1
|
Andreone BJ, Lin J, Tocci J, Rook M, Omer A, Carito LM, Yang C, Zhoba H, DeJesus C, Traore M, Haruehanroengra P, Prinzen A, Miglis G, Deninger M, Li M, Lynch T, Howat B, Rogers KA, Gallant-Behm CL, Kinberger GA, Yudowski G, Chen Q, Jackson AL, McDonough SI. Durable suppression of seizures in a preclinical model of KCNT1 genetic epilepsy with divalent small interfering RNA. Epilepsia 2025; 66:1677-1690. [PMID: 39871703 DOI: 10.1111/epi.18278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVE Gain-of-function variants in the KCNT1 gene, which encodes a sodium-activated potassium ion channel, drive severe early onset developmental epileptic encephalopathies including epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. No therapy provides more than sporadic or incremental improvement. Here, we report suppression of seizures in a genetic mouse model of KCNT1 epilepsy by reducing Kcnt1 transcript with divalent small interfering RNA (siRNA), an emerging variant of oligonucleotide technology developed for the central nervous system. METHODS The ATL-201 molecule is two identical synthetic double-stranded siRNAs, covalently linked, with 100% nucleotide base pair match to sequence present in both human KCNT1 and mouse Kcnt1 that does not contain any known pathogenic variant. ATL-201 activity was tested in cortical neurons cultured from wild-type mice and in mice homozygous for Kcnt1-Y777H, the mouse ortholog to the human pathogenic KCNT1-Y796H missense variant. Seizures and nest-building behavior were measured in freely behaving Kcnt1-Y777H mice. The number and duration of seizures were measured by electrocorticography in mice dosed with ATL-201 or phosphate-buffered saline in a 6-month durability study and in a 2-month dose-efficacy study. RESULTS In vitro, ATL-201 reduced KCNT1 transcript from whole-cell lysate and eliminated potassium currents from KCNT1 channels in heterologous expression. ATL-201 also eliminated sodium-activated potassium currents recorded from individual cortical neurons. In vivo, ATL-201 suppressed seizures in Kcnt1-Y777H homozygous mice in a dose-dependent manner with near-complete suppression from 2 weeks to at least 4 months. Kcnt1-Y777H mice had defects in nest building, whereas in ATL-201-treated mice nest building was equivalent to wild-type mice. SIGNIFICANCE Patients with KCNT1-driven epilepsy experience up to hundreds of seizures per day and have severe impairment in cognitive, motor, and language development and high mortality. The dose-dependent efficacy and long durability of ATL-201 in mice show promise for ATL-201 as a disease-modifying treatment of KCNT1 epilepsy.
Collapse
Affiliation(s)
| | - Jennifer Lin
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Jenna Tocci
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Matthew Rook
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Amr Omer
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | - Chunhua Yang
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | | | | | | - Alex Prinzen
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | | - Mingwei Li
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Taylor Lynch
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Bryce Howat
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | | | | | | - Qingmin Chen
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Guo Q, Gan J, Wang EZ, Wei YM, Xu J, Xu Y, Zhang FF, Cui M, Jia MX, Kong MJ, Tang QY, Zhang Z. Electrophysiological characterization of human KCNT1 channel modulators and the therapeutic potential of hydroquinine and tipepidine in KCNT1 mutation-associated epilepsy mouse model. Acta Pharmacol Sin 2025; 46:1190-1204. [PMID: 39870847 PMCID: PMC12032293 DOI: 10.1038/s41401-024-01457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant. In addition, we confirmed the antitussive drug tipepidine was also a potent inhibitor of the hKCNT1B channel. Subsequently, we proved that these two drugs produced an excellent therapeutic effect on the epileptic model of KCNT1 Y777H mutant male mice; thus, both could be ready-to-use anti-epileptic drugs. On the other hand, we demonstrated that the activation of the KCNT1 channel by loxapine and clozapine was through interacting with pore domain residues to reverse the run-down of the KCNT1 channel. Taken together, our results provide new insights into the mechanism of the modulators in regulating the KCNT1 channel activity as well as important candidates for clinical tests in the treatment of KCNT1 mutant-associated epilepsy.
Collapse
Affiliation(s)
- Qing Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun Gan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - En-Ze Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ming Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Meng-Xing Jia
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Ming-Jian Kong
- Department of Anesthesiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Specchio N, Di Micco V, Aronica E, Auvin S, Balestrini S, Brunklaus A, Gardella E, Scheper M, Taglialatela M, Trivisano M, Curatolo P. The epilepsy-autism phenotype associated with developmental and epileptic encephalopathies: New mechanism-based therapeutic options. Epilepsia 2025; 66:970-987. [PMID: 39985505 DOI: 10.1111/epi.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/24/2025]
Abstract
Epilepsy and autism often co-occur in genetic developmental and epileptic encephalopathies (DEEs), but their underlying neurobiological processes remain poorly understood, complicating treatment. Advances in molecular genetics and understanding the neurodevelopmental pathogenesis of the epilepsy-autism phenotype may lead to mechanism-based treatments for children with DEEs and autism. Several genes, including the newly reported PPFIA3, MYCBP2, DHX9, TMEM63B, and RELN, are linked to various neurodevelopmental and epileptic disorders, intellectual disabilities, and autistic features. These findings underscore the clinical heterogeneity of genetic DEEs and suggest diverse neurobiological mechanisms influenced by genetic, epigenetic, and environmental factors. Mechanisms linking epilepsy and autism include γ-aminobutyric acidergic (GABAergic) signaling dysregulation, synaptic plasticity, disrupted functional connectivity, and neuroinflammatory responses. GABA system abnormalities, critical for inhibitory neurotransmission, contribute to both conditions. Dysregulation of the mechanistic target of rapamycin (mTOR) pathway and neuroinflammation are also pivotal, affecting seizure generation, drug resistance, and neuropsychiatric comorbidities. Abnormal synaptic function and connectivity further underscore the epilepsy-autism phenotype. New treatment options targeting specific mechanisms linked to the epilepsy-autism phenotype are emerging. Genetic variants in potassium channel genes like KCNQ2 and KCNT1 are frequent causes of early onset DEEs. Personalized treatments like retigabine and quinidine have been explored with heterogeneous responses. Efforts are ongoing to develop more effective KCNQ activators and KCNT1 blockers. SCN1A genetic variants, particularly in Dravet syndrome, show potential for treatment of autistic symptoms with low-dose clonazepam, fenfluramine, and cannabidiol, although human trials have yet to consistently replicate animal model successes. Early intervention before the age of 3 years, particularly in SCN1A- and tuberous sclerosis complex-related DEEs, is crucial. Additionally, targeting the mTOR pathway shows promise for seizure control and managing epilepsy-associated comorbidities. Understanding the distinct autism spectrum disorder phenotype in DEEs and implementing early behavioral interventions are essential for improving outcomes. Despite genetic advances, significant challenges persist in diagnosing and treating DEE-associated epilepsy-autism phenotypes. Future clinical trials should adopt precision health approaches to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
- University Hospitals KU Leuven, Belgium
| | - Valentina Di Micco
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Univeristy Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Stéphane Auvin
- Assistance publique - Hôpitaux de Paris, Service de Neurologie Pédiatrique, Centre de Référence Epilepsies Rares, membre EpiCARE, Hôpital Universitaire Robert-Debré, Université Paris-Cité, Institut national de la santé et de la recherche médicale Neuro Diderot, Institut Universitaire de France, Paris, France
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK and the Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine and Department of Clinical Neurophysiology, Danish Epilepsy Center, member of EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam Univeristy Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Marina Trivisano
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
4
|
Vasquez A, Fine AL. Management of Developmental and Epileptic Encephalopathies. Semin Neurol 2025; 45:206-220. [PMID: 39993428 DOI: 10.1055/a-2534-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of rare, severe, early-onset epilepsies characterized by pharmacoresistance, marked electroencephalographic abnormalities, and delayed or regressive psychomotor development. DEEs are associated with poor long-term outcomes and increased mortality; however, early recognition and targeted treatment can impact neurodevelopmental outcomes and overall quality of life. Treatment with antiseizure medication is often challenging given drug resistance, chronic polypharmacy, and medication interactions. With advances in genetic testing and increased understanding of the neurobiological mechanisms of DEEs, the treatment approach is evolving and includes repurposed antiseizure medications and targeted therapies, as well as early surgical intervention in select patients. In addition to high seizure burden and neurodevelopmental delay, DEEs are associated with comorbidities affecting a range of body systems; these can include intellectual disability, psychiatric disorders, motor dysfunction, and respiratory and gastrointestinal problems. Over time, these comorbidities increase the complexity of management and have important implications on the disease burden and quality of life for both patients and their caregivers. Multidisciplinary care in DEEs is paramount. We summarize the current evidence on the management of specific DEEs, focusing on targeted therapies and optimizing outcomes.
Collapse
Affiliation(s)
| | - Anthony L Fine
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Trivisano M, Mosca I, Salimbene L, De Dominicis A, Ambrosino P, Puzo D, Servettini I, Correale C, Falamesca C, Filosomi C, Goffredo B, Soldovieri MV, Taglialatela M, Specchio N. Fluoxetine Treatment in Epilepsy of Infancy with Migrating Focal Seizures Due to KCNT1 Variants: An Open Label Study. Ann Neurol 2025. [PMID: 39981956 DOI: 10.1002/ana.27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Gain-of-function (GoF) variants in KCNT1 encoding for potassium channels are associated with different epilepsy phenotypes, including epilepsy of infancy with migrating focal seizures (EIMFS), other early infantile developmental and epileptic encephalopathies, and focal epilepsy. Fluoxetine blocks currents from both wild-type (WT) and mutant KCNT1 channels with GoF in vitro features. In this study, we tested the hypothesis that treatment with fluoxetine might improve clinical outcome in patients with EIMFS carrying GoF variants in KCNT1 channels showing in vitro sensitivity to fluoxetine blockade. METHODS We enrolled three pediatric patients carring de novo KCNT1 genetic variants linked to EIMFS. Functional and pharmacological studies to assess fluoxetine's ability to counteract in vitro variant-induced functional effects were performed with patch-clamp electrophysiology on heterologous channel expression in mammalian Chinese hamster ovary cells. Neuropsychological assessment, electroencephalogram and seizure diary were evaluated at baseline and every 3 months during the study. Electrocardiography and blood levels of medications were monitored for safety. RESULTS All 3 KCNT1 variants displayed GoF effects in vitro. Exposure to fluoxetine (10μM) blocked both WT and mutant KCNT1 channels, therefore, counteracting variant-induced functional effects. Treatment with fluoxetine caused a variable reduction of seizure frequency (25-75%). Improvement in visual attention, participation, and muscle tone was also reported. No adverse events were reported except for transient dyskinesia in 1 patient, which was probably related to an increase in fluoxetine plasma level. INTERPRETATION Fluoxetine may be a potential targeted medication in EIMFS caused by KCNT1 GoF variants. Further research is needed to assess its long-term efficacy and safety. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Licia Salimbene
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Angela De Dominicis
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Deborah Puzo
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ilenio Servettini
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Cinzia Correale
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Chiara Falamesca
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Cristina Filosomi
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Bianca Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maurizio Taglialatela
- Department of Neuroscience, Section of Pharmacology, University of Naples "Federico II", Naples, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
- Department of Development and Regeneration, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Filareto I, Mosca I, Freri E, Ragona F, Canafoglia L, Solazzi R, Castellotti B, Messina G, Gellera C, Soldovieri MV, Ambrosino P, Taglialatela M, DiFrancesco JC, Granata T. Pharmacological approaches in drug-resistant pediatric epilepsies caused by pathogenic variants in potassium channel genes. Front Cell Neurosci 2025; 18:1512365. [PMID: 39926415 PMCID: PMC11802495 DOI: 10.3389/fncel.2024.1512365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Variants in genes encoding for voltage-gated K+ (Kv) channels are frequent cause of drug-resistant pediatric epilepsies. Obtaining a molecular diagnosis gives the opportunity to assess the efficacy of pharmacological strategies based on in vitro features of mutant channels. In this retrospective observational study, we selected patients with drug-resistant pediatric epilepsies caused by variants in potassium channel encoding genes, followed at the Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan, Italy. After the experimental characterization of variants' functional properties in transiently transfected Chinese Hamster Ovary (CHO) cells, we identified drugs to be used as pharmacological approaches. We recruited six patients carrying different missense variants in four Kv channels (Kv7.2, Kv7.3, Kv3.1, and KNa1.1). In vitro experiments demonstrated that variants in Kv7 channels induced loss-of-function (LoF) effects, while those affecting Kv3.1 or KNa1.1 led to gain-of-function (GoF). Moreover, we found that the Kv7 channels activator gabapentin was able to revert the LoF effects caused by Kv7.2/Kv7.3 variants, and the potassium channel-blocker fluoxetine counteracted the GoF effects in Kv3.1 or KNa1.1 variants. According to experimental data, patients carrying Kv7 variants were treated with gabapentin. While this treatment resulted successful in two patients (#1, Kv7.2 G310S variant; #3, Kv7.3 V359L + Kv7.3 D542N), it resulted detrimental in the remaining case (#2, Kv7.2 D535E), requiring drug withdrawal. The application in vivo of fluoxetine to counteract GoF effects induced by Kv3.1 or KNa1.1 variants determined a significant reduction of both seizure frequency and behavior disturbances in patient #4 (Kv3.1 V425M), and in both subjects carrying KNa1.1 variants (#5, S937G and #6, R262Q). However, for the latter case, this drug was halted due to severe behavioral side effects. For most of the patients herein reported, pharmacological strategies, selected according to the in vitro functional properties of Kv-channels pathogenic variants, resulted in a significant improvement of both epileptic and cognitive features.
Collapse
Affiliation(s)
- Ilaria Filareto
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, member of the European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, member of the European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Department of Epileptology, member of the European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, member of the European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | | | - Tiziana Granata
- Department of Pediatric Neuroscience, member of the European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Zheng R, Li Z, Wang Q, Liu S, Liu N, Li Y, Zhu G, Liu Z, Huang Z, Zhang L. Discovery of Potent and Selective Blockers Targeting the Epilepsy-Associated K Na1.1 Channel. J Med Chem 2024; 67:19519-19545. [PMID: 39445572 DOI: 10.1021/acs.jmedchem.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Gain-of-function (GOF) mutations of the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2, or KCa4.1) induce severe, drug-resistant forms of epilepsy in infants and children. Although quinidine has shown promise in treating KCNT1-related epilepsies compared to other drugs, its limited efficacy and substantial side effects necessitate the development of new KNa1.1 channel inhibitors. In this study, we developed a novel class of KNa1.1 inhibitors using combined silico approaches and structural optimization. Among these inhibitors, compound Z05 was identified as a selective potential KNa1.1 inhibitor, especially against the hERG channel. Moreover, its binding site and potential counteraction to a GOF mutant Y796H were identified by the mutation studies. Our data also showed that Z05 had significant pharmacological profiles, including high brain penetration and moderate oral bioavailability, offering a valuable in vitro tool compound for further drug development in treating KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Qiufeng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ningfeng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Ben Said M, Jallouli O, Ben Aissa A, Souissi A, Kamoun F, Fakhfakh F, Masmoudi S, Ben Ayed I, Charfi Triki C. Customized targeted massively parallel sequencing enables the identification of novel pathogenic variants in Tunisian patients with developmental and epileptic encephalopathy. Epilepsia Open 2024; 9:1697-1709. [PMID: 37867425 PMCID: PMC11450609 DOI: 10.1002/epi4.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE To develop a high-throughput sequencing panel for the diagnosis of developmental and epileptic encephalopathy in Tunisia and to clarify the frequency of disease-causing genes in this region. METHODS We developed a custom panel for next-generation sequencing of the coding sequences of 116 genes in individuals with developmental and epileptic encephalopathy from the Tunisian population. Segregation analyses and in silico studies have been conducted to assess the identified variants' pathogenicity. RESULTS We report 12 pathogenic variants in SCN1A, CHD2, CDKL5, SZT2, KCNT1, GNAO1, PCDH19, MECP2, GRIN2A, and SYNGAP1 in patients with developmental and epileptic encephalopathy. Five of these variants are novel: "c.149delA, p.(Asn50MetfsTer26)" in CDKL5; "c.3616C > T, p.(Arg1206Ter)" in SZT2; "c.111_113del, p.(Leu39del)" in GNAO1; "c.1435G>C, p.(Asp479His)" in PCDH19; and "c.2143delC, p.(Arg716GlyfsTer10)" in SYNGAP1. Additionally, for four of our patients, the genetic result facilitated the choice of the appropriate treatment. SIGNIFICANCE This is the first report of a custom gene panel to identify genetic variants implicated in developmental and epileptic encephalopathy in the Tunisian population as well as the North African region (Tunisia, Egypt, Libya, Algeria, Morocco) with a diagnostic rate of 30%. This high-throughput sequencing panel has considerably improved the rate of positive diagnosis of developmental and epileptic encephalopathy in the Tunisian population, which was less than 15% using Sanger sequencing. The benefit of genetic testing in these patients was approved by both physicians and parents.
Collapse
Affiliation(s)
- Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Olfa Jallouli
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Abir Ben Aissa
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Fatma Kamoun
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Faiza Fakhfakh
- Molecular Genetics and Functional Laboratory, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Chahnez Charfi Triki
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| |
Collapse
|
9
|
Gras M, Bearden D, West J, Nabbout R. Efficacy of anti-seizure medications and alternative therapies (ketogenic diet, CBD, and quinidine) in KCNT1-related epilepsy: A systematic review. Epilepsia Open 2024; 9:1176-1191. [PMID: 39093319 PMCID: PMC11296097 DOI: 10.1002/epi4.12975] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE KCNT1-related epilepsies encompass three main phenotypes: (i) epilepsy of infancy with migrating focal seizures (EIMFS), (ii) autosomal dominant or sporadic sleep-related hypermotor epilepsy [(AD)SHE], and (iii) different types of developmental and epileptic encephalopathies (DEE). Many patients present with drug-resistant seizures and global developmental delays. In addition to conventional anti-seizure medications (ASM), multiple alternative therapies have been tested including the ketogenic diet (KD), cannabidiol (CBD-including Epidyolex © and other CBD derivatives) and quinidine (QUIN). We aimed to clarify the current state of the art concerning the benefits of those therapies administered to the three groups of patients. METHODS We performed a literature review on PubMed and EMBase with the keyword "KCNT1" and selected articles reporting qualitative and/or quantitative information on responses to these treatments. A treatment was considered beneficial if it improved seizure frequency and/or intensity and/or quality of life. Patients were grouped by phenotype. RESULTS A total of 43 studies including 197 patients were reviewed. For EIMFS patients (32 studies, 135 patients), KD resulted in benefit in 62.5% (25/40), all types of CBD resulted in benefit in 50% (6/12), and QUIN resulted in benefit in 44.6% (25/56). For (AD)SHE patients (10 studies, 32 patients), we found only one report of treatment with KD, with no benefit noted. QUIN was trialed in 8 patients with no reported benefit. For DEE patients (10 studies, 30 patients), KD resulted in benefit for 4/7, CBD for 1/2, and QUIN for 6/9. In all groups, conventional ASM are rarely reported as beneficial (in 5%-25% of patients). SIGNIFICANCE Ketogenic diet, CBD, and QUIN treatments appear to be beneficial in a subset of patient with drug-resistant epilepsy. The KD and CBD are reasonable to trial in patients with KCNT1-related epilepsy. Further studies are needed to identify optimal treatment strategies and to establish predictive response factors. PLAIN LANGUAGE SUMMARY We performed an extensive review of scientific articles providing information about the therapeutic management of epilepsy in patients with epilepsy linked to a mutation in the KCNT1 gene. Conventional anti-seizure treatments were rarely reported to be beneficial. The ketogenic diet (a medical diet with very high fat, adequate protein and very low carbohydrate intake) and cannabidiol appeared to be useful, but larger studies are needed to reach a conclusion.
Collapse
Affiliation(s)
- Mathilde Gras
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, APHP, Member of EPICAREUniversité Paris CitéParisFrance
- Institut Imagine, INSERM U1163, Université Paris CiteParisFrance
| | - David Bearden
- Division of Child Neurology, Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Justin West
- KCNT1 Epilepsy Foundation (501C3). President. Co‐Founder. Director of Clinical MedicineNewport BeachCaliforniaUSA
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, APHP, Member of EPICAREUniversité Paris CitéParisFrance
- Institut Imagine, INSERM U1163, Université Paris CiteParisFrance
| |
Collapse
|
10
|
Yang Y, Tuo J, Zhang J, Xu Z, Luo Z. Pathogenic genes implicated in sleep-related hypermotor epilepsy: a research progress update. Front Neurol 2024; 15:1416648. [PMID: 38966089 PMCID: PMC11222571 DOI: 10.3389/fneur.2024.1416648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by a variable age of onset and heterogeneous etiology. Current literature suggests a prevalence rate of approximately 1.8 per 100,000 persons. The discovery of additional pathogenic genes associated with SHE in recent years has significantly expanded the knowledge and understanding of its pathophysiological mechanisms. Identified SHE pathogenic genes include those related to neuronal ligand- and ion-gated channels (CHRNA4, CHRNB2, CHRNA2, GABRG2, and KCNT1), genes upstream of the mammalian target of rapamycin complex 1 signal transduction pathway (DEPDC5, NPRL2, NPRL3, TSC1, and TSC2), and other genes (CRH, CaBP4, STX1B, and PRIMA1). These genes encode proteins associated with ion channels, neurotransmitter receptors, cell signal transduction, and synaptic transmission. Mutations in these genes can result in the dysregulation of encoded cellular functional proteins and downstream neuronal dysfunction, ultimately leading to epileptic seizures. However, the associations between most genes and the SHE phenotype remain unclear. This article presents a literature review on the research progress of SHE-related pathogenic genes to contribute evidence to genotype-phenotype correlations in SHE and establish the necessary theoretical basis for future SHE treatments.
Collapse
Affiliation(s)
- Yufang Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Iraci N, Carotenuto L, Ciaglia T, Belperio G, Di Matteo F, Mosca I, Carleo G, Giovanna Basilicata M, Ambrosino P, Turcio R, Puzo D, Pepe G, Gomez-Monterrey I, Soldovieri MV, Di Sarno V, Campiglia P, Miceli F, Bertamino A, Ostacolo C, Taglialatela M. In Silico Assisted Identification, Synthesis, and In Vitro Pharmacological Characterization of Potent and Selective Blockers of the Epilepsy-Associated KCNT1 Channel. J Med Chem 2024; 67:9124-9149. [PMID: 38782404 PMCID: PMC11181338 DOI: 10.1021/acs.jmedchem.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Lidia Carotenuto
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Tania Ciaglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giorgio Belperio
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Francesca Di Matteo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Ilaria Mosca
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giusy Carleo
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Manuela Giovanna Basilicata
- Department
of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, P.zza L. Miraglia 2, 80138 Naples, Italy
| | - Paolo Ambrosino
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Rita Turcio
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Deborah Puzo
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giacomo Pepe
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Isabel Gomez-Monterrey
- Department
of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Virginia Soldovieri
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Veronica Di Sarno
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco Miceli
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Alessia Bertamino
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Carmine Ostacolo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Taglialatela
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Zhao T, Wang L, Chen F. Potassium channel-related epilepsy: Pathogenesis and clinical features. Epilepsia Open 2024; 9:891-905. [PMID: 38560778 PMCID: PMC11145612 DOI: 10.1002/epi4.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Variants in potassium channel-related genes are one of the most important mechanisms underlying abnormal neuronal excitation and disturbances in the cellular resting membrane potential. These variants can cause different forms of epilepsy, which can seriously affect the physical and mental health of patients, especially those with refractory epilepsy or status epilepticus, which are common among pediatric patients and are potentially life-threatening. Variants in potassium ion channel-related genes have been reported in few studies; however, to our knowledge, no systematic review has been published. This study aimed to summarize the epilepsy phenotypes, functional studies, and pharmacological advances associated with different potassium channel gene variants to assist clinical practitioners and drug development teams to develop evidence-based medicine and guide research strategies. PubMed and Google Scholar were searched for relevant literature on potassium channel-related epilepsy reported in the past 5-10 years. Various common potassium ion channel gene variants can lead to heterogeneous epilepsy phenotypes, and functional effects can result from gene deletions and compound effects. Administration of select anti-seizure medications is the primary treatment for this type of epilepsy. Most patients are refractory to anti-seizure medications, and some novel anti-seizure medications have been found to improve seizures. Use of targeted drugs to correct aberrant channel function based on the type of potassium channel gene variant can be used as an evidence-based pathway to achieve precise and individualized treatment for children with epilepsy. PLAIN LANGUAGE SUMMARY: In this article, the pathogenesis and clinical characteristics of epilepsy caused by different types of potassium channel gene variants are reviewed in the light of the latest research literature at home and abroad, with the expectation of providing a certain theoretical basis for the diagnosis and treatment of children with this type of disease.
Collapse
Affiliation(s)
- Tong Zhao
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Le Wang
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Fang Chen
- Hebei Children's HospitalShijiazhuangHebeiChina
| |
Collapse
|
13
|
Mosca I, Freri E, Ambrosino P, Belperio G, Granata T, Canafoglia L, Ragona F, Solazzi R, Filareto I, Castellotti B, Messina G, Gellera C, DiFrancesco JC, Soldovieri MV, Taglialatela M. Case report: Marked electroclinical improvement by fluoxetine treatment in a patient with KCNT1-related drug-resistant focal epilepsy. Front Cell Neurosci 2024; 18:1367838. [PMID: 38644974 PMCID: PMC11027738 DOI: 10.3389/fncel.2024.1367838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Variants in KCNT1 are associated with a wide spectrum of epileptic phenotypes, including epilepsy of infancy with migrating focal seizures (EIMFS), non-EIMFS developmental and epileptic encephalopathies, autosomal dominant or sporadic sleep-related hypermotor epilepsy, and focal epilepsy. Here, we describe a girl affected by drug-resistant focal seizures, developmental delay and behavior disorders, caused by a novel, de novo heterozygous missense KCNT1 variant (c.2809A > G, p.S937G). Functional characterization in transiently transfected Chinese Hamster Ovary (CHO) cells revealed a strong gain-of-function effect determined by the KCNT1 p.S937G variant compared to wild-type, consisting in an increased maximal current density and a hyperpolarizing shift in current activation threshold. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant KCNT1 channels. Treatment of the proband with fluoxetine led to a prolonged electroclinical amelioration, with disappearance of seizures and better EEG background organization, together with an improvement in behavior and mood. Altogether, these results suggest that, based on the proband's genetic and functional characteristics, the antidepressant drug fluoxetine may be repurposed for the treatment of focal epilepsy caused by gain-of-function variants in KCNT1. Further studies are needed to verify whether this approach could be also applied to other phenotypes of the KCNT1-related epilepsies spectrum.
Collapse
Affiliation(s)
- Ilaria Mosca
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giorgio Belperio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Laura Canafoglia
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Ilaria Filareto
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | | |
Collapse
|
14
|
Hussain R, Lim CX, Shaukat Z, Islam A, Caseley EA, Lippiat JD, Rychkov GY, Ricos MG, Dibbens LM. Drosophila expressing mutant human KCNT1 transgenes make an effective tool for targeted drug screening in a whole animal model of KCNT1-epilepsy. Sci Rep 2024; 14:3357. [PMID: 38336906 PMCID: PMC10858247 DOI: 10.1038/s41598-024-53588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.
Collapse
Affiliation(s)
- Rashid Hussain
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Chiao Xin Lim
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Anowarul Islam
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Grigori Y Rychkov
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
15
|
Yuan T, Wang Y, Jin Y, Yang H, Xu S, Zhang H, Chen Q, Li N, Ma X, Song H, Peng C, Geng Z, Dong J, Duan G, Sun Q, Yang Y, Yang F, Huang Z. Coupling of Slack and Na V1.6 sensitizes Slack to quinidine blockade and guides anti-seizure strategy development. eLife 2024; 12:RP87559. [PMID: 38289338 PMCID: PMC10942592 DOI: 10.7554/elife.87559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Quinidine has been used as an anticonvulsant to treat patients with KCNT1-related epilepsy by targeting gain-of-function KCNT1 pathogenic mutant variants. However, the detailed mechanism underlying quinidine's blockade against KCNT1 (Slack) remains elusive. Here, we report a functional and physical coupling of the voltage-gated sodium channel NaV1.6 and Slack. NaV1.6 binds to and highly sensitizes Slack to quinidine blockade. Homozygous knockout of NaV1.6 reduces the sensitivity of native sodium-activated potassium currents to quinidine blockade. NaV1.6-mediated sensitization requires the involvement of NaV1.6's N- and C-termini binding to Slack's C-terminus and is enhanced by transient sodium influx through NaV1.6. Moreover, disrupting the Slack-NaV1.6 interaction by viral expression of Slack's C-terminus can protect against SlackG269S-induced seizures in mice. These insights about a Slack-NaV1.6 complex challenge the traditional view of 'Slack as an isolated target' for anti-epileptic drug discovery efforts and can guide the development of innovative therapeutic strategies for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yifan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yuchen Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Heng Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue UniversityWest LafayetteUnited States
| | - Fan Yang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, HangzhouZhejiangChina
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| |
Collapse
|
16
|
McTague A, Scheffer IE, Kullmann DM, Sisodiya S. Epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:157-184. [PMID: 39174247 DOI: 10.1016/b978-0-323-90820-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Recent advances in genetic diagnosis have revealed the underlying etiology of many epilepsies and have identified pathogenic, causative variants in numerous ion and ligand-gated channel genes. This chapter describes the clinical presentations of epilepsy associated with different channelopathies including classic electroclinical syndromes and emerging gene-specific phenotypes. Also discussed are the archetypal epilepsy channelopathy, SCN1A-Dravet syndrome, considering the expanding phenotype. Clinical presentations where a channelopathy is suspected, such as sleep-related hypermotor epilepsy and epilepsy in association with movement disorders, are reviewed. Channelopathies pose an intriguing problem for the development of gene therapies. Design of targeted therapies requires physiologic insights into the often multifaceted impact of a pathogenic variant, coupled with an understanding of the phenotypic spectrum of a gene. As gene-specific novel therapies come online for the channelopathies, it is essential that clinicians are able to recognize epilepsy phenotypes likely to be due to channelopathy and institute early genetic testing in both children and adults. These findings are likely to have immediate management implications and to inform prognostic and reproductive counseling.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
17
|
Balestrini S, Mei D, Sisodiya SM, Guerrini R. Steps to Improve Precision Medicine in Epilepsy. Mol Diagn Ther 2023; 27:661-672. [PMID: 37755653 PMCID: PMC10590329 DOI: 10.1007/s40291-023-00676-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Precision medicine is an old concept, but it is not widely applied across human health conditions as yet. Numerous attempts have been made to apply precision medicine in epilepsy, this has been based on a better understanding of aetiological mechanisms and deconstructing disease into multiple biological subsets. The scope of precision medicine is to provide effective strategies for treating individual patients with specific agent(s) that are likely to work best based on the causal biological make-up. We provide an overview of the main applications of precision medicine in epilepsy, including the current limitations and pitfalls, and propose potential strategies for implementation and to achieve a higher rate of success in patient care. Such strategies include establishing a definition of precision medicine and its outcomes; learning from past experiences, from failures and from other fields (e.g. oncology); using appropriate precision medicine strategies (e.g. drug repurposing versus traditional drug discovery process); and using adequate methods to assess efficacy (e.g. randomised controlled trials versus alternative trial designs). Although the progress of diagnostic techniques now allows comprehensive characterisation of each individual epilepsy condition from a molecular, biological, structural and clinical perspective, there remain challenges in the integration of individual data in clinical practice to achieve effective applications of precision medicine in this domain.
Collapse
Affiliation(s)
- S Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCSS, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - D Mei
- Neuroscience Department, Meyer Children's Hospital IRCSS, Florence, Italy
| | - S M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCSS, Florence, Italy.
- University of Florence, Florence, Italy.
| |
Collapse
|
18
|
Hill SF, Jafar-Nejad P, Rigo F, Meisler MH. Reduction of Kcnt1 is therapeutic in mouse models of SCN1A and SCN8A epilepsy. Front Neurosci 2023; 17:1282201. [PMID: 37901435 PMCID: PMC10603267 DOI: 10.3389/fnins.2023.1282201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe seizure disorders with inadequate treatment options. Gain- or loss-of-function mutations of neuronal ion channel genes, including potassium channels and voltage-gated sodium channels, are common causes of DEE. We previously demonstrated that reduced expression of the sodium channel gene Scn8a is therapeutic in mouse models of sodium and potassium channel mutations. In the current study, we tested whether reducing expression of the potassium channel gene Kcnt1 would be therapeutic in mice with mutation of the sodium channel genes Scn1a or Scn8a. A Kcnt1 antisense oligonucleotide (ASO) prolonged survival of both Scn1a and Scn8a mutant mice, suggesting a modulatory effect for KCNT1 on the balance between excitation and inhibition. The cation channel blocker quinidine was not effective in prolonging survival of the Scn8a mutant. Our results implicate KCNT1 as a therapeutic target for treatment of SCN1A and SCN8A epilepsy.
Collapse
Affiliation(s)
- Sophie F. Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Miriam H. Meisler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Cioclu MC, Mosca I, Ambrosino P, Puzo D, Bayat A, Wortmann SB, Koch J, Strehlow V, Shirai K, Matsumoto N, Sanders SJ, Michaud V, Legendre M, Riva A, Striano P, Muhle H, Pendziwiat M, Lesca G, Mangano GD, Nardello R, Lemke JR, Møller RS, Soldovieri MV, Rubboli G, Taglialatela M. KCNT2-Related Disorders: Phenotypes, Functional, and Pharmacological Properties. Ann Neurol 2023; 94:332-349. [PMID: 37062836 DOI: 10.1002/ana.26662] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.
Collapse
Affiliation(s)
- Maria Cristina Cioclu
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Ambrosino
- Dept. of Science and Technology, University of Sannio, Benevento, Italy
| | - Deborah Puzo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Johannes Koch
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Vincent Michaud
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies rares: Génétique et Métabolisme (MRGM), INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Marine Legendre
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gaetan Lesca
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261-INSERM U1315, Lyon, France
- Department of Medical Genetics, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
| | - Giuseppe Donato Mangano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Malaník M, Čulenová M, Sychrová A, Skiba A, Skalicka-Woźniak K, Šmejkal K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals (Basel) 2023; 16:1061. [PMID: 37630977 PMCID: PMC10459181 DOI: 10.3390/ph16081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Epilepsy is a neurological disease characterized by recurrent seizures that can lead to uncontrollable muscle twitching, changes in sensitivity to sensory perceptions, and disorders of consciousness. Although modern medicine has effective antiepileptic drugs, the need for accessible and cost-effective medication is urgent, and products derived from plants could offer a solution. For this review, we have focused on natural compounds that have shown anticonvulsant activity in in vivo models of epilepsy at relevant doses. In some cases, the effects have been confirmed by clinical data. The results of our search are summarized in tables according to their molecular targets. We have critically evaluated the data we present, identified the most promising therapeutic candidates, and discussed these in the text. Their perspectives are supported by both pharmacokinetic properties and potential interactions. This review is intended to serve as a basis for future research into epilepsy and related disorders.
Collapse
Affiliation(s)
- Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Marie Čulenová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| |
Collapse
|
21
|
Pisani F, Spagnoli C. What are the considerations when initiating treatment for epilepsy in children? Expert Rev Neurother 2023; 23:1081-1096. [PMID: 38032395 DOI: 10.1080/14737175.2023.2288107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION There is a very wide spectrum of epilepsies and developmental and epileptic encephalopathies that affect children, from self-limited forms, not necessarily requiring treatment, to severe drug-resistant ones. AREAS COVERED In this perspective, the authors discuss the main factors to consider before drug prescription in children, considering the most recent clinical research, including age, seizure type, epilepsy syndrome, etiology, efficacy and safety profile, comorbidities, gender, available formulations, costs and drug coverage, and regulatory issues. The literature search was conducted through a PubMed search on antiseizure medications for patients aged 0-18, with respect to each of the aforementioned factors, and by checking the reference lists of relevant papers. EXPERT OPINION The most expanding field of research and innovation for clinical practice is precision medicine, which addresses the holistic treatment of genetic epilepsies and developmental and epileptic encephalopathies. It achieves this by addressing their detrimental effects on synapses, neurotransmission, and cellular signaling pathways with the double aim to treat seizures and to rescue neurodevelopmental trajectories, but also the issue of adverse events and drug resistance through pharmacogenomics.
Collapse
Affiliation(s)
- Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
22
|
Wirrell EC, Riney K, Specchio N, Zuberi SM. How have the recent updated epilepsy classifications impacted on diagnosis and treatment? Expert Rev Neurother 2023; 23:969-980. [PMID: 37676056 DOI: 10.1080/14737175.2023.2254937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Epilepsies are a diverse group of disorders which differ regarding prognosis for seizure control and associated comorbidities. Accurate classification is critical to choose the highest yield investigations and best therapeutic options and to provide the most accurate prognoses regarding the expected degree of seizure control, possible remission, and risk of associated comorbidities to patients and their families. This article reviews the recent updates in epilepsy classification to illustrate how accurate classification impacts care for persons with epilepsy. AREAS COVERED The authors discuss the ILAE 2017 Classification of the Epilepsies along with the modification of the classification for neonatal seizures and epilepsies. They also discuss the ILAE position papers on Epilepsy syndromes in neonates and infants and children of variable age and the Idiopathic Generalized Epilepsies. EXPERT OPINION Accurate epilepsy classification allows selection of the highest yield investigations, choice of optimal therapies, and accurate prognostication of seizures (likelihood of response to antiseizure treatments and likelihood of remission with age), as well as comorbidities (likelihood, type, and severity). As we move into the era of disease modifying therapy, early accurate identification of underlying causes with timely introduction of specific treatments will be crucial to lessen the severity of epilepsy, with improved seizure control and attenuation of associated comorbidities.
Collapse
Affiliation(s)
- Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, Australia and Faculty of Medicine, University of St Lucia, Brisbane, Queensland, Australia
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesu Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies (EpiCARE), Rome, Italy
| | - Sameer M Zuberi
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
23
|
de Brito Sampaio LP, Henriques-Souza AMDM, Lin K, Neri LDCL, Inuzuka LM, Uchôa LIDL, Gregório MMDO, Guilhoto LM, Montenegro MA, Lunardi M, Veiga M, de Lima PA, Braatz V. Ketogenic therapy in childhood and adolescence: recommendations of the Brazilian experts group. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:597-606. [PMID: 37379871 PMCID: PMC10658610 DOI: 10.1055/s-0043-1768676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 06/30/2023]
Abstract
Ketogenic dietary therapies (KDTs) are a safe and effective treatment for pharmacoresistant epilepsy in children. There are four principal types of KDTs: the classic KD, the modified Atkins diet (MAD), the medium-chain triglyceride (MCT) diet, and the low glycemic index diet (LGID). The International Ketogenic Diet Study Group recommends managing KDTs in children with epilepsy. However, there are no guidelines that address the specific needs of the Brazilian population. Thus, the Brazilian Child Neurology Association elaborated on these recommendations with the goal of stimulating and expanding the use of the KD in Brazil.
Collapse
Affiliation(s)
- Letícia Pereira de Brito Sampaio
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas,
Instituto da Criança e Adolescente, São Paulo SP, Brazil.
| | | | - Katia Lin
- Universidade Federal de Santa Catarina, Departamento de Medicina Interna,
Divisão de Neurologia, Florianópolis SC, Brazil.
| | - Lenycia de Cassya Lopes Neri
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas,
Instituto da Criança e Adolescente, São Paulo SP, Brazil.
| | | | | | | | - Laura Maria Guilhoto
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo,
Brazil.
- Universidade de São Paulo, Hospital Universitário, Divisão de Clínica
Pediátrica, São Paulo SP, Brazil.
| | | | - Mariana Lunardi
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências
Médicas, Florianópolis SC, Brazil.
| | - Marielza Veiga
- Hospital Universitário Professor Edgard Santos, Salvador BA,
Brazil.
| | | | - Vera Braatz
- Universidade da Região de Joinville, Departamento de Medicina, Divisão de
Neurologia, Joinville SC, Brazil.
| |
Collapse
|
24
|
Liu R, Sun L, Wang Y, Wang Q, Wu J. New use for an old drug: quinidine in KCNT1-related epilepsy therapy. Neurol Sci 2023; 44:1201-1206. [PMID: 36437393 DOI: 10.1007/s10072-022-06521-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
KCNT1 has been known to encode a subunit of the tetrameric sodium activated potassium channel (KNa1.1). Pathogenic variants of KCNT1, especially gain-of-function (GOF) variants, are associated with multiple epileptic disorders which are often refractory to conventional anti-seizure medications and summarized as KCNT1-related epilepsy. Although the detailed pathogenic mechanisms of KCNT1-related epilepsy remain unknown, increasing studies attempt to find effective medications for those patients by utilizing quinidine to inhibit hyperexcitable KNa1.1. However, it has been shown that controversial outcomes among studies and partial success in some individuals may be due to multiple factors, such as poor blood-brain barrier (BBB) penetration, mutation-dependent manner, phenotype-genotype associations, and rational therapeutic schedule. In recent years, with higher resolution of KNa1.1 structure in different activation states and advanced synthetic techniques, it improves the process performance of therapy targeting at KNa1.1 channel to achieve more effective outcomes. Here, we systematically reviewed the study history of quinidine on KCNT1-related epilepsy and its corresponding therapeutic effects. Then, we analyzed and summarized the possible causes behind the different outcomes of the application of quinidine. Finally, we outlooked the recent advances in precision medicine treatment for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Lei Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450008, Henan, China
| | - Yunfu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
25
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
26
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
27
|
Burbano LE, Li M, Jancovski N, Jafar-Nejad P, Richards K, Sedo A, Soriano A, Rollo B, Jia L, Gazina EV, Piltz S, Adikusuma F, Thomas PQ, Kopsidas H, Rigo F, Reid CA, Maljevic S, Petrou S. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight 2022; 7:146090. [PMID: 36173683 PMCID: PMC9746904 DOI: 10.1172/jci.insight.146090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.
Collapse
Affiliation(s)
- Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Kay Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Ben Rollo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena V. Gazina
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Fatwa Adikusuma
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Q. Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Helen Kopsidas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Christopher A. Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
29
|
Hughes E, Oates S, Pal DK. Intolerance to quinidine in a n-of-1 trial for KCNT1 associated epilepsy of infancy with migrating focal seizures. Seizure 2022; 103:46-50. [DOI: 10.1016/j.seizure.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022] Open
|
30
|
Wang M, Geng G, Meng Y, Zhang H, Gao Z, Shi J. Long-term follow-up of vagus nerve stimulation in drug-resistant KCNT1-related epilepsy: a case presentation. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background
The KCNT1 gene encodes a Na+-activated K+ channel. Gain-of-function mutations of KCNT1 lead to autosomal dominant sleep-related hypermotor epilepsy, early-onset epileptic encephalopathy, focal epilepsy and other epileptic encephalopathies. In this paper, we report a boy carrying a KCNT1 gene mutation, who presented with drug-resistant focal-onset seizures. He had decreased seizure frequency and improvement of background changes in electroencephalography (EEG) after vagus nerve stimulation (VNS).
Case presentation
The case was a nonverbal 9-year-old male who presented with drug-resistant focal-onset seizures since age 3 and had underwent VNS therapy for 2 years. He had hypermotor symptoms, automatism and bilateral asymmetric tonic seizures with cognitive decline and aphasis from age 3. The patient had a variety of seizure types that only occurred at night. The most common seizure type was automatisms, and ictal video EEG showed high-amplitude delta waves, followed by a fast rhythmic sharp activity in the mesial frontal and bitemporal regions. The patient was diagnosed with KCNT1-related epilepsy, epileptic encephalopathy and cognitive disorder. He was refractory to multiple anti-seizure medicines (ASM) and ketogenic diet. After VNS treatment at age 7, the frequency of seizures was reduced significantly and EEG was improved in background slowing.
Conclusions
Children with KCNT1-related epilepsy usually have early onset of disease, are nonverbal, and are refractory to ASM. This boy with drug-resistant KCNT1-related epilepsy showed significantly reduced seizure frequency after VNS. This report may provide reference for management of cases of KCNT1-related epilepsy.
Collapse
|
31
|
Ramantani G, Pisani F. Neonatal seizures—diagnostic options and treatment recommendations. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2022. [DOI: 10.1007/s10309-022-00534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSeizures in neonates should prompt rapid evaluation to verify the diagnosis, determine etiology, and initiate appropriate treatment. Neonatal seizure diagnosis requires EEG confirmation and clinical observation alone is insufficient. Although most neonatal seizures are related to acute brain injury, some neonates present early-onset structural or metabolic/genetic epilepsy. Video-EEG monitoring, the gold standard for neonatal seizure detection and quantification, is resource-intensive and often unavailable, with amplitude-integrated EEG offering a reasonable alternative in guiding treatment. Whereas new-generation antiseizure medication (ASM), such as levetiracetam, appear promising, particularly in terms of tolerability, older-generation ASM, such as phenobarbital and phenytoin, are yet to be replaced. Acute treatment should aim at stopping both electroclinical and electrographic-only seizures. In neonates with acute provoked seizures, ASM should be discontinued without tapering after 72 h of seizure freedom and before hospital discharge.
Collapse
|
32
|
Therapeutic Drug Monitoring of Quinidine in Pediatric Patients with KCNT1 Genetic Variants. Pharmaceutics 2022; 14:pharmaceutics14102230. [DOI: 10.3390/pharmaceutics14102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Quinidine (QND) is an old antimalarial drug that was used in the early 20th century as an antiarrhythmic agent. Currently, QND is receiving attention for its use in epilepsy of infancy with migrating focal seizures (EIMFS) due to potassium sodium-activated channel subfamily T member 1 (KCNT1) genetic variants. Here, we report the application of Therapeutic Drug Monitoring (TDM) in pediatric patients carrying KCNT1 genetic variants and orally treated with QND for developmental and epileptic encephalopathies (DEE). We measured plasma levels of QND and its metabolite hydroquinidine (H-QND) by using a validated method based on liquid chromatography coupled with mass spectrometry (LC-MS/MS). Three pediatric patients (median age 4.125 years, IQR 2.375–4.125) received increasing doses of QND. Cardiac toxicity was monitored at every dose change. Reduction in seizure frequency ranged from 50 to 90%. Our results show that QND is a promising drug for pediatric patients with DEE due to KCNT1 genetic variants. Although QND blood levels were significantly lower than the therapeutic range as an anti-arrhythmic drug, patients showed a significant improvement in seizure burden. These data underlie the utility of TDM for QND not only to monitor its toxic effects but also to evaluate possible drug–drug interactions.
Collapse
|
33
|
Syrbe S. Developmental and epileptic encephalopathies - therapeutic consequences of genetic testing. MED GENET-BERLIN 2022; 34:215-224. [PMID: 38835873 PMCID: PMC11006352 DOI: 10.1515/medgen-2022-2145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Developmental and epileptic encephalopathies comprise a heterogeneous group of monogenic neurodevelopmental disorders characterized by early-onset seizures, marked epileptic activity and abnormal neurocognitive development. The identification of an increasing number of underlying genetic alterations and their pathophysiological roles in cellular signaling drives the way toward novel precision therapies. The implementation of novel treatments that target the underlying mechanisms gives hope for disease modification that will improve not only the seizure burden but also the neurodevelopmental outcome of affected children. So far, beneficial effects are mostly reported in individual trials and small numbers of patients. There is a need for international collaborative studies to define the natural history and relevant outcome measures and to test novel pharmacological approaches.
Collapse
Affiliation(s)
- Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Xu D, Chen S, Yang J, Wang X, Fang Z, Li M. Precision therapy with quinidine of KCNT1-related epileptic disorders: a systematic review. Br J Clin Pharmacol 2022; 88:5096-5112. [PMID: 35940594 DOI: 10.1111/bcp.15479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Despite numerous studies on quinidine therapies for epilepsies associated with KCNT1 gene mutations, there is no consensus on its clinical utility. Thus, we reviewed studies evaluating the efficacy and safety of quinidine in KCNT1-related epileptic disorders. METHODS Electronic databases were queried for in vivo and in vitro studies on quinidine therapy in KCNT1-related epilepsies published on or before May 1st, 2022. The evaluation of evidence was done as per the American Academy of Neurology's classification scheme. Identification of significant factors that possibly influenced therapeutic effects of quinidine were performed using χ2 tests. RESULTS Twenty-seven studies containing 82 patient records were reviewed. Records of eighty patients with 33 KCNT1 mutations were analyzed, of which 20 patients had gained ≥50% seizure reduction due to quinidine therapy. However, quinidine therapy often had different effects on patients with the same KCNT1 mutation. Age, genotypes of KCNT1 mutations, seizure types and brain MRI did not significantly influence the therapeutic effect of quinidine. Prolonged QTc was the most common among all adverse events with quinidine. Notably, results of in vitro quinidine tests did not correspond with in vivo tests. CONCLUSIONS Therapeutic effects of quinidine on KCNT1-related epilepsies remained indefinite as contradictory results were detected in similar patients. Age, seizure types, genotypes of KCNT1 mutations and brain MRI did not influence the therapeutic effects of quinidine. Insensitivity to quinidine by a certain Kcnt1 genotype in molecular tests predictive of its inefficacy in human populations of the respective mutation.
Collapse
Affiliation(s)
- Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiufeng Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Silksmith B, Munot P, Starling L, Pujar S, Matthews E. Accelerating the genetic diagnosis of neurological disorders presenting with episodic apnoea in infancy. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:495-508. [PMID: 35525254 DOI: 10.1016/s2352-4642(22)00091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
Unexplained episodic apnoea in infants (aged ≤1 year), including recurrent brief (<1 min) resolved unexplained events (known as BRUE), can be a diagnostic challenge. Recurrent unexplained apnoea might suggest a persistent, debilitating, and potentially fatal disorder. Genetic diseases are prevalent among this group, particularly in those who present with paroxysmal or episodic neurological symptoms. These disorders are individually rare and challenging for a general paediatrician to recognise, and there is often a delayed or even posthumous diagnosis (sometimes only made in retrospect when a second sibling becomes unwell). The disorders can be debilitating if untreated but pharmacotherapies are available for the vast majority. That any child should suffer from unnecessary morbidity or die from one of these disorders without a diagnosis or treatment having been offered is a tragedy; therefore, there is an urgent need to simplify and expedite the diagnostic journey. We propose an apnoea gene panel for hospital specialists caring for any infant who has recurrent apnoea without an obvious cause. This approach could remove the need to identify individual rare conditions, speed up diagnosis, and improve access to therapy, with the ultimate aim of reducing morbidity and mortality.
Collapse
Affiliation(s)
- Bryony Silksmith
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luke Starling
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma Matthews
- Atkinson-Morley Neuromuscular Centre, Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK; Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| |
Collapse
|
36
|
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022; 43:392-405. [PMID: 35427475 PMCID: PMC9119009 DOI: 10.1016/j.tips.2022.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes. These channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard to treat. Here, we review the genetic links to epilepsy, the opportunities and challenges of iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, the available tools for effective phenotyping of iPSC-derived neurons, and discuss the potential therapeutic approaches for these devastating diseases.
Collapse
Affiliation(s)
- Dina Simkin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jordyn Eisenberg
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mennat Gharib
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
38
|
Zhang Q, Liu Y, Xu J, Teng Y, Zhang Z. The Functional Properties, Physiological Roles, Channelopathy and Pharmacological Characteristics of the Slack (KCNT1) Channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:387-400. [PMID: 35138624 DOI: 10.1007/978-981-16-4254-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The KCNT1 gene encodes the sodium-activated potassium channel that is abundantly expressed in the central nervous system of mammalians and plays an important role in reducing neuronal excitability. Structurally, the KCNT1 channel is absent of voltage sensor but possesses a long C-terminus including RCK1 and RCK2domain, to which the intracellular sodium and chloride bind to activate the channel. Recent publications using electron cryo-microscopy (cryo-EM) revealed the open and closed structural characteristics of the KCNT1 channel and co-assembly of functional domains. The activation of the KCNT1 channel regulates various physiological processes including nociceptive behavior, itch, spatial learning. Meanwhile, malfunction of this channel causes important pathophysiological consequences, including Fragile X syndrome and a wide spectrum of seizure disorders. This review comprehensively describes the structure, expression patterns, physiological functions of the KCNT1 channel and emphasizes the channelopathy of gain-of-function KCNT1 mutations in epilepsy.
Collapse
Affiliation(s)
- Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yue Teng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
39
|
Lin Z, Sang T, Yang Y, Wu Y, Dong Y, Ji T, Zhang Y, Wu Y, Gao K, Jiang Y. Efficacy of Anti-seizure Medications, Quinidine, and Ketogenic Diet Therapy for KCNT1-Related Epilepsy and Genotype-Efficacy Correlation Analysis. Front Neurol 2022; 12:834971. [PMID: 35116000 PMCID: PMC8804090 DOI: 10.3389/fneur.2021.834971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
AimTo evaluate the efficacy of anti-seizure medications (ASMs), quinidine, and ketogenic diet therapy (KDT) for KCNT1-related epilepsy and to explore genotype-efficacy correlations.MethodsWe collected the data for KCNT1-related epilepsy cases from our hospital's medical records and the literature. In total, 50 patients received quinidine, 23 received classical KDT, and 15 received ASMs; all ASM data were from our hospital owing to the lack of detailed ASM data in the literature. The efficacy rates (ERs) of the treatments were compared; an ER that reduced the number of seizures by ≥50% was considered positive. Efficacy according to genotype was also assessed.ResultsThe ERs for the 30 patients at our hospital were 40, 26.7, 30, and 44.4% for all treatments, ASMs, quinidine, and KDT, respectively. For all patients (ours and those in previous reports), the overall ERs for quinidine and KDT were 26.0 and 43.5%, respectively (P = 0.135). The ERs for quinidine and KDT in functional domain variant-related epilepsy differed significantly (20.6 vs. 53.8%; P = 0.037).InterpretationKDT may be better at treating KCNT1-related epilepsy than quinidine; ASMs were the least effective. KDT is a viable treatment option for functional domain variant-related epilepsy.
Collapse
Affiliation(s)
- Zehong Lin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Tian Sang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuan Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Kai Gao
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Yuwu Jiang
| |
Collapse
|
40
|
McGinn RJ, Von Stein EL, Summers Stromberg JE, Li Y. Precision medicine in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:147-188. [DOI: 10.1016/bs.pmbts.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Krey I, von Spiczak S, Johannesen KM, Hikel C, Kurlemann G, Muhle H, Beysen D, Dietel T, Møller RS, Lemke JR, Syrbe S. L-Serine Treatment is Associated with Improvements in Behavior, EEG, and Seizure Frequency in Individuals with GRIN-Related Disorders Due to Null Variants. Neurotherapeutics 2022; 19:334-341. [PMID: 34997442 PMCID: PMC9130352 DOI: 10.1007/s13311-021-01173-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/06/2022] Open
Abstract
Pathogenic missense variants in GRIN2A and GRIN2B may result in gain or loss of function (GoF/LoF) of the N-methyl-D-aspartate receptor (NMDAR). This observation gave rise to the hypothesis of successfully treating GRIN-related disorders due to LoF variants with co-agonists of the NMDAR. In this respect, we describe a retrospectively collected series of ten individuals with GRIN2A- or GRIN2B-related disorders who were treated with L-serine, each within an independent n-of-1 trial. Our cohort comprises one individual with a LoF missense variant with clinical improvements confirming the above hypothesis and replicating a previous n-of-1 trial. A second individual with a GoF missense variant was erroneously treated with L-serine and experienced immediate temporary behavioral deterioration further supporting the supposed functional pathomechanism. Eight additional individuals with null variants (that had been interpreted as loss-of-function variants despite not being missense) again showed clinical improvements. Among all nine individuals with LoF missense or null variants, L-serine treatment was associated with improvements in behavior in eight (89%), in development in four (44%), and/or in EEG or seizure frequency in four (44%). None of these nine individuals experienced side effects or adverse findings in the context of L-serine treatment. In summary, we describe the first evidence that L-serine treatment may not only be associated with clinical improvements in GRIN-related disorders due to LoF missense but particularly also null variants.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Sarah von Spiczak
- DRK-Northern German Epilepsy Center for Children and Adolescents, Schwentinental, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kathrine M. Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christiane Hikel
- Department of Children and Adolescents, GFO Kliniken Niederrhein, Dinslaken, Germany
| | | | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Diane Beysen
- Department of Paediatric Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Tobias Dietel
- Epilepsy Center Kork, Medical Faculty of the University of Freiburg, Kehl, Germany
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Spoto G, Saia MC, Amore G, Gitto E, Loddo G, Mainieri G, Nicotera AG, Di Rosa G. Neonatal Seizures: An Overview of Genetic Causes and Treatment Options. Brain Sci 2021; 11:brainsci11101295. [PMID: 34679360 PMCID: PMC8534058 DOI: 10.3390/brainsci11101295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023] Open
Abstract
Seizures are the most frequent neurological clinical symptoms of the central nervous system (CNS) during the neonatal period. Neonatal seizures may be ascribed to an acute event or symptomatic conditions determined by genetic, metabolic or structural causes, outlining the so-called 'Neonatal Epilepsies'. To date, three main groups of neonatal epilepsies are recognised during the neonatal period: benign familial neonatal epilepsy (BFNE), early myoclonic encephalopathy (EME) and 'Ohtahara syndrome' (OS). Recent advances showed the role of several genes in the pathogenesis of these conditions, such as KCNQ2, KCNQ3, ARX, STXBP1, SLC25A22, CDKL5, KCNT1, SCN2A and SCN8A. Herein, we reviewed the current knowledge regarding the pathogenic variants most frequently associated with neonatal seizures, which should be considered when approaching newborns affected by these disorders. In addition, we considered the new possible therapeutic strategies reported in these conditions.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Eloisa Gitto
- Unit of Neonatal Intensive Care, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | | | - Greta Mainieri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
- Correspondence: ; Tel.: +39-090-221-2911
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| |
Collapse
|
43
|
Abstract
Genetic testing has yielded major advances in our understanding of the causes of epilepsy. Seizures remain resistant to treatment in a significant proportion of cases, particularly in severe, childhood-onset epilepsy, the patient population in which an underlying causative genetic variant is most likely to be identified. A genetic diagnosis can be explanatory as to etiology, and, in some cases, might suggest a therapeutic approach; yet, a clear path from genetic diagnosis to treatment remains unclear in most cases. Here, we discuss theoretical considerations behind the attempted use of small molecules for the treatment of genetic epilepsies, which is but one among various approaches currently under development. We explore a few salient examples and consider the future of the small molecule approach for genetic epilepsies. We conclude that significant additional work is required to understand how genetic variation leads to dysfunction of epilepsy-associated protein targets, and how this impacts the function of diverse subtypes of neurons embedded within distributed brain circuits to yield epilepsy and epilepsy-associated comorbidities. A syndrome- or even variant-specific approach may be required to achieve progress. Advances in the field will require improved methods for large-scale target validation, compound identification and optimization, and the development of accurate model systems that reflect the core features of human epilepsy syndromes, as well as novel approaches towards clinical trials of such compounds in small rare disease cohorts.
Collapse
Affiliation(s)
- Ethan M Goldberg
- Department of Pediatrics, Division of Neurology, Abramson Research Center, The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Abramson Research Center Room 502A, 19104, Philadelphia, PA, USA.
- Departments of Neurology and Neuroscience, The University of Pennsylvania Perelman School of Medicine, 19104, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Ziobro JM, Eschbach K, Shellhaas RA. Novel Therapeutics for Neonatal Seizures. Neurotherapeutics 2021; 18:1564-1581. [PMID: 34386906 PMCID: PMC8608938 DOI: 10.1007/s13311-021-01085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Collapse
Affiliation(s)
- Julie M Ziobro
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA.
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, Denver Anschutz School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Bonardi CM, Heyne HO, Fiannacca M, Fitzgerald MP, Gardella E, Gunning B, Olofsson K, Lesca G, Verbeek N, Stamberger H, Striano P, Zara F, Mancardi MM, Nava C, Syrbe S, Buono S, Baulac S, Coppola A, Weckhuysen S, Schoonjans AS, Ceulemans B, Sarret C, Baumgartner T, Muhle H, des Portes V, Toulouse J, Nougues MC, Rossi M, Demarquay G, Ville D, Hirsch E, Maurey H, Willems M, de Bellescize J, Altuzarra CD, Villeneuve N, Bartolomei F, Picard F, Hornemann F, Koolen DA, Kroes HY, Reale C, Fenger CD, Tan WH, Dibbens L, Bearden DR, Møller RS, Rubboli G. KCNT1-related epilepsies and epileptic encephalopathies: phenotypic and mutational spectrum. Brain 2021; 144:3635-3650. [PMID: 34114611 DOI: 10.1093/brain/awab219] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy ((AD)SHE) to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies (DEE). This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 unpreviously published and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: i) EIMFS (152 individuals, 33 previously unpublished); ii) DEE other than EIMFS (non-EIMFS DEE) (37 individuals, 17 unpublished); iii) (AD)SHE (53 patients, 14 unpublished); iv) other phenotypes (6 individuals, 2 unpublished). In our cohort of 66 new cases, the most common phenotypic features were: a) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; b) in non-EIMFS DEE, possible onset with West syndrome, occurrence of atypical absences, possible evolution to DEE with SHE features; one case of sudden unexplained death in epilepsy (SUDEP); c) in (AD)SHE, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in about 50% of the patients, SUDEP in one individual; d) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the (AD)SHE-associated mutations to be clustered around the RCK2 domain in the C-terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS DEE did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset DEEs as well as in focal epilepsies, namely (AD)SHE.
Collapse
Affiliation(s)
- Claudia M Bonardi
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Department of Woman's and Child's Health, University Hospital of Padua, 35100 Padua, Italy
| | - Henrike O Heyne
- Finnish Institute for Molecular Medicine: FIMM, University of Helsinki, 00290 Helsinki, Finland.,Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA
| | | | - Mark P Fitzgerald
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Elena Gardella
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Boudewijn Gunning
- Stichting Epilepsie Instellingen Nederland, Zwolle, 8025 BV, The Netherlands
| | - Kern Olofsson
- Department of Pediatric Neurology, Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Gaétan Lesca
- Department of Genetics, Hospices Civils de Lyon, 69002 Bron, France.,Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Nienke Verbeek
- Department of Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Hannah Stamberger
- Neurogenetics Group, VIB-Center for Molecular Neurology, B-2610 Antwerp, Belgium.,Department of Neurology, University Hospital, 2650 Antwerp, Belgium
| | - Pasquale Striano
- IRCCS "G. Gaslini" Institute, University of Genoa, 16147 Genoa, Italy
| | - Federico Zara
- IRCCS "G. Gaslini" Institute, University of Genoa, 16147 Genoa, Italy
| | - Maria M Mancardi
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Caroline Nava
- Département de Génétique, APHP, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Salvatore Buono
- Neurology Division, Hospital of National Relevance (AORN), Santobono Pausilipon, 80122 Naples, Italy
| | - Stephanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, F-75013, Paris, France
| | - Antonietta Coppola
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, 80138 Naples, Italy
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB-Center for Molecular Neurology, B-2610 Antwerp, Belgium.,Department of Neurology, University Hospital, 2650 Antwerp, Belgium
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Catherine Sarret
- Service de Neuropédiatrie, CHU de Clermont-Ferrand, 6310 Clermont-Ferrand, France
| | | | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105 Kiel, Germany
| | - Vincent des Portes
- Neuropaediatrics Department, Femme Mère Enfant Hospital, 69500 Lyon, France
| | - Joseph Toulouse
- Epileptology, Sleep Disorders and Functional Pediatric Neurology CHU Lyon, 69500 Bron, France
| | | | - Massimiliano Rossi
- Department of Genetics, Hospices Civils de Lyon, 69002 Bron, France.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, GENDEV Team, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Geneviève Demarquay
- Service de neurologie fonctionnelle et épileptologie, Neurological Hospital, 69677 Bron, France.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, NeuroPain, 69677 Bron, France
| | - Dorothée Ville
- Pediatric Neurology Department, Lyon University Hospital, 69500 Bron, France
| | - Edouard Hirsch
- Epilepsy Unit, Hautepierre Hospital, University of Strasbourg, 67100 Strasbourg, France
| | - Hélène Maurey
- Department of Pediatric Neurology, Hopital Bicêtre, Le Kremlin-Bicêtre, 94270 Paris, France
| | - Marjolaine Willems
- Department of Clinical Genetics, Arnaud de Villeneuve Hospital, 34090 Montpellier, France
| | - Julitta de Bellescize
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hospices Civils de Lyon, 69677 Bron, Lyon, France
| | | | - Nathalie Villeneuve
- Pediatric Neurology Department, Timone Children Hospital, 13005 Marseille, France
| | - Fabrice Bartolomei
- Epileptology Department, Timone Hospital, Public Assistance Hospitals of Marseille, Aix-Marseille University, 13005 Marseille, France
| | - Fabienne Picard
- Department of Clinical Neurosciences, University Hospitals and Faculty of Medicine, CH-1211 Geneva, Switzerland
| | - Frauke Hornemann
- Centre of Pediatric Research, Hospital for Children and Adolescents, 04103 Leipzig, Germany
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), 6525 GA Nijmegen, The Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Chiara Reale
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Christina D Fenger
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leanne Dibbens
- Epilepsy Research Group, UniSA Clinical and Health Sciences, University of South Australia, and Australian Centre for Precision Health, SA 5001 Adelaide, Australia
| | - David R Bearden
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine, Rochester, NY14642, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
46
|
Cole BA, Clapcote SJ, Muench SP, Lippiat JD. Targeting K Na1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol Sci 2021; 42:700-713. [PMID: 34074526 DOI: 10.1016/j.tips.2021.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Gain-of-function (GOF) pathogenic variants of KCNT1, the gene encoding the largest known potassium channel subunit, KNa1.1, are associated with developmental and epileptic encephalopathies accompanied by severe psychomotor and intellectual disabilities. Blocking hyperexcitable KNa1.1 channels with quinidine, a class I antiarrhythmic drug, has shown variable success in patients in part because of dose-limiting off-target effects, poor blood-brain barrier (BBB) penetration, and low potency. In recent years, high-resolution cryogenic electron microscopy (cryo-EM) structures of the chicken KNa1.1 channel in different activation states have been determined, and animal models of the diseases have been generated. Alongside increasing information about the functional effects of GOF pathogenic variants on KNa1.1 channel behaviour and how they lead to hyperexcitability, these tools will facilitate the development of more effective treatment strategies. We review the range of KCNT1 variants and their functional effects, the challenges posed by current treatment strategies, and recent advances in finding more potent and selective therapeutic interventions for KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Bethan A Cole
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
47
|
Kravetz MC, Viola MS, Prenz J, Curi M, Bramuglia GF, Tenembaum S. Case Report of Novel Genetic Variant in KCNT1 Channel and Pharmacological Treatment With Quinidine. Precision Medicine in Refractory Epilepsy. Front Pharmacol 2021; 12:648519. [PMID: 34122071 PMCID: PMC8194824 DOI: 10.3389/fphar.2021.648519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Case introduction: In this work we present a female infant patient with epilepsy of infancy with migrating focal seizures (EIMFS). Although many pharmacological schemes were attempted, she developed an encephalopathy with poor response to antiepileptic drugs and progressive cerebral dysfunction. Aim: To present the pharmacological response and therapeutic drug monitoring of a paediatric patient with a severe encephalopathy carrying a genetic variant in KCNT1 gene, whose identification led to include quinidine (QND) in the treatment regimen as an antiepileptic drug. Case report: Patient showed slow rhythmic activity (theta range) over left occipital areas with temporal propagation and oculo-clonic focal seizures and without tonic spasms three months after birth. At the age of 18 months showed severe impairments of motor and intellectual function with poor eye contact. When the patient was 4 years old, a genetic variant in the exon 24 of the KCNT1 gene was found. This led to the diagnosis of EIMFS. Due to antiepileptic treatment failed to control seizures, QND a KCNT1 blocker, was introduced as a therapeutic alternative besides topiramate (200 mg/day) and nitrazepam (2 mg/day). Therapeutic drug monitoring (TDM) of QND plasma levels needed to be implemented to establish individual therapeutic range and avoid toxicity. TDM for dose adjustment was performed to establish the individual therapeutic range of the patient. Seizures were under control with QND levels above 1.5 mcg/ml (65–70 mg/kg q. i.d). In addition, QND levels higher than 4.0 mcg/ml, were related to higher risk of suffering arrhythmia due to prolongation of QT segment. Despite initial intention to withdrawal topiramate completely, QND was no longer effective by itself and failed to maintain seizures control. Due to this necessary interaction between quinidine and topiramate, topiramate was stablished in a maintenance dose of 40 mg/day. Conclusion: The implementation of Precision Medicine by using tools such as Next Generation Sequencing and TDM led to diagnose and select a targeted therapy for the treatment of a KCNT1-related epilepsy in a patient presented with EIMFS in early infancy and poor response to antiepileptic drugs. QND an old antiarrhythmic drug, due to its activity as KCNT1 channel blocker, associated to topiramate resulted in seizures control. Due to high variability observed in QND levels, TDM and pharmacokinetic characterization allowed to optimize drug regimen to maintain QND concentration between the individual therapeutic range and diminish toxicity.
Collapse
Affiliation(s)
- M C Kravetz
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina
| | - M S Viola
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina
| | - J Prenz
- Department of Cardiology, Garrahan Hospital, Buenos Aires City, Argentina
| | - M Curi
- Department of Cardiology, Garrahan Hospital, Buenos Aires City, Argentina
| | - G F Bramuglia
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina.,Fundacion Investigar, Buenos Aires City, Argentina
| | - S Tenembaum
- Department of Neurology, Garrahan Hospital, Buenos Aires City, Argentina
| |
Collapse
|
48
|
Syrbe S. Präzisionsmedizin für genetische Epilepsien – am Anfang des Weges? ZEITSCHRIFT FÜR EPILEPTOLOGIE 2021. [DOI: 10.1007/s10309-021-00409-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Griffin AM, Kahlig KM, Hatch RJ, Hughes ZA, Chapman ML, Antonio B, Marron BE, Wittmann M, Martinez-Botella G. Discovery of the First Orally Available, Selective K Na1.1 Inhibitor: In Vitro and In Vivo Activity of an Oxadiazole Series. ACS Med Chem Lett 2021; 12:593-602. [PMID: 33859800 PMCID: PMC8040054 DOI: 10.1021/acsmedchemlett.0c00675] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gene KCNT1 encodes the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2). Variants in the KCNT1 gene induce a gain-of-function (GoF) phenotype in ionic currents and cause a spectrum of intractable neurological disorders in infants and children, including epilepsy of infancy with migrating focal seizures (EIMFS) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Effective treatment options for KCNT1-related disease are absent, and novel therapies are urgently required. We describe the development of a novel class of oxadiazole KNa1.1 inhibitors, leading to the discovery of compound 31 that reduced seizures and interictal spikes in a mouse model of KCNT1 GoF.
Collapse
Affiliation(s)
- Andrew M. Griffin
- Praxis
Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Kristopher M. Kahlig
- Praxis
Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Robert John Hatch
- Praxis
Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
- The
Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Zoë A. Hughes
- Praxis
Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | | | | - Brian E. Marron
- Praxis
Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Marion Wittmann
- Praxis
Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
50
|
Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr Neurol 2021; 116:85-94. [PMID: 33515866 DOI: 10.1016/j.pediatrneurol.2020.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Our current knowledge of genetically determined forms of epilepsy has shortened the diagnostic pathway usually experienced by the families of infants diagnosed with early-onset developmental and epileptic encephalopathies. Genetic causes can be found in up to 80% of infants presenting with early-onset developmental and epileptic encephalopathies, often in the context of an uneventful perinatal history and with no clear underlying brain abnormalities. Although current disease-specific therapies remain limited and patient outcomes are often guarded, a genetic diagnosis may lead to early therapeutic intervention using new and/or repurposed therapies. In this review, an overview of epilepsy genetics, the indications for genetic testing in infants, the advantages and limitations of each test, and the challenges and ethical implications of genetic testing are discussed. In addition, the following causative genes associated with early-onset developmental and epileptic encephalopathies are discussed in detail: KCNT1, KCNQ2, KCNA2, SCN2A, SCN8A, STXBP1, CDKL5, PIGA, SPTAN1, and GNAO1. The epilepsy phenotypes, comorbidities, electroencephalgraphic findings, neuroimaging findings, and potential targeted therapies for each gene are reviewed.
Collapse
Affiliation(s)
| | - Felippe Borlot
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|