1
|
Oliveira MS, Fernandes RA, Pinto LS, Moreira FA, Castro OWD, Santos VR. Balancing efficacy and safety: The dual impact of antiseizure medications on the developing brain. Epilepsy Behav 2025; 167:110400. [PMID: 40187052 DOI: 10.1016/j.yebeh.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
The number of neurons in the developing brain is greater than typically found in adulthood, and the brain possesses delicate mechanisms to induce the death of excess cells and refine neural circuitry. The correct tuning between the processes of neuronal death and survival generates a mature and functional brain in its complexity and plastic capacity. Epilepsy is a highly prevalent neurological condition worldwide, including among young individuals. However, exposure to the main treatment approaches, the long-term use of Antiseizure Medication (ASM), during the critical period of development can induce a series of changes in this delicate balance. Acting by various mechanisms of action, ASMs may induce an increase in neuronal death, something that translates into deleterious neuropsychiatric effects in adulthood. Several investigations conducted in recent years have brought to light new aspects related to this dynamic, yet many questions, such as the cellular mechanisms of death and the pathophysiology of late effects, still have unresolved elements. In this review, we aimed to explore the mechanisms of action of the most widely used ASMs in the treatment of neonatal epilepsy, the broad aspects of neuronal death in the developing brain and the repercussions of this death and other effects in adulthood. We review the evidence indicating a relationship between exposure to ASMs and the manifestation of associated psychiatric comorbidities in adulthood and discuss some possible mechanisms underlying the induction of this process by morphological and physiological changes in the related behaviors.
Collapse
Affiliation(s)
- M S Oliveira
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - R A Fernandes
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - L S Pinto
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - O W de Castro
- Departament of Physiology, Institute of Biological Science and Health, Universidade Federal de Alagoas - UFAL, Brazil
| | - V R Santos
- Department of Morphology, Institute of Biological Science, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| |
Collapse
|
2
|
Karp F, León IE. Cannabinoids: Adaptogens or Not? Cannabis Cannabinoid Res 2025; 10:389-399. [PMID: 40332769 DOI: 10.1089/can.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Since ancient times, humanity has been exploring natural substances with the aim of increasing stress resistance, enhancing biochemical homeostasis, and treating different diseases. In this way, the objective of the present review is to compare the biological effects of cannabinoids (CNBs) with adaptogens, this exploration allows us to consider the controversy if they can be classified together considering the effects on the body. First, the work revises different features of adaptogens such as their chemical structure, ligand-receptors properties, and homeostasis-stress capabilities. Also, this review includes an overview of preclinical and clinical studies of the effect of adaptogens considering a broad spectrum of adverse biological, chemical, and physical factors. Then, the work does a review of the CNBs effects on the body including the principal uses for the treatment of several diseases as neurodegenerative disorders, arthritis, cancer, cardiovascular affections, diabetes, anxiety, chronic pain, among others. In addition, the different characteristics of the specific endocannabinoid system are described explaining the wide CNBs body effects. Finally, this review presents a comparative analysis between CNBs and adaptogens properties, expecting to contribute to understanding if CNBs can be classified as adaptogens.
Collapse
Affiliation(s)
- Federico Karp
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Schaller E, Lamer S, Schlosser A, Stigloher C, Maher P, Decker M. Affinity-Based Protein Profiling Reveals IDH2 as a Mitochondrial Target of Cannabinol in Receptor-Independent Neuroprotection. Chemistry 2025:e202501143. [PMID: 40388656 DOI: 10.1002/chem.202501143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/21/2025]
Abstract
Phytocannabinoids are attracting growing attention because of their potential for treatment of neurodegenerative diseases. Among them, the "minor" cannabinoid, cannabinol (CBN), has emerged as a promising neuroprotective agent, acting independently of classical cannabinoid receptors through as-yet unidentified mitochondrial targets. To uncover the molecular basis of its neuroprotective effects, we designed and synthesized a chemical probe based on CBN, incorporating a minimalist diazirine linker. Functional assays confirmed that the probe retains CBN's mitochondrial activity and exhibits strong mitochondrial enrichment, as demonstrated by fluorescence microscopy and click-correlative light and electron microscopy (click-CLEM). By affinity-based protein profiling (AfBPP), we identified isocitrate dehydrogenase 2 (IDH2) as a key mitochondrial target of CBN. This finding was further substantiated by siRNA knockdown studies, which revealed that the absence of IDH2 partially phenocopies CBN's effects, validating its role as a critical mediator of CBN's neuroprotective activity.
Collapse
Affiliation(s)
- Eva Schaller
- Julius-Maximilians-Universität Würzburg (JMU), Institute for Pharmacy and Food Chemistry, Pharmaceutical and Medicinal Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Stephanie Lamer
- Julius-Maximilians-Universität Würzburg (JMU), Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, 97080, Würzburg, Germany
| | - Andreas Schlosser
- Julius-Maximilians-Universität Würzburg (JMU), Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, 97080, Würzburg, Germany
| | - Christian Stigloher
- Julius-Maximilians-Universität Würzburg (JMU), Biocenter/Theodor-Boveri-Institute, Imaging Core Facility, Am Hubland, 97074, Würzburg, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, California, 92037, USA
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg (JMU), Institute for Pharmacy and Food Chemistry, Pharmaceutical and Medicinal Chemistry, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Mirza Agha B, Monteith M, Earl J, Ganske K, Kaloa T, McDonald KJ, Nixon AG, Panjwani M, Robinson D, Rusnak V, Mohajerani MH, Kovalchuk I, Sutherland RJ, Hong NS, McDonald RJ. Effects of cannabidiol (CBD) treatment on age-related cognitive decline in C57 mice. Front Aging Neurosci 2025; 17:1567650. [PMID: 40416734 PMCID: PMC12098523 DOI: 10.3389/fnagi.2025.1567650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/10/2025] [Indexed: 05/27/2025] Open
Abstract
Aging is associated with cognitive decline, and currently, there are no approved medications that can prevent these impairments. Recently, cannabinoids derived from Cannabis sativa have emerged as promising therapeutic compounds with neuroprotective, anti-inflammatory, and cognitive-enhancing properties. Despite their benefits, further research is needed to fully understand their efficacy across various conditions. This study investigates the effects of cannabidiol (CBD) on memory impairment and brain inflammation in aging mice. Fourteen-month-old C57 mice were administered CBD orally for 7 months and subsequently evaluated between 19 and 21 months of age using behavioral tasks that are sensitive to dysfunction of the perirhinal cortex, hippocampus, amygdala, and various brain regions that are crucial for motor control and coordination. The findings of this study indicate that CBD reduces inflammatory response in the brain and improves cognitive decline associated with aging.
Collapse
Affiliation(s)
- Behroo Mirza Agha
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Merrin Monteith
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jarem Earl
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Keona Ganske
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Tina Kaloa
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Kelan J. McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Abigail G. Nixon
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Maleeha Panjwani
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Danika Robinson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Valeria Rusnak
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H. Mohajerani
- Douglas Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nancy S. Hong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Brice-Tutt AC, Murphy NP, Setlow B, Senetra AS, Malphurs W, Caudle RM, Bruijnzeel AW, Febo M, Sharma A, Neubert JK. Cannabidiol interactions with oxycodone analgesia in an operant orofacial cutaneous thermal pain assay following oral administration in rats. Pharmacol Biochem Behav 2025; 250:173968. [PMID: 39914591 DOI: 10.1016/j.pbb.2025.173968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 03/08/2025]
Abstract
Previous studies have driven the notion that the cannabis constituent cannabidiol could be an effective adjunct to opioid administration for managing pain. Most of these studies have used experimental rodents with routes of administration, such as subcutaneous and intraperitoneal, that do not correspond with the routes used in clinical practice. In response to this, we tested the ability of cannabidiol co-administration to augment opioid analgesia via the more clinically-relevant oral route of administration. To this end, male and female rats were orally gavaged with cannabidiol (25 mg/kg), oxycodone (1.4 mg/kg), or a combination of both, after which they were tested in an operant thermal orofacial pain assay in which they voluntarily exposed their faces to cutaneous thermal pain to receive a palatable reward. All three drug conditions produced analgesic effects of varying degrees, being most profound in the combination group where a statistically significant enhancement over oxycodone-induced analgesia alone was evident. Additionally, oxycodone administration decreased lick frequencies - a measure of motor coordination of rhythmic movements - which too was magnified by co-administration of cannabidiol. Together these studies provide further support of an ability of cannabidiol to augment opioid effects, particularly analgesia, when administered by a route relevant to human pain management. As such, they encourage the notion that cannabidiol could find utility as an opioid-sparing approach to treating pain.
Collapse
Affiliation(s)
- Ariana C Brice-Tutt
- Department of Orthodontics, College of Dentistry, University of Florida, United States of America
| | - Niall P Murphy
- Department of Orthodontics, College of Dentistry, University of Florida, United States of America.
| | - Barry Setlow
- Department of Psychiatry, College of Medicine, University of Florida, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, United States of America
| | - Wendi Malphurs
- Department of Orthodontics, College of Dentistry, University of Florida, United States of America
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Florida, United States of America; Department of Neuroscience, College of Medicine, University of Florida, United States of America
| | - Adriaan W Bruijnzeel
- Department of Neuroscience, College of Medicine, University of Florida, United States of America; Department of Psychiatry, College of Medicine, University of Florida, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America
| | - Marcelo Febo
- Department of Neuroscience, College of Medicine, University of Florida, United States of America; Department of Psychiatry, College of Medicine, University of Florida, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, United States of America
| | - John K Neubert
- Department of Orthodontics, College of Dentistry, University of Florida, United States of America; Department of Neuroscience, College of Medicine, University of Florida, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
6
|
Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. The Impact of Major and Minor Phytocannabinoids on the Maintenance and Function of INS-1 β-Cells Under High-Glucose and High-Lipid Conditions. Molecules 2025; 30:1991. [PMID: 40363798 PMCID: PMC12073157 DOI: 10.3390/molecules30091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/22/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Type 2 diabetes mellites (T2DM) is the most common form of diabetes and affects a significant portion of the population. Obesity-related increases in free fatty acids and glucose in the diet contribute to β-cell dysfunction and loss, ultimately leading to the onset of T2DM. The endocannabinoid system, which is present throughout the body, plays a vital role in regulating various physiological processes, including those in the pancreas. This system has been implicated in metabolic disorders like obesity and diabetes, as it helps to regulate appetite, food intake, and fat production. Phytocannabinoids from Cannabis sativa have the potential to influence the endocannabinoid system, offering a promising therapeutic approach for diabetes and its complications. Using high-glucose-high-lipid (HGHL)-induced INS-1 β-cells, we investigated the protective effects of two major (THC and CBD) and three minor (THCV, CBC, and CBG) phytocannabinoids on high glucose-high lipid (HGHL)-induced apoptosis, cell cycle disruption, and impaired function of beta-cells. Our results showed that all five phytocannabinoids reduced HGHL-induced apoptosis, likely by decreasing TXNIP protein levels. Additionally, THC and all three minor phytocannabinoids provided protective effects against functional impairments caused by HGHL exposure.
Collapse
Affiliation(s)
| | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| |
Collapse
|
7
|
Tomagra G, Gandlevskiy N, Rosso E, Bonardi M, Binello A, Carabelli V, Barge A. THC, CBD and minor cannabinoid CBDV differently modulate hippocampal neurons firing. Neurotoxicology 2025; 108:180-190. [PMID: 40204063 DOI: 10.1016/j.neuro.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Cannabis sativa L. presents a very complex composition that includes several secondary metabolites besides the two main compounds, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Many of these minor cannabinoids are still under investigation and are arousing increasing interest for their biological effects and potential therapeutic roles. Cannabis sativa extracts, either properly purified and enriched with cannabinoids, were tested here on the neuronal activity, by monitoring the spontaneous firing rate and the bursts generation of cultured hippocampal neurons. In particular, we focused on the combined effect of THC, CBD and cannabidivarin (CBDV), a non-psychoactive homologue of CBD whose side chain has two fewer carbon atoms, and their related standard compounds. We found that standard THC, recognised for its psychoactive impact and side effects including anxiety and paranoia, significantly decreased the spontaneous firing discharge of cultured hippocampal neurons, whether applied alone or in combination with standard CBD at comparable concentrations. In contrast, the firing activity did not exhibit any significant alterations when CBD was administered alone. When C. sativa extracts were tested, we found that CBDV was able to reverse the inhibition of the firing discharge caused by the mixture of THC and CBD. Furthermore, when administered alone, CBDV significantly increased the firing discharge of hippocampal neurons. In all tested conditions, the effects exerted by standard compounds or extracts were restored to control conditions after 24 hours from administration. Overall, these data unravel a novel action of CBDV in reverting the detrimental effect exerted by the THC+CBD on neuronal firing activity.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology, University of Turin, Italy; NIS Interdepartmental Centre, University of Turin, Italy.
| | | | - Elena Rosso
- Department of Drug and Science Technology, University of Turin, Italy
| | - Monica Bonardi
- Department of Drug and Science Technology, University of Turin, Italy
| | - Arianna Binello
- Department of Drug and Science Technology, University of Turin, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, University of Turin, Italy; NIS Interdepartmental Centre, University of Turin, Italy
| | - Alessandro Barge
- Department of Drug and Science Technology, University of Turin, Italy
| |
Collapse
|
8
|
Chaturvedi K, Bledsoe KS, Pandey P, Osman AG, Chittiboyina AG, Doerksen RJ, Godfrey M. Prediction and assessment of energetically-favored binding orientation of cannabidiol at hNav1.1 channel using all-atom molecular dynamics simulations. J Biomol Struct Dyn 2025:1-10. [PMID: 40105783 DOI: 10.1080/07391102.2025.2477778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Epilepsy is a debilitating condition affecting ∼65 million people globally, with ∼3.4 million cases in the United States alone. Cannabidiol (CBD) has shown promise in treating drug-resistant epilepsy, and there are some experimental indications that its effects result from modulation of the human voltage-gated sodium channel 1.1 (hNav1.1), yet the detailed CBD binding to hNav1.1 at molecular level remains poorly understood. Despite prior molecular modeling and mutagenesis studies, no NMR or X-ray structures of CBD-bound hNav1.1 are available, leaving its exact binding orientation undefined. In this study, we investigated the potential binding-site orientation and interactions of CBD within hNav1.1 using computational methods, including docking, Prime-MMGBSA and all-atom molecular dynamics simulations (MD). To gain insight regarding potential binding orientations of CBD within hNav1.1, we performed Induced-Fit Docking of CBD on a cryo-EM structure (PDB ID:7DTD). We evaluated two orientations of CBD within hNav1.1: one in which the cyclohexene moiety is directed towards the central cavity near key residue Phe1772 (Pose A) and another in which the cyclohexene moiety is exposed towards the membrane (Pose B). Subsequent 500 ns MD simulations revealed that Pose B, with the cyclohexene moiety oriented extracellularly towards the membrane within hNav1.1, was energetically more favorable (ΔG = -51.88 ± 5.19 kcal/mol) than the intracellular orientation Pose A (ΔG = -41.57 ± 3.24 kcal/mol). These findings provide valuable insights for designing novel CBD analogs with optimal fit for the hNav1.1 binding pocket.
Collapse
Affiliation(s)
- Krishna Chaturvedi
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Kyle S Bledsoe
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Ahmed G Osman
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Murrell Godfrey
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| |
Collapse
|
9
|
Brenneman DE, Petkanas D, Ippolito M, Ward SJ. Effect of Fatty Acyl Composition for Lysophosphatidylinositol on Neuroinflammatory Responses in Primary Neuronal Cultures. J Mol Neurosci 2025; 75:35. [PMID: 40085305 DOI: 10.1007/s12031-025-02326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome-3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high-content fluorescent imaging. Major endogenous LPI fatty acyl structures consisting of 16:0, 18:0, 18:1, or 20:4 were compared for their effects on IL-1b, NLRP3, and GPR55 immunoreactive areas of neurites and cell bodies after a 6-h treatment. Among these four LPI structures, only LPI-20:4 treatment produced increases in immunoreactive areas for GPR55, NLRP3, and IL-1b in DRG and hippocampal neurites. In contrast, all other LPI structures tested produced a decrease in all of these inflammatory immunoreactive areas in both neurites and cell bodies. Additional studies with LPI-20:4 treatment indicated that IL-6, IL-18, and TNF-α were significantly increased in neurites of DRG and hippocampal cultures. However, oleoyl-lysophosphatidylinositol (LPI-18:1) treatment produced decreases in these three cytokines. Using the viability dye Alamar blue, LPI-20:4 was shown to produce concentration-dependent decreases, whereas all other endogenous LPI structures produced increases with this assay. These studies indicate that fatty acyl structure is the major determinant of LPI for neuroinflammatory responses in DRG and hippocampal cultures, with LPI-20:4 showing pro-inflammatory effects and all other endogenous LPIs tested exhibiting anti-inflammatory responses.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - Dean Petkanas
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Michael Ippolito
- Center for Substance Abuse Research, Department of Neural Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
10
|
Sridharan S, Erridge S, Holvey C, Coomber R, Holden W, Rucker JJ, Platt M, Sodergren MH. Comparison of Cannabis-Based Medicinal Product Formulations for Fibromyalgia: A Cohort Study. J Pain Palliat Care Pharmacother 2025; 39:24-37. [PMID: 39417761 DOI: 10.1080/15360288.2024.2414073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
This cohort study aims to assess the outcomes of fibromyalgia patients enrolled in the UK Medical Cannabis Registry prescribed a homogenous selection of cannabis-based medicinal products (CBMPs). A cohort study of fibromyalgia patients treated with oils (Adven®, Curaleaf International, UK), dried flower (Adven®, Curaleaf International, UK) or both CBMPs was performed. Primary outcomes were changes from baseline at 1, 3, 6 and 12 months in validated patient-reported outcome measures. Secondary outcomes included descriptive analysis of adverse events. One hundred and forty-eight participants were treated with oils (n = 77; 52.03%), dried flower (n = 14; 9.46%) or both (n = 57; 38.51%). Improvements in the generalized anxiety disorder-7 questionnaire, single-item sleep quality scale, fibromyalgia symptom severity score and EQ-5D-5L Index values were observed at each follow up period compared to baseline (p < 0.050). Thirty-six (24.32%) patients experienced 648 adverse events. Improvements were observed across all primary outcomes with no differences observed across different formulations of CBMPs. Adverse events were reported by one-quarter of participants and were more likely to reported by cannabis naïve patients. This present work through focusing on a homogeneous group of CBMPs can help inform randomized controlled trials after observing signals of improvement associated with a specific cultivar of CBMPs.
Collapse
Affiliation(s)
- Surya Sridharan
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Imperial College London, London, UK
- Curaleaf Clinic, London, UK
| | | | - Ross Coomber
- Curaleaf Clinic, London, UK
- St. George's Hospital NHS Trust, London, UK
| | - Wendy Holden
- Department of Psychological Medicine, Kings College London, London, UK
| | - James J Rucker
- Curaleaf Clinic, London, UK
- Department of Psychological Medicine, Kings College London, London, UK
- South London & Maudsley NHS Foundation Trust, London, UK
| | | | - Mikael H Sodergren
- Medical Cannabis Research Group, Imperial College London, London, UK
- Curaleaf Clinic, London, UK
| |
Collapse
|
11
|
Tsien RW, Rosenberg EC. Ion channels and G protein-coupled receptors: Cannabidiol actions on disorders of excitability and synaptic excitatory-inhibitory ratio. Mol Pharmacol 2025; 107:100017. [PMID: 40048808 DOI: 10.1016/j.molpha.2025.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/21/2025] [Indexed: 04/01/2025] Open
Abstract
Brain excitability is dysfunctional in epilepsy and overlapping neuropsychiatric conditions including autism spectrum disorder (ASD). Epilepsy and ASD are often attributed to malfunctioning coordination between synaptic excitation and inhibition. Dravet syndrome (DS) is a severe form of epilepsy arising from haploinsufficiency of the SCN1A gene that encodes the voltage-gated sodium channel Nav1.1. A DS mouse model (Scn1a+/-) recapitulated essential features of DS and revealed that sodium current density was profoundly reduced in GABAergic inhibitory interneurons while pyramidal cells were spared, suggesting that DS is an "interneuronopathy." Further studies from the Catterall group and others have expanded this picture: DS symptoms, which include recurrent seizures, ataxia, cognitive impairment, ASD, and premature death, could be assigned in part to brain region-specific effects; the Nav1.1 mutations cause dysfunction in some subtypes of interneurons, not others, and are temporally restricted; DS-causing sodium channel mutations were found throughout SCN1A as well as in SCN1B, encoding the β1 subunit. Interest in therapeutic approaches was sparked by preclinical studies of cannabidiol (CBD) that led to the 2018 US Food and Drug Administration approval for treatment of seizures in patients with DS. Independent evidence showed that CBD antagonized GPR55, a G protein-coupled receptor activated by the lipid signaling molecule lysophosphatidylinositol (LPI). We summarized evidence from our group and others that CBD has a dual mechanism of action, targeting both ion channels and GPR55. CBD quells an epileptogenic vicious cycle: seizures strengthen LPI-GPR55 signaling while LPI-GPR55 signaling elevates the synaptic excitatory-inhibitory ratio, thereby promoting further seizures. SIGNIFICANCE STATEMENT: Modern medicine relies on ion channels and G protein-coupled receptors (GPCRs) as key targets. In studies of Dravet syndrome, a devastating genetic disorder with features of epilepsy and autism, William Catterall connected NaV1.1 mutations to deficient excitability of inhibitory neurons. He and his colleagues explored preclinical interventions using cannabidiol (CBD) and clobazam, opening the way to a current understanding of CBD's therapeutic mechanism. CBD affects both ion channels and GPR55, a GPCR activated by lysophosphatidylinositol, an activity-dependent lipid messenger, readjusting the synaptic excitatory-inhibitory ratio.
Collapse
Affiliation(s)
- Richard W Tsien
- Neuroscience Institute and Departments of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York.
| | - Evan C Rosenberg
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Zhu Z, Zhang Z, Xiao W, Wang C, Liang R. Efficacy and safety of pharmacological and non-pharmacological therapies in Lennox-Gastaut syndrome: a systematic review and network meta-analysis. Front Pharmacol 2025; 16:1522543. [PMID: 40078280 PMCID: PMC11898213 DOI: 10.3389/fphar.2025.1522543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Objective This study aimed to evaluate the efficacy and safety of antiepileptic drugs and non-pharmacological treatments in patients with Lennox-Gastaut syndrome (LGS). Methods We conducted a systematic search of the PubMed, Embase, Cochrane, and Web of Science databases for randomized controlled trials (RCTs) evaluating both pharmacological and non-pharmacological interventions for LGS. The treatments assessed included cannabidiol, fenfluramine, clobazam, rufinamide, felbamate, lamotrigine, topiramate, deep brain stimulation, and anterior corpus callosotomy. The primary efficacy outcome was defined as a reduction of at least 50% in the frequency of drop seizures during treatment compared to baseline levels. The secondary efficacy outcome was measured as the median percentage reduction in monthly drop seizure frequency throughout the treatment period. Safety assessments were based on the incidence of adverse events and serious adverse events. All outcomes were ranked according to their surface under the cumulative ranking curve (SUCRA). Result This network meta-analysis encompassed 12 RCTs involving a total of 1,445 patients. The SUCRA indicated that clobazam 1 mg/kg/day, anterior corpus callosotomy, and rufinamide were the three most effective interventions for achieving a reduction of at least 50% in drop seizures. In terms of median percentage reduction in drop seizure frequency, clobazam 1 mg/kg/day ranked highest, followed by clobazam 0.5 mg/kg/day and rufinamide. Regarding safety profiles, SUCRA analysis revealed that cannabidiol 20 mg/kg/day had the highest likelihood of inducing adverse events, followed closely by fenfluramine 0.7 mg/kg/day. Lamotrigine was found to be most likely to cause serious adverse reactions, with cannabidiol 10 mg/kg/day following closely behind. Conclusion Clobazam 1 mg/kg/day, anterior corpus callosotomy, and rufinamide manifested the most optimal efficacy in seizure control among LGS patients. Caution should be exercised when administering cannabidiol, lamotrigine, and fenfluramine 0.7 mg/kg/day in clinical practice to mitigate safety concerns associated with drug-related side effects.
Collapse
Affiliation(s)
- Zhengyan Zhu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Neurosurgical Institute, Fuzhou, China
| | - Zhenpan Zhang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Neurosurgical Institute, Fuzhou, China
| | - Wei Xiao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Neurosurgical Institute, Fuzhou, China
- Department of Neurosurgery, Xiangtan Central Hospital, Xiangtan, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Neurosurgical Institute, Fuzhou, China
| | - Risheng Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Neurosurgical Institute, Fuzhou, China
| |
Collapse
|
13
|
Echeverry C, Pazos M, Torres-Pérez M, Prunell G. Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential. Neuroscience 2025; 566:149-160. [PMID: 39725267 DOI: 10.1016/j.neuroscience.2024.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration. Different pathological mechanisms including oxidative stress, mitochondrial dysfunction, alteration in proteostasis and inflammation have been addressed as important contributors to neuronal death. Despite our better understanding of the pathophysiology of these diseases, there is still no cure and available therapies only provide symptomatic relief. In an effort to discover new therapeutic approaches, natural products have aroused interest among researchers given their structural diversity and wide range of biological activities. In this review, we focus on three plant-derived compounds with promising neuroprotective potential that have been traditionally used by folk medicine: the flavonoid quercetin (QCT), the phytocannabinoid cannabidiol (CBD)and the tryptamine N,N-dimethyltryptamine (DMT). These compounds exert neuroprotective effects through different mechanisms of action, some overlapping, but each demonstrating a principal biological activity: QCT as an antioxidant, CBD as an anti-inflammatory, and DMT as a promoter of neuroplasticity. This review summarizes current knowledge on these activities, potential therapeutic benefits of these compounds and their limitations as candidates for neuroprotective therapies. We envision that treatments with QCT, CBD, and DMT could be effective either when combined or when targeting different stages of these diseases.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maximiliano Torres-Pérez
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
14
|
Fu X, Yu Z, Fang F, Zhou W, Bai Y, Jiang Z, Yang B, Sun Y, Tian X, Liu G. Cannabidiol attenuates lipid metabolism and induces CB1 receptor-mediated ER stress associated apoptosis in ovarian cancer cells. Sci Rep 2025; 15:4307. [PMID: 39910152 PMCID: PMC11799381 DOI: 10.1038/s41598-025-88917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Ovarian cancer (OC) is the most deadly gynecological tumor. OC cells utilize cellular metabolic reprogramming to gain a survival advantage, particularly through aberrant lipid metabolic process. As the primary ingredient in exogenous cannabinoids, cannabidiol (CBD) has been confirmed to exhibit antitumor activity in preclinical studies. However, it is still unclear whether CBD can disrupt fatty acid metabolism and induce apoptosis in OC cells. In this study, we have demonstrated that CBD significantly inhibits the proliferation of OCs through a cannabinoid receptor type 1 (CB1R)-mediated manner. Fatty acid metabolic profiling and flow cytometry analysis revealed that CBD has the ability to decrease fatty acid levels and significantly suppress the transcription of genes involved in fatty acid uptake and synthesis in ES-2 cells. In addition, the analysis from RNA-seq and real-time RT-PCR revealed that CBD activated the endoplasmic reticulum (ER) stress pathway. Conversely, by supplementation with unsaturated fatty acid or blocking CB1R, ER stress or reactive oxygen species (ROS) signals with specific inhibitors could significantly relieve CBD induced, dose-dependent, ER stress associated apoptosis, G0-G1 phase arrest, and mitochondrial dysfunction. Taken collectively, these data indicate that CBD may disrupt lipid metabolism, and lead to ER stress-related apoptosis in OCs. Our findings may provide a theoretical mechanism for anti-ovarian cancer using CBD.
Collapse
Affiliation(s)
- Xuanhe Fu
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Stree, Shenyang, 110034, PR China
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, China
| | - Zhixiong Yu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Fang Fang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Yuxin Bai
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Biao Yang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Ye Sun
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Guangyan Liu
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, China.
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
15
|
Miao Y, Zhao F, Guan W. A novel insight into the antidepressant effect of cannabidiol: possible involvement of the 5-HT1A, CB1, GPR55, and PPARγ receptors. Int J Neuropsychopharmacol 2025; 28:pyae064. [PMID: 39657242 PMCID: PMC11878560 DOI: 10.1093/ijnp/pyae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Depression is a prevalent and disabling disorder that poses serious problems in mental health care, and rapid antidepressants are novel treatments for this disorder. Cannabidiol (CBD), a nonintoxicating phytocannabinoid, is thought to have therapeutic potential due to its important neurological and anti-inflammatory properties. Despite major advances in pharmacotherapy in experimental animals, the exact mechanism of antidepressant-like effects remains to be elucidated. METHODS In this paper, we review the current state of knowledge on the antidepressant properties of CBD in numerous experimental and clinical studies. RESULTS Accumulating evidence suggests that CBD has antidepressant properties in humans and animals with few side effects, suggesting that CBD may be a potential antidepressant. Furthermore, we discuss that CBD may therefore provide a potential treatment to exert antidepressant-like effects through various molecular targets, reducing inflammation, and enhancing neurogenesis. CONCLUSIONS Taken together with the growing popularity of CBD as a medicine, these findings extend the limited knowledge on the antidepressant effects of CBD. This potentially opens up new therapeutic means for the patients with depression.
Collapse
Affiliation(s)
- Yang Miao
- Department of Pharmacology, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Fei Zhao
- Department of Pharmacology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Chang CY, Dai W, Hu SSJ. Cannabidiol enhances socially transmitted food preference: a role of acetylcholine in the mouse basal forebrain. Psychopharmacology (Berl) 2025; 242:247-269. [PMID: 39158618 DOI: 10.1007/s00213-024-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
RATIONALE AND OBJECTIVE Rodents acquire food information from their conspecifics and display a preference for the conspecifics' consumed food. This social learning of food information from others promotes the survival of a species, and it is introduced as the socially transmitted food preference (STFP) task. The cholinergic system in the basal forebrain plays a role in the acquisition of STFP. Cannabidiol (CBD), one of the most abundant phytocannabinoids, exerts its therapeutic potential for cognitive deficits through versatile mechanisms of action, including its interaction with the cholinergic system. We hypothesize a positive relationship between CBD and STFP because acetylcholine (ACh) is involved in STFP, and CBD increases the ACh levels in the basal forebrain. MATERIALS AND METHODS Male C57BL/6J mice were trained to acquire the STFP task. We examined whether CBD affects STFP memory by administering CBD (20 mg/kg, i.p.) before the STFP social training. The involvement of cholinergic system in CBD's effect on STFP was examined by knockdown of brain acetylcholinesterase (AChE), applying a nonselective muscarinic antagonist SCO (3 mg/kg, i.p.) before CBD treatment, and measuring the basal forebrain ACh levels in the CBD-treated mice. RESULTS We first showed that CBD enhanced STFP memory. Knockdown of brain AChE also enhanced STFP memory, which mimicked CBD's effect on STFP. SCO blocked CBD's memory-enhancing effect on STFP. Our most significant finding is that the basal forebrain ACh levels in the CBD-treated mice, but not their control counterparts, were positively correlated with mice's STFP memory performance. CONCLUSION This study indicates that CBD enhances STFP memory in mice. Specifically, those which respond to CBD by increasing the muscarinic-mediated ACh signaling perform better in their STFP memory.
Collapse
Affiliation(s)
- Chih-Yu Chang
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Wen Dai
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd, Tainan, 70101, Taiwan.
| |
Collapse
|
17
|
Compagno MK, Silver CR, Cox-Holmes A, Basso KB, Bishop C, Bernstein AM, Carley A, Cazorla J, Claydon J, Crane A, Crespi C, Curley E, Dolezel T, Franck E, Heiden K, Huffstetler CM, Loeven AM, May CA, Maykut N, Narvarez A, Pacheco FA, Turner O, Fadool DA. Maternal ingestion of cannabidiol (CBD) in mice leads to sex-dependent changes in memory, anxiety, and metabolism in the adult offspring, and causes a decrease in survival to weaning age. Pharmacol Biochem Behav 2025; 247:173902. [PMID: 39481653 DOI: 10.1016/j.pbb.2024.173902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
RATIONALE The consequences of perinatal cannabidiol (CBD) exposure are severely understudied, but are important, given its widespread use and believed safety as a natural supplement. OBJECTIVE The objective of this study was to test the health, metabolic, and behavioral consequences of perinatal CBD exposure on dams and their offspring raised to adult. METHODS Primiparous female C57BL/6J mice were orally administered 100 mg/kg CBD in strawberry jam to expose offspring during gestation, lactation, or both using a cross-fostering design. Adult offspring were metabolically profiled using indirect calorimetry and intraperitoneal glucose tolerance testing. Adults were behaviorally phenotyped, video recorded, and mouse position tracked using DeepLabCut. RESULTS CBD was detected in maternal plasma using LC-MS 10-min post consumption (34.2 ± 1.7 ng/μl) and peaked within 30 min (371.0 ± 34.0 ng/μl). Fetal exposure to CBD significantly decreased survival of the pups, and decreased male postnatal development, but did not alter litter size, maternal body weight or pup birth weight. We observed many sex-dependent effects of perinatal CBD exposure. Exposure to CBD during gestation and lactation increased meal size, caloric intake, and respiratory exchange ratio for adult male offspring, while exposure during lactation decreased fasting glucose, but had no effect on clearance. Adult female offspring exposed to CBD during lactation showed increased drink size. Perinatal CBD exposure increased obsessive compulsive- and decreased anxiety-like behaviors (marble burying, light-dark box, elevated-plus maze) in female mice, decreased long-term object memory in male mice, and had no effect on attention tasks for either sex. CONCLUSIONS We conclude that orally-administered CBD during pregnancy affects behavior and metabolism in a sex-dependent manner, and mice are differentially sensitive to exposure during gestation vs. lactation, or both. Because long-term changes are observed following perinatal exposure to the drug, and exposure significantly decreases survival to weaning, more research during development is warranted.
Collapse
Affiliation(s)
| | - Claudia Rose Silver
- Interdisciplinary Medical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Alexis Cox-Holmes
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Caroline Bishop
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | | - Aidan Carley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Joshua Cazorla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Jenna Claydon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Ashleigh Crane
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Chloe Crespi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Emma Curley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Tyla Dolezel
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ezabelle Franck
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Katie Heiden
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | | | - Ashley M Loeven
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Camilla Ann May
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Nicholas Maykut
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Alejandro Narvarez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Franklin A Pacheco
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Olivia Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Debra Ann Fadool
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
18
|
Engeli BE, Lachenmeier DW, Diel P, Guth S, Villar Fernandez MA, Roth A, Lampen A, Cartus AT, Wätjen W, Hengstler JG, Mally A. Cannabidiol in Foods and Food Supplements: Evaluation of Health Risks and Health Claims. Nutrients 2025; 17:489. [PMID: 39940347 PMCID: PMC11820564 DOI: 10.3390/nu17030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Cannabidiol (CBD) is a cannabinoid present in the hemp plant (Cannabis sativa L.). Non-medicinal CBD oils with typically 5-40% CBD are advertised for various alleged positive health effects. While such foodstuffs containing cannabinoids are covered by the Novel Food Regulation in the European Union (EU), none of these products have yet been authorized. Nevertheless, they continue to be available on the European market. METHODS The Permanent Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) reviewed the currently available data on adverse and potential beneficial effects of CBD in the dose range relevant for foods. RESULTS Increased liver enzyme activities were observed in healthy volunteers following administration of 4.3 mg CBD/kg bw/day and higher for 3-4 weeks. As lower doses were not tested, a no observed adverse effect level (NOAEL) could not be derived, and the dose of 4.3 mg/kg bw/day was identified as the lowest observed adverse effect level (LOAEL). Based on the CBD content and dose recommendations of CBD products on the market, the SKLM considered several exposure scenarios and concluded that the LOAEL for liver toxicity may be easily reached, e.g., via consumption of 30 drops of an oil containing 20% CBD, or even exceeded. A critical evaluation of the available data on potential beneficial health effects of CBD in the dose range at or below the LOAEL of 4.3 mg/kg bw/day revealed no scientific evidence that would substantiate health claims, e.g., in relation to physical performance, the cardiovascular, immune, and nervous system, anxiety, relaxation, stress, sleep, pain, or menstrual health. CONCLUSIONS The SKLM concluded that consumption of CBD-containing foods/food supplements may not provide substantiated health benefits and may even pose a health risk to consumers.
Collapse
Affiliation(s)
- Barbara E. Engeli
- Federal Food Safety and Veterinary Office (FSVO), Division Knowledge Foundation, Section Risk Assessment, Schwarzenburgstr 155, 3003 Bern, Switzerland;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany;
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany;
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Maria A. Villar Fernandez
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8–10, 10589 Berlin, Germany;
| | | | - Wim Wätjen
- Institut für Agrar-und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany;
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| |
Collapse
|
19
|
Grifoni L, Landucci E, Pieraccini G, Mazzantini C, Bergonzi MC, Pellegrini-Giampietro DE, Bilia AR. Development and Blood-Brain Barrier Penetration of Nanovesicles Loaded with Cannabidiol. Pharmaceuticals (Basel) 2025; 18:160. [PMID: 40005974 PMCID: PMC11859449 DOI: 10.3390/ph18020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cannabidiol (CBD) is a highly lipophilic compound with potential therapeutic applications in neurological disorders. However, its poor aqueous solubility and bioavailability, coupled with instability in physiological conditions, significantly limit its clinical use. Objectives: This study aimed to develop and characterize nanovesicles incorporating Tween 20 to enhance CBD encapsulation, stability, and the performance across the blood-brain barrier (BBB). Methods: Nanovesicles were prepared via thin-film hydration followed by sonication and optimized for size, polydispersity index, and zeta potential. Stability studies were conducted under physiological conditions and during storage at 4 °C. In vitro release studies employed the dialysis bag method, while permeability across the BBB was assessed using PAMPA-BBB and the hCMEC/D3-BBB cell line, characterized for brain endothelial phenotype and largely employed as a model of human blood-brain barrier (BBB) function. Cytotoxicity was evaluated via MTT and LDH assays. Results: The quantification of CBD was carried out by HPLC-DAD and HPLC-MS/MS. Nanovesicles with Tween 20 (VS-CBD) exhibited smaller size (65.27 ± 1.27 nm vs. 90.7 ± 0.2), lower polydispersity (0.230 ± 0.005 vs. 0.295 ± 0.003), and higher stability compared to conventional liposomes (L-CBD). VS-CBD achieved high encapsulation efficiency (96.80 ± 0.96%) and recovery (99.89 ± 0.52%). Release studies showed sustained CBD release with Higuchi model fitting (R2 = 0.9901). Both PAMPA-BBB and hCMEC/D3-BBB cell lines demonstrated an improved controlled permeability of the formulation compared to free CBD. Cytotoxicity tests confirmed the good biocompatibility of VS-CBD formulations. The addition of Tween 20 to nanovesicles enhanced CBD encapsulation, stability, and controlled release. Conclusions: These nanovesicles represent a promising strategy to improve CBD delivery to the brain, offering sustained therapeutic effects and reduced dosing frequency, potentially benefiting the treatment of neurological disorders.
Collapse
Affiliation(s)
- Lucia Grifoni
- Dipartimento di Chimica Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (L.G.); (M.C.B.)
| | - Elisa Landucci
- Dipartimento di Scienze della Salute, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (E.L.); (C.M.); (D.E.P.-G.)
| | - Giuseppe Pieraccini
- Centro di Servizi di Spettrometria di Massa (CISM), University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Costanza Mazzantini
- Dipartimento di Scienze della Salute, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (E.L.); (C.M.); (D.E.P.-G.)
| | - Maria Camilla Bergonzi
- Dipartimento di Chimica Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (L.G.); (M.C.B.)
| | | | - Anna Rita Bilia
- Dipartimento di Chimica Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (L.G.); (M.C.B.)
| |
Collapse
|
20
|
Koyama S, Etkins J, Jun J, Miller M, So GC, Gisch DL, Eadon MT. Utilization of Cannabidiol in Post-Organ-Transplant Care. Int J Mol Sci 2025; 26:699. [PMID: 39859413 PMCID: PMC11765766 DOI: 10.3390/ijms26020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cannabidiol (CBD) is one of the major phytochemical constituents of cannabis, Cannabis sativa, widely recognized for its therapeutic potential. While cannabis has been utilized for medicinal purposes since ancient times, its psychoactive and addictive properties led to its prohibition in 1937, with only the medical use being reauthorized in 1998. Unlike tetrahydrocannabinol (THC), CBD lacks psychoactive and addictive properties, yet the name that suggests its association with cannabis has significantly contributed to its public visibility. CBD exhibits diverse pharmacological properties, most notably anti-inflammatory effects. Additionally, it interacts with key drug-metabolizing enzyme families, including cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT), which mediate phase I and phase II metabolism, respectively. By binding to these enzymes, CBD can inhibit the metabolism of co-administered drugs, which can potentially enhance their toxicity or therapeutic effects. Mild to moderate adverse events associated with CBD use have been reported. Advances in chemical formulation techniques have recently enabled strategies to minimize these effects. This review provides an overview of CBD, covering its historical background, recent clinical trials, adverse event profiles, and interactions with molecular targets such as receptors, channels, and enzymes. We particularly emphasize the mechanisms underlying its anti-inflammatory effects and interaction with drugs relevant to organ transplantation. Finally, we explore recent progress in the chemical formulation of CBD in order to enhance its bioavailability, which will enable decreasing the dose to use and increase its safety and efficacy.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Jumar Etkins
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Joshua Jun
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Matthew Miller
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA;
| | - Gerald C. So
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Debora L. Gisch
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.E.); (J.J.); (D.L.G.); (M.T.E.)
| |
Collapse
|
21
|
Brenneman DE, Petkanas D, Ippolito M, Ward SJ. Effect of Fatty Acyl Composition for Lysophosphatidylinositol on Neuroinflammatory Responses in Primary Neuronal Cultures. RESEARCH SQUARE 2025:rs.3.rs-5742954. [PMID: 39866868 PMCID: PMC11760249 DOI: 10.21203/rs.3.rs-5742954/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging. Major endogenous LPI fatty acyl structures consisting of 16:0, 18:0, 18:1 or 20:4 were compared for their effects on IL-1b, NLRP3 and GPR55 immunoreactive areas of neurites and cell bodies after a 6-hour treatment. Among these four LPI structures, only LPI-20:4 treatment produced increases in immunoreactive areas for GPR55, NLRP3 and IL-1b in DRG and hippocampal neurites. In contrast, all other LPI structures tested produced a decrease in all of these inflammatory immunoreactive areas in both neurites and cell bodies. Additional studies with LPI-20:4 treatment indicated that IL-6, IL-18 and TNF-a were significantly increased in neurites of DRG and hippocampal cultures. However, oleoyl-lysophosphatidylinositol (LPI-18:1) treatment produced decreases in these three cytokines. Using the viability dye alamar blue, LPI-20:4 was shown to produce concentration-dependent decreases, whereas all other endogenous LPI structures produced increases with this assay. These studies indicate that fatty acyl structure is the major determinant of LPI for neuroinflammatory responses in DRG and hippocampal cultures, with LPI-20:4 showing pro-inflammatory effects and all other endogenous LPIs tested exhibited anti-inflammatory responses.
Collapse
Affiliation(s)
| | - Dean Petkanas
- Kannalife Sciences, Inc Pennsylvania Biotechnology Center
| | | | | |
Collapse
|
22
|
Cogan PS. A cautionary tale of paradox and false positives in cannabidiol research. Expert Opin Drug Discov 2025; 20:5-15. [PMID: 39663751 DOI: 10.1080/17460441.2024.2441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Decades of research on cannabidiol (CBD) have identified thousands of purported cellular effects, and many of these have been proposed to correlate with a vast therapeutic potential. Yet despite the large volume of findings fueling broad optimism in this regard, few have translated into any demonstrable clinical benefit or even notable side effects. Therein resides the great paradox of CBD: a drug that appears to affect almost everything in vitro does not clearly do much of anything in a clinical setting. AREAS COVERED Comparative critical evaluation of literature searched in PubMed and Google Scholar discovers multiple instances of inconsistent and contradictory findings regarding the pharmacology and clinical effects of CBD, as well as several uncelebrated reports that suggest potential explanations for these observations. Many of those effects attributed to the ostensible pharmacologic activity of cannabidiol are almost certainly the product of false-positive experimental results and artifactual findings that are unlikely to be realized under physiologic conditions. EXPERT OPINION Concerns regarding the physiological relevance and translational potential of in vitro findings across the field of cannabinoid research are both far-reaching and demanding of attention in the form of appropriate experimental controls that remain almost universally absent.
Collapse
Affiliation(s)
- Peter S Cogan
- School of Pharmacy, Regis University, Denver, CO, USA
| |
Collapse
|
23
|
Rodrigues FDS, Jantsch J, de Farias Fraga G, Dias VS, Pereira Medeiros C, Wickert F, Schroder N, Giovernardi M, Guedes RP. Cannabidiol partially rescues behavioral, neuroinflammatory and endocannabinoid dysfunctions stemming from maternal obesity in the adult offspring. Neuropharmacology 2025; 262:110196. [PMID: 39447736 DOI: 10.1016/j.neuropharm.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Maternal obesity is known to increase the risk of psychiatric disorders, such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While preventive measures are well-documented, practical approaches for addressing the damages once they are already established are limited. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on neuroinflammation and peripheral metabolic disturbances during adolescence, however, it is known that both factors tend to vary throughout life. Therefore, here we investigated the potential of CBD to mitigate these alterations in the adult offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) for 3 weeks from the 70th day of life. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and endocannabinoid markers were evaluated in the hypothalamus, prefrontal cortex (PFC) and hippocampus, as well as the biochemical profile in the plasma. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, restoring exacerbated astrocytic and microglial markers in the hypothalamus, PFC and hippocampus of the offspring, as well as endocannabinoid levels in the PFC, with notable sex differences. Additionally, CBD attenuated plasma glucose and lipopolysaccharides (LPS) concentrations in females. These findings underscore the persistent influence of maternal obesity on the offspring's health, encompassing metabolic irregularities and behavioral impairments, as well as the role of the endocannabinoid system in mediating these outcomes across the lifespan.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Pereira Medeiros
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Wickert
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nadja Schroder
- Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
25
|
Solano-Orrala D, Silva-Cullishpuma DA, Díaz-Cruces E, Gómez-López VM, Toro-Mendoza J, Gomez d'Ayala G, Troconis J, Narváez-Muñoz C, Alexis F, Mercader-Ros MT, Lucas-Abellán C, Zamora-Ledezma C. Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications. ACS APPLIED BIO MATERIALS 2024; 7:8177-8202. [PMID: 39563525 DOI: 10.1021/acsabm.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This Perspective explores the potential of nonpsychoactive cannabinoids (NPCs) such as CBD, CBG, CBC, and CBN in developing innovative biomaterials for biomedical and sports applications. It examines their physicochemical properties, anti-inflammatory, analgesic, and neuroprotective effects, and their integration into various biomaterials such as hydrogels, sponges, films, and scaffolds. It also discusses the current challenges in standardizing formulations, understanding long-term effects, and understanding their intrinsical regulatory landscapes. Further, it discusses the promising applications of NPC-loaded materials in bone regeneration, wound management, and drug delivery systems, emphasizing their improved biocompatibility, mechanical properties, and therapeutic efficacy demonstrated in vitro and in vivo. The review also addresses innovative approaches to enhance NPC delivery including the use of computational tools and explores their potential in both biomedical and sports science contexts. By providing a comprehensive overview of the current state of research, this review aims to outline future directions, emphasizing the potential of NPCs in biomaterial science and regenerative medicine.
Collapse
Affiliation(s)
- Dulexy Solano-Orrala
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| | - Dennis A Silva-Cullishpuma
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21 st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Vicente M Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Jhoan Toro-Mendoza
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Cientificas, Maracaibo 1020A, Venezuela
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
| | - Jorge Troconis
- Instituto Politécnico Nacional, ESIME-UPALM, Ciudad de Mexico 07738, México
| | - Christian Narváez-Muñoz
- Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas (ESPE), Sangolqui 171103, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Maria Teresa Mercader-Ros
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Carmen Lucas-Abellán
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| |
Collapse
|
26
|
Kosenkov AM, Mal'tseva VN, Maiorov SA, Gaidin SG. The role of the endocannabinoid system in the pathogenesis and treatment of epilepsy. Rev Neurosci 2024:revneuro-2024-0114. [PMID: 39660979 DOI: 10.1515/revneuro-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Epilepsy is a group of chronic neurological brain disorders characterized by recurrent spontaneous unprovoked seizures, which are accompanied by significant neurobiological, cognitive, and psychosocial impairments. With a global prevalence of approximately 0.5-1 % of the population, epilepsy remains a serious public health concern. Despite the development and widespread use of over 20 anticonvulsant drugs, around 30 % of patients continue to experience drug-resistant seizures, leading to a substantial reduction in quality of life and increased mortality risk. Given the limited efficacy of current treatments, exploring new therapeutic approaches is critically important. In recent years, Gi-protein-coupled receptors, particularly cannabinoid receptors CB1 and CB2, have garnered increasing attention as promising targets for the treatment seizures and prevention of epilepsy. Emerging evidence suggests a significant role of the cannabinoid system in modulating neuronal activity and protecting against hyperexcitability, underscoring the importance of further research in this area. This review provides up-to-date insights into the pathogenesis and treatment of epilepsy, with a special focus on the role of the cannabinoid system, highlighting the need for continued investigation to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Valentina N Mal'tseva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
27
|
Wagner JK, Gambell E, Gibbons T, Martin TJ, Kaplan JS. Sex Differences in the Anxiolytic Properties of Common Cannabis Terpenes, Linalool and β-Myrcene, in Mice. NEUROSCI 2024; 5:635-649. [PMID: 39728677 DOI: 10.3390/neurosci5040045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Volatile organic compounds, colloquially referred to as "terpenes", have been proposed to impact the therapeutic qualities that are traditionally ascribed to cannabis. However, the contribution of these terpenes in anxiety, at relevant levels and exposure methods common with cannabis use, is lacking empirical assessment. We tested the anxiolytic properties of two prominent cannabis terpenes, linalool and β-myrcene, in male and female mice using short duration vapor pulls to model human inhalation when combusting flower or vaping cannabis oil. We observed sex differences in the locomotor effects in the open field and anxiolytic properties in the elevated plus maze of these terpenes that depended on their exposure characteristics. Both linalool and β-myrcene had anxiolytic effects in female mice when delivered in discrete vapor pulls over the course of 30 min. In male mice, only a single vapor hit containing linalool or β-myrcene had anxiolytic effects. The combination of sub-effective levels of linalool and the phytocannabinoid, cannabidiol (CBD), had synergistic anxiolytic effects in females, but these entourage effects between CBD and terpenes were absent with β-myrcene for females and for either terpene in males. Together, our findings reveal sex differences in the anxiolytic properties of common cannabis terpenes and highlight the potential benefits of unique combinations of CBD and terpenes in expanding the therapeutic dose window.
Collapse
Affiliation(s)
- Jasmin K Wagner
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Ella Gambell
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Tucker Gibbons
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| | - Thomas J Martin
- Department of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, CA 92780, USA
| | - Joshua S Kaplan
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, 516 High Street, Bellingham, WA 98229, USA
| |
Collapse
|
28
|
Hafida EG, Rachid S, Halima G, Najib K. CBD's potential impact on Parkinson's disease: An updated overview. Open Med (Wars) 2024; 19:20241075. [PMID: 39479465 PMCID: PMC11524397 DOI: 10.1515/med-2024-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Background Parkinson's disease (PD) is primarily known as a motor disorder; however, its debilitating non-motor symptoms have a significant impact on patients' quality of life. The current standard treatment, l-DOPA, is used to relieve motor symptoms, but prolonged use is often associated with severe side effects. This creates an urgent need for effective alternatives targeting both motor and non-motor symptoms. Objectives Over the past decade, Cannabis sativa and its cannabinoids have been widely studied across various health conditions. Among these compounds, cannabidiol (CBD), a non-psychoactive component, is garnering growing interest due to its multi-targeted pleiotropic properties. This work aims to provide a comprehensive overview of CBD's efficacy in PD. Methods This review compiles data on both motor and non-motor symptoms of PD, integrating results from preclinical animal studies and available clinical trials. Results Preclinical research has demonstrated promising results regarding CBD's potential benefits in PD; however, the total number of clinical trials is limited (with only seven studies to date), making it difficult to draw definitive conclusions on its efficacy. Conclusions While preclinical findings suggest that CBD may have therapeutic potential in PD, the limited number of clinical trials highlights the need for further research. This review emphasizes the gaps that need to be addressed in future studies to fully understand CBD's role in treating both motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- El Ghachi Hafida
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Soulimani Rachid
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Gamrani Halima
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Kissani Najib
- Department of Neurology, Faculty of Medicine and Pharmacy, University Hospital Mohamed VI, Medical Research Center, University Cadi Ayyad, 40000, Marrakesh, Morocco
| |
Collapse
|
29
|
Soni I, Chinn GA, Halifax JC, Hellman J, Lynch KL, Sall JW. The Effect of Route of Administration and Vehicle on the Pharmacokinetics of THC and CBD in Adult, Neonate, and Breastfed Sprague-Dawley Rats. Cannabis Cannabinoid Res 2024; 9:e1443-e1451. [PMID: 37852006 DOI: 10.1089/can.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Introduction: Basic pharmacokinetic (PK) and pharmacodynamic models of the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are critical for developing translational models of exposure and toxicity. The neonatal period is a particularly important time to study the effects of cannabinoids, yet there are few studies of cannabinoid PKs by different routes such as direct injection or breast milk ingestion. To study this question, we have developed a translationally relevant rodent model of perinatal cannabinoid administration by measuring plasma levels of THC and CBD after different routes and preparations of these drugs. Materials and Methods: Adult animals and pups were injected with THC or CBD either intraperitoneally or subcutaneously, and plasma was analyzed by liquid chromatography-tandem mass spectrometry to measure cannabinoid levels collected at specified intervals. We also tested the effect of preparation of the drug using an oil-based vehicle (sesame oil) and an aqueous vehicle (Tween). Finally, we measured the plasma levels of cannabinoids in neonatal pups that were transmitted through breast milk after intraperitoneal injection to nursing dams. Results: We observed differences in the PK profiles of cannabinoids in adults and neonatal pups that were dependent on the route of administration and type of vehicle. Cannabinoids prepared in aqueous vehicle, injected intraperitoneally, resulted in a high peak in plasma concentration, which rapidly decreased. In contrast, subcutaneous injections using sesame oil as a vehicle resulted in a slow rise and low plateau in plasma concentration. Intraperitoneal injections with sesame oil as a vehicle resulted in a slower rise compared with aqueous vehicle, but an earlier and higher peak compared with subcutaneous injection. Finally, the levels of THC and CBD that were similar to direct subcutaneous injections were measured in the plasma of pups nursing from intraperitoneally injected dams. Conclusions: The route of administration and the preparation of the drug have important and significant effects on the PK profiles of THC and CBD in rats. These results can be used to create different clinically relevant exposure paradigms in pups and adults, such as short high-dose exposure or a low-chronic exposure, each of which might have significant and varying effects on development.
Collapse
Affiliation(s)
- Isha Soni
- Department of Anesthesiology and Perioperative Care and University of California San Francisco, San Francisco, California, USA
| | - Gregory A Chinn
- Department of Anesthesiology and Perioperative Care and University of California San Francisco, San Francisco, California, USA
| | - John C Halifax
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Judith Hellman
- Department of Anesthesiology and Perioperative Care and University of California San Francisco, San Francisco, California, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey W Sall
- Department of Anesthesiology and Perioperative Care and University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Machado JPD, de Almeida V, Zuardi AW, Hallak JEC, Crippa JA, Vieira AS. Cannabidiol modulates hippocampal genes involved in mitochondrial function, ribosome biogenesis, synapse organization, and chromatin modifications. Acta Neuropsychiatr 2024; 36:330-336. [PMID: 38528655 DOI: 10.1017/neu.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.
Collapse
Affiliation(s)
- João P D Machado
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics,, Dept Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinsas, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
31
|
Hurzeler TP, Logge W, Watt J, DeMayo MM, Suraev A, McGregor IS, Haber PS, Morley KC. The neurobehavioural effects of cannabidiol in alcohol use disorder: Study protocol for a double-blind, randomised, cross over, placebo-controlled trial. Contemp Clin Trials Commun 2024; 41:101341. [PMID: 39252861 PMCID: PMC11382041 DOI: 10.1016/j.conctc.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
Current treatments for alcohol use disorders (AUD) have limited efficacy. Recently, Cannabidiol (CBD) has been examined in a multitude of clinical settings. Preclinical and clinical results suggest that CBD might be particularly well suited for the treatment of AUD and may reduce alcohol cue and stress-induced craving and alcohol seeking. This study aims to investigate this new pharmacotherapy with a particular focus on neurobiological and physiological indicators of craving. Methods: In this double-blind, within-subject, randomised, placebo-controlled, cross-over study, non-treatment seekers will be randomly allocated to three days of four 200 mg CBD gel capsules (800 mg/day) or placebo, with an 18-day washout period. Cognitive, clinical, and neuroimaging assessments will be completed during these three days. The CBD and placebo assessments will be compared. The primary outcomes are i) BOLD signal as a proxy for regional activity during a cue reactivity and a fear response task measured with functional magnetic resonance imaging (fMRI), ii) heart rate variability and skin conductance levels as a proxy for psychophysiological responses to alcohol stimuli. The secondary outcomes are: i) neurometabolite levels (γ-Aminobutyric acid, ethanol, glutathione, and glutamate + glutamine (combined signal)) using magnetic resonance spectroscopy (MRS); ii) functional connectivity using resting state fMRI (rsfMRI); iii) executive functioning task results; iv) clinical outcomes such as craving, anxiety, and sleep. Discussion: This study will improve the understanding of the mechanisms of action of CBD and provide early signals of efficacy regarding the therapeutic potential of CBD in the treatment of alcohol use disorder. ClinicalTrials.gov Identifier: NCT05387148.
Collapse
Affiliation(s)
- Tristan P Hurzeler
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Warren Logge
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Joshua Watt
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Marilena M DeMayo
- Department of Radiology and Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Anastasia Suraev
- University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia
- University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia
| | - Iain S McGregor
- University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia
- University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia
| | - Paul S Haber
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Kirsten C Morley
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
| |
Collapse
|
32
|
Briânis RC, Iglesias LP, Bedeschi LG, Moreira FA. Effects of cannabidiol on reward contextual memories induced by cocaine in male and female mice. Acta Neuropsychiatr 2024; 36:299-306. [PMID: 37968964 DOI: 10.1017/neu.2023.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Preclinical studies suggest that cannabidiol (CBD), a non-intoxicating phytocannabinoid, may reduce addiction-related behaviours for various drug classes in rodents, including ethanol, opiates, and psychostimulants. CBD modulates contextual memories and responses to reward stimuli. Nonetheless, research on the impact of CBD on cocaine addiction-like behaviors is limited and requires further clarification. This study tested the hypothesis that CBD administration inhibits the acquisition and retrieval of cocaine-induced conditioned place preference (CPP) in adult male and female C57BL6/J mice. We also ought to characterise a 5-day CPP protocol in these animals. METHODS Male and female C57BL/6J mice were administered CBD (3, 10, and 30 mg/kg) 30 minutes before cocaine (15 mg/kg) acquisition of expression of CPP. RESULTS Cocaine induces a CPP in both female and male mice in the 5-day CPP protocol. CBD failed to prevent the acquisition or retrieval of place preference induced by cocaine. CBD did not decrease the time spent on the side paired with cocaine at any of the doses tested in male and female mice, in either acquisition or expression of contextual memory. CONCLUSION This study found no support for the hypothesis that CBD decreases reward memory involved in the formation of cocaine addiction. Further research is necessary to investigate the involvement of CBD in other behavioural responses to cocaine and other psychostimulant drugs. This study, however, characterised a 5-day CPP protocol for both female and male C57BL/6J mice.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas G Bedeschi
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
33
|
Abbasi H, Abbasi MM, Pasand M, Mohtadi M, Bakhshimoghaddam F, Eslamian G. Exploring the efficacy and safety of cannabidiol in individuals with epilepsy: an umbrella review of meta-analyses and systematic reviews. Inflammopharmacology 2024; 32:2987-3005. [PMID: 39167312 DOI: 10.1007/s10787-024-01523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Epilepsy ranks among the most prevalent neurological conditions worldwide. Cannabidiol (CBD) has received authorization for epilepsy treatment, yet utilizing CBD is linked to a variety of adverse events (AEs). This umbrella review aims to explore risk and frequency of AEs in epilepsy patients undergoing treatment with CBD. METHODS International electronic databases comprising Scopus, PubMed, and Web of Science were extensively searched from the most ancient data accessible until May 2024. In line with fundamental principle of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), this umbrella review was executed. RStudio software version 2023.03.1 along with R software 4.3.2 was used for our statistical analyses. RESULTS Thirteen meta-analyses and systematic reviews were included. CBD use in epileptic patients compared to controls can be meaningfully linked with 10.87% becoming seizure-free (RD: 10.87%, 95%CI: 2.39%, 19.34%; I2 = 80%). Compared to controls, a meaningful 73% increase in 50% or greater reduction in seizure frequency was observed (RR: 1.73, 95%CI: 1.47, 2.03; I2 = 0%). In epileptic individuals who using CBD with the dosage of 20 mg/kg/d, a higher incidence of treatment withdrawal was detected (RR: 4.39, 95%CI: 2.46, 7.83; I2 = 0%). CONCLUSION In this umbrella review of meta-analyses and systematic reviews, CBD use in epileptic patients was linked to an increased risk of ample AEs. Further research, specifically targeting various epilepsy categories, is essential to fully understand the effectiveness and potential side effects of CBD across different epilepsy forms.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mehdi Abbasi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Pasand
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshad Mohtadi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnush Bakhshimoghaddam
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 7, Hafezi St., Farahzadi Blvd., P.O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
34
|
Poudel B, Bany BM, Hales DB, Cheatwood JL. Effects of Cannabidiol (CBD) on Doxorubicin-Induced Anxiety and Depression-like Behaviors and mRNA Expression of Inflammatory Markers in Rats. Brain Sci 2024; 14:999. [PMID: 39452013 PMCID: PMC11505750 DOI: 10.3390/brainsci14100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Post-treatment side effects of chemotherapy can include cognitive deficits commonly known as Chemo-brain. The treatment of patients with Doxorubicin (DOX), one of the most widely used chemotherapeutic drugs in the treatment of cancer, can induce depression, anxiety, and impaired cognitive function. Cannabidiol (CBD) is a non-psychoactive component of Cannabis sativa that has been identified as a possible therapeutic agent against many neurodegenerative disorders, including traumatic brain injury, spinal cord injury, Tau-protein-induced neurodegeneration, and neuropathic pain. Therefore, this study aimed to assess whether oral CBD administration could reduce DOX-induced anxiety and depression-like behaviors and alter the expression of mRNA associated with neuroinflammation. Methods: Female Long Evans Hooded rats received intraperitoneal injections of DOX (6 mg/kg) or the vehicle (0.9% saline) once a week for four weeks, followed by oral administration of CBD (10 mg/kg) three times a week for the same period. Results: CBD was significantly protective against DOX-induced anxiety and depression-like behaviors, as measured by several behavioral tests. Furthermore, CBD improved DOX-induced alterations in the gene expression of biomarkers of neuroinflammation in the hippocampus and prefrontal cortex. Conclusions: This provides insights into future studies on possible mechanisms by which DOX-induced cognitive dysfunction could be alleviated by CBD.
Collapse
Affiliation(s)
| | | | | | - Joseph L. Cheatwood
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (B.P.)
| |
Collapse
|
35
|
Marquez JD, Dezanetti T, Walz R, de Carvalho CR. Cannabinoid for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:301-322. [PMID: 39523058 DOI: 10.1016/bs.irn.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Several pieces of evidence have implicated the endocannabinoid system on dopaminergic mesolimbic brain reward, as well as the potential role of cannabinoid receptors CB1 and CB2 on modulation of reinforced properties of drug abuse and consequently to the treatment of substance use disorder, including alcoholism. Moreover, growing evidence has been proposed that cannabis or cannabinoid compounds may be helpful to treat alcohol use disorder (AUD). Cannabis is prevalent among individuals who also consume alcohol. While some authors reported that cannabis may be a promising candidate as a substitute medication for AUD, some studies have demonstrated that concomitant use of alcohol and cannabis may increase the risk of adverse outcomes. Considering that advances in the legalization and decriminalization movements regarding cannabis have led to increased availability worldwide, the current chapter aims to provide evidence on the benefits and risks of combining alcohol and cannabis, as well as the potential therapeutic use of cannabinoid compounds in treating AUD.
Collapse
Affiliation(s)
- Júlia Dalfovo Marquez
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Talissa Dezanetti
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Roger Walz
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Departamento de Ciências Clínica Médica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Cristiane Ribeiro de Carvalho
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Departamento de Patologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
36
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
37
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
38
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
39
|
Medeiros AC, Medeiros P, Pigatto GR, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the dorsal hippocampus attenuates emotional and cognitive impairments related to neuropathic pain: The role of prelimbic neocortex-hippocampal connections. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111039. [PMID: 38797491 DOI: 10.1016/j.pnpbp.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment. EXPERIMENTAL APPROACH The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol). KEY RESULTS BDA-labeled perikarya and terminal buttons were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. Animals submitted to CCI procedure showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the effect of CA1 treatment with CBD (60 nmol) on nociceptive, cognitive, and depressive behaviors. CONCLUSION CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.
Collapse
Affiliation(s)
- Ana Carolina Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
40
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
41
|
Czapińska-Ciepiela EK, Łuszczki J, Czapiński P, Czuczwar SJ, Lasoń W. Presynaptic antiseizure medications - basic mechanisms and clues for their rational combinations. Pharmacol Rep 2024; 76:623-643. [PMID: 38776036 PMCID: PMC11294404 DOI: 10.1007/s43440-024-00603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Among clinically highly efficient antiseizure medications (ASMs) there are modifiers of the presynaptic release machinery. Of them, levetiracetam and brivaracetam show a high affinity to the synaptic vesicle protein type 2 A (SV2A), whereas pregabalin and gabapentin are selective ligands for the α2δ1 subunits of the voltage-gated calcium channels. In this paper, we present recent progress in understanding the significance of presynaptic release machinery in the neurochemical mechanisms of epilepsy and ASMs. Furthermore, we discuss whether the knowledge of the basic mechanisms of the presynaptically acting ASMs might help establish a rational polytherapy for drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Jarogniew Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Piotr Czapiński
- Epilepsy and Migraine Treatment Center, 31-209, Kraków, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, 31-343, Kraków, Poland.
| |
Collapse
|
42
|
Štern A, Novak M, Kološa K, Trontelj J, Žabkar S, Šentjurc T, Filipič M, Žegura B. Exploring the safety of cannabidiol (CBD): A comprehensive in vitro evaluation of the genotoxic and mutagenic potential of a CBD isolate and extract from Cannabis sativa L. Biomed Pharmacother 2024; 177:116969. [PMID: 38908200 DOI: 10.1016/j.biopha.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (∼IC50(4 h) 26 µg/ml, ∼IC50(24 h) 6-8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD's safety profile, paving the way for further exploration of CBD's therapeutic applications and potential adverse effects.
Collapse
Affiliation(s)
- Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana 1000, Slovenia.
| | - Matjaž Novak
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Katja Kološa
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Jurij Trontelj
- Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacokinetics, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Sonja Žabkar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Tjaša Šentjurc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana 1000, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana 1000, Slovenia
| |
Collapse
|
43
|
Chaoul N, Palazzo S, Cinquantasei A, Aresta V, De Chirico C, Albanesi M. Cannabidiol modulation of immune cell function: in vitro insights and therapeutic implications for atopic dermatitis. Postepy Dermatol Alergol 2024; 41:408-414. [PMID: 39290893 PMCID: PMC11404104 DOI: 10.5114/ada.2024.142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Cannabidiol (CBD) exhibits neuroprotective, anti-inflammatory, and immunomodulatory properties, making it a promising candidate for addressing inflammatory skin disorders like atopic dermatitis. Aim This study aimed to (i) investigate CBD's impact on lymphocyte proliferation and lymphocyte viability; (ii) assess in vitro cytotoxicity U937 cells (a human promonocytic cell line) of CBD/cytotoxicity of CBD on U937 cells; (iii) provide insights into CBD immunomodulatory potential, and (iv) evaluate suitability of CBD for treating inflammatory skin conditions. Material and methods To this aim PBMCs from healthy donors were cultured with mitogen and two different CBD doses (0.1 and 1 mg/ml), assessing B and T cell proliferation through flow cytometry. CBD inhibited mitogen-induced lymphocyte proliferation, reducing the percentage of proliferating T and B cells. Notably, both CBD doses did not exhibit cytotoxicity on lymphocytes as revealed by viability assessment. We also analysed the effect of CBD on U937 cells using an optical microscopy approach. Interestingly, the higher dose of CBD exerted a cytotoxic effect on U937 cells, while the lower dose was well tolerated. Results We analysed the effect of an adjuvant treatment for atopic dermatitis with a CBD-containing cleansing cream in reducing itch. Notably, the treatment with the CBD-containing cleansing cream significantly reduced itch in patients suffering from atopic dermatitis. Conclusions These findings affirm CBD's immunomodulatory characteristics, emphasizing its potential therapeutic application in inflammatory skin disorders.
Collapse
Affiliation(s)
- Nada Chaoul
- "M. Albanesi" Allergy and Immunology Unit, Bari, Italy
- The Allergist, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| | - Stefano Palazzo
- "M. Albanesi" Allergy and Immunology Unit, Bari, Italy
- The Allergist, Bari, Italy
- Faculty of Technological and Innovation Sciences, Universitas Mercatorum, Rome, Italy
| | | | - Vincenzo Aresta
- "M. Albanesi" Allergy and Immunology Unit, Bari, Italy
- The Allergist, Bari, Italy
| | - Concetta De Chirico
- "M. Albanesi" Allergy and Immunology Unit, Bari, Italy
- The Allergist, Bari, Italy
- University of Foggia, Italy
| | - Marcello Albanesi
- "M. Albanesi" Allergy and Immunology Unit, Bari, Italy
- The Allergist, Bari, Italy
- Allergolys, Asnieres-sur-Seine, France
| |
Collapse
|
44
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Naya NM, Kelly J, Hogwood A, Abbate A, Toldo S. Therapeutic potential of cannabidiol (CBD) in the treatment of cardiovascular diseases. Expert Opin Investig Drugs 2024; 33:699-712. [PMID: 38703078 DOI: 10.1080/13543784.2024.2351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Cannabidiol (CBD) is the primary non-psychoactive chemical derived from Cannabis Sativa, and its growing popularity is due to its potential therapeutic properties while avoiding the psychotropic effects of other phytocannabinoids, such as tetrahydrocannabinol (THC). Numerous pre-clinical studies in cellular and animal models and human clinical trials have demonstrated a positive impact of CBD on physiological and pathological processes. Recently, the FDA approved its use for the treatment of seizures, and clinical trials to test the efficacy of CBD in myocarditis and pericarditis are ongoing. AREAS COVERED We herein reviewed the current literature on the reported effects of CBD in the cardiovascular system, highlighting the physiological effects and the outcomes of using CBD as a therapeutic tool in pathological conditions to address this significant global health concern. EXPERT OPINION The comprehensive examination of the literature emphasizes the potential of CBD as a therapeutic option for treating cardiovascular diseases through its anti-inflammatory, vasodilatory, anti-fibrotic, and antioxidant properties in different conditions such as diabetic cardiomyopathy, myocarditis, doxorubicin-induced cardiotoxicity, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Austin Hogwood
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
46
|
da Silva Rodrigues F, Jantsch J, de Farias Fraga G, Luiza de Camargo Milczarski V, Silva Dias V, Scheid C, de Oliveira Merib J, Giovernardi M, Padilha Guedes R. Cannabidiol improves maternal obesity-induced behavioral, neuroinflammatory and neurochemical dysfunctions in the juvenile offspring. Brain Behav Immun 2024; 119:301-316. [PMID: 38608740 DOI: 10.1016/j.bbi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória Luiza de Camargo Milczarski
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Scheid
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josias de Oliveira Merib
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil.
| |
Collapse
|
47
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
48
|
Guimarães FS. Historical perspective on the therapeutic potential of cannabidiol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:1-9. [PMID: 39029980 DOI: 10.1016/bs.irn.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) is one of over 200 cannabinoids present in the Cannabis plant. Unlike the plant's primary cannabinoid, delta-9-tetrahydrocannabinol (THC), CBD does not produce psychotomimetic effects nor induce dependence. Initially considered an inactive cannabinoid, interest in its pharmacological properties and therapeutic potential has grown exponentially over the last 20 years. Currently employed as a medication for certain epileptic syndromes, numerous pre-clinical and clinical studies support its potential use in various other disorders. In this chapter, we provide a brief historical overview of how this compound evolved from an "inactive substance" to a multifunctional clinical agent. Additionally, we discuss the current challenges in researching its potential therapeutic effects.
Collapse
Affiliation(s)
- Francisco Silveira Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
49
|
Wang X, Zhu H, Liu T, Guo Z, Zhao C, He Z, Zheng W. Comparison of various doses of oral cannabidiol for treating refractory epilepsy indications: a network meta-analysis. Front Neurol 2024; 15:1243597. [PMID: 38994494 PMCID: PMC11238246 DOI: 10.3389/fneur.2024.1243597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Aim To evaluate the comparative efficacy and safety of various doses of oral cannabidiol (CBD) in treating refractory epilepsy indications, thus providing more informative evidence for clinical decision-making. Methods A literature search of PubMed, Embase, the Cochrane library, and Web of Science (WoS) was performed to retrieve relevant randomized controlled trials (RCTs) that compared different doses of oral CBD with placebo or each other in refractory epilepsy indications. The search was limited from the inception of each database to January 3, 2023. Relative risk [RR] with a 95% confidence interval [CI] was used to express results. STATA/SE 14 was employed for network meta-analysis. Results Six RCTs involving 972 patients were included in the final data analysis. Network meta-analysis showed that, CBD10 (10 mg/kg/day) (RR: 1.77, 95%CI: 1.28 to 2.44), CBD20 (20 mg/kg/day) (RR: 1.91, 95%CI: 1.49 to 2.46), CBD25 (25 mg/kg/day) (RR: 1.61, 95%CI: 0.96 to 2.70), and CBD50 (50 mg/kg/day) (RR: 1.78, 95%CI: 1.07 to 2.94) were associated with higher antiseizure efficacy although the pooled result for CBD25 was only close to significant. In addition, in terms of the risk of treatment-emergent adverse events (TEAEs), the difference between different doses is not significant. However, CBD20 ranked first in terms of antiseizure efficacy, followed by CBD50, CBD10, and CBD25. For TEAEs, CBD25 ranked first, followed by CBD10, CBD50, CBD5, and CBD20. Conclusion For refractory indications, CBD20 may be optimal option for antiseizure efficacy; however, CBD25 may be best for TEAEs. Therefore, an appropriate dose of oral CBD should be selected based on the actual situation. Due to the limitations of eligible studies and the limited sample size, more studies are needed in the future to validate our findings.
Collapse
Affiliation(s)
- Xin Wang
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyan Zhu
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi Guo
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenyang Zhao
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Geriatric Department of Dalian Friendship Hospital, Dalian, China
| |
Collapse
|
50
|
Kalsoom I, Shehzadi K, Li HS, Wen HL, Yu MJ. Unraveling the Mechanisms of Cannabidiol's Pharmacological Actions: A Comprehensive Research Overview. Top Curr Chem (Cham) 2024; 382:20. [PMID: 38829467 DOI: 10.1007/s41061-024-00465-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.
Collapse
Affiliation(s)
- Iqra Kalsoom
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Han-Sheng Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Hong-Liang Wen
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Ming-Jia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| |
Collapse
|