope proteins cause a wide range of inherited diseases, many of which are neurological. We review the genetic causes and what little is known about pathogenesis of these nuclear envelopathies that primarily affect striated muscle, peripheral nerve and the central nervous system. We conclude by providing examples of experimental therapeutic approaches to these rare but important neuromuscular diseases.
Collapse
Affiliation(s)
- Howard J. Worman
- />Department of Medicine and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032 USA
| | - William T. Dauer
- />Department of Neurology and Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109 USA
| |
Collapse
|
18
|
Affiliation(s)
- William T Dauer
- Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB, Room 4003, Ann Arbor, MI, 48109-2200, USA,
| |
Collapse
|