1
|
Yin Y, Cao Y, Zhou Y, Xu Z, Luo P, Yang B, He Q, Yan H, Yang X. Downregulation of DDIT4 levels with borneol attenuates hepatotoxicity induced by gilteritinib. Biochem Pharmacol 2025; 236:116869. [PMID: 40081769 DOI: 10.1016/j.bcp.2025.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Gilteritinib, a multi-target kinase inhibitor, is currently used as standard therapy for acute myeloid leukemia. However, approximately half of the patients encounter liver-related adverse effects during the treatment with gilteritinib, which limiting its clinical applications. The underlying mechanisms of gilteritinib-induced hepatotoxicity and the development of strategies to prevent this toxicity are not well-reported. In our study, we utilized JC-1 dye, and MitoSOX to demonstrate that gilteritinib treatment leads to hepatocytes undergoing p53-mediated mitochondrial apoptosis. Furthermore, qRT-PCR analysis revealed that DNA damage-inducible transcript 4 (DDIT4), a downstream target of p53, was upregulated following gilteritinib administration and was identified as a key factor in gilteritinib-induced hepatotoxicity. After drug screening and western blot analysis, borneol, a bicyclic monoterpenoid, was found to decrease the protein level of DDIT4. This is the first compound found to downregulate DDIT4 levels and ameliorate hepatic injury caused by gilteritinib. Our findings suggest that high levels of DDIT4 are the primary driver behind gilteritinib-induced liver injury, and that borneol could potentially be a clinically safe and feasible therapeutic strategy by inhibiting DDIT4 levels.
Collapse
Affiliation(s)
- Yiming Yin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100 Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| |
Collapse
|
2
|
O'Keeffe P, Nouri Y, Saw HS, Moore Z, Baldwin TM, Olechnowicz SWZ, Jabbari JS, Squire DM, Leslie S, Wang C, You Y, Ritchie ME, Cross RS, Jenkins MR, Audiger C, Naik SH, Whittle JR, Freytag S, Best SA, Hickey PF, Amann-Zalcenstein D, Bowden R, Brown DV. TIRE-seq simplifies transcriptomics via integrated RNA capture and library preparation. Sci Rep 2025; 15:15385. [PMID: 40316593 PMCID: PMC12048512 DOI: 10.1038/s41598-025-98282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
RNA sequencing (RNA-seq) is widely used in biomedical research, advancing our understanding of gene expression across biological systems. Traditional methods require upstream RNA extraction from biological inputs, adding time and expense to workflows. We developed TIRE-seq (Turbocapture Integrated RNA Expression Sequencing) to address these challenges. TIRE-seq integrates mRNA purification directly into library preparation, eliminating the need for a separate extraction step. This streamlined approach reduces turnaround time, minimizes sample loss, and improves data quality. A comparative study with the widely used Prime-seq protocol demonstrates TIRE-seq's superior sequencing efficiency with crude cell lysates as inputs. TIRE-seq's utility was demonstrated across three biological applications. It captured transcriptional changes in stimulated human T cells, revealing activation-associated gene expression profiles. It also identified key genes driving murine dendritic cell differentiation, providing insights into lineage commitment. Lastly, TIRE-seq analyzed the dose-response and time-course effects of temozolomide on patient-derived neurospheres, identifying differentially expressed genes and enriched pathways linked to the drug's mechanism of action. With its simplified workflow and high sequencing efficiency, TIRE-seq offers a cost-effective solution for large-scale gene expression studies across diverse biological systems.
Collapse
Affiliation(s)
- Piper O'Keeffe
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yasmin Nouri
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hui Shi Saw
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zachery Moore
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tracey M Baldwin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
| | - Sam W Z Olechnowicz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jafar S Jabbari
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David McG Squire
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Changqing Wang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yupei You
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ryan S Cross
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Misty R Jenkins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cindy Audiger
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James R Whittle
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, 3010, Australia
| | - Saskia Freytag
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sarah A Best
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Daniel V Brown
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade VIC, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Jawed R, Bhatti H, Khan A. Genetic profile of ferroptosis in non-small cell lung carcinoma and pharmaceutical options for ferroptosis induction. Clin Transl Oncol 2025; 27:1867-1886. [PMID: 39460894 DOI: 10.1007/s12094-024-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths and the second most commonly diagnosed malignancy worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell LC (LUSCC) are the most common subtypes of non-small cell LC (NSCLC). Early diagnosis of LC can be challenging due to a lack of biomarkers. The overall survival (OS) of patients with NSCLC is still poor despite the enormous efforts that have been made to develop novel treatments. Understanding fundamental molecular and genetic mechanisms is necessary to develop new therapeutic approaches for NSCLC. A recently identified type of programmed cell death known as ferroptosis is one potential approach. Ferroptosis causes oxidative damage and the death of cancerous cells by peroxidizing unsaturated phospholipids and accumulating reactive oxygen species (ROS) in an iron-dependent manner. Ferroptosis-related gene (FRG) signatures have recently been evaluated for their ability to predict patient OS and prognosis. These analyses show FRGs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Moreover, we summarize the current pharmaceutical options of ferroptosis induction and their underlying molecular mechanism in LC. Therefore, this review aims to provide a comprehensive summary of FRG-based prognostic models, their associated metabolic and signaling pathways, and promising therapeutic options for ferroptosis induction in NSCLC.
Collapse
Affiliation(s)
- Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huma Bhatti
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Adnan Khan
- Clinical and Molecular Labs, Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), KDA Scheme 33 Near Safoora Chowk, Karachi, Pakistan
| |
Collapse
|
4
|
Zhang W, Xia M, Li J, Liu G, Sun Y, Chen X, Zhong J. Warburg effect and lactylation in cancer: mechanisms for chemoresistance. Mol Med 2025; 31:146. [PMID: 40264038 PMCID: PMC12016192 DOI: 10.1186/s10020-025-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
In the clinical management of cancers, the emergence of chemoresistance represents a profound and imperative "pain point" that requires immediate attention. Understanding the mechanisms of chemoresistance is essential for developing effective therapeutic strategies. Importantly, existing studies have demonstrated that glucose metabolic reprogramming, commonly referred to as the Warburg effect or aerobic glycolysis, is a major contributor to chemoresistance. Additionally, lactate, a byproduct of aerobic glycolysis, functions as a signaling molecule that supports lysine lactylation modification of proteins, which also plays a critical role in chemoresistance. However, it is insufficient to discuss the role of glycolysis or lactylation in chemoresistance from a single perspective. The intricate relationship between aerobic glycolysis and lactylation plays a crucial role in promoting chemoresistance. Thus, a thorough elucidation of the mechanisms underlying chemoresistance mediated by aerobic glycolysis and lactylation is essential. This review provides a comprehensive overview of these mechanisms and further outlines that glycolysis and lactylation exert synergistic effects, promoting the development of chemoresistance and creating a positive feedback loop that continues to mediate this resistance. The close link between aerobic glycolysis and lactylation suggests that the application of glycolysis-related drugs or inhibitors in cancer therapy may represent a promising anticancer strategy. Furthermore, the targeted application of lactylation, either alone or in combination with other treatments, may offer new therapeutic avenues for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiahui Li
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Sun
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xisha Chen
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Bernhard C, Geles K, Pawlak G, Dhifli W, Dispot A, Dusol J, Kondratova M, Martin S, Messé M, Reita D, Tulasne D, Van Seuningen I, Entz-Werle N, Ciafrè SA, Dontenwill M, Elati M. A coregulatory influence map of glioblastoma heterogeneity and plasticity. NPJ Precis Oncol 2025; 9:110. [PMID: 40234567 PMCID: PMC12000621 DOI: 10.1038/s41698-025-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
We present GBM-cRegMap, an online resource providing a comprehensive coregulatory influence network perspective on glioblastoma (GBM) heterogeneity and plasticity. Using representation learning algorithms, we derived two components of this resource: GBM-CoRegNet, a highly specific coregulatory network of tumor cells, and GBM-CoRegMap, a unified network influence map based on 1612 tumors from 16 studies. As a widely applicable closed-loop system connecting cellular models and tumors, GBM-cRegMap will provide the GBM research community with an easy-to-use web tool ( https://gbm.cregmap.com ) that maps any existing or newly generated transcriptomic "query" data to a reference coregulatory network and a large-scale manifold of disease heterogeneity. Using GBM-cRegMap, we demonstrated the synergy between the two components by refining the molecular classification of GBM, identifying potential key regulators, and aligning the transcriptional profiles of tumors and in vitro models. Through the amalgamation of a vast dataset, we validated the proneural (PN)-mesenchymal (MES) axis and identified three subclasses of classical (CL) tumors: astrocyte-like (CL-A), epithelial basal-like (CL-B), and cilium-rich (CL-C). We revealed the CL-C subclass, an intermediate state demonstrating the plasticity of GBM cells along the PN-MES axis under chemotherapy. We identified key regulators, such as PAX8, and NKX2.5, potentially involved in temozolomide (TMZ) resistance. Notably, NKX2.5, more expressed in higher-grade gliomas, negatively impacts patient survival, and regulates genes involved in glucose metabolism.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Konstantinos Geles
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Geoffrey Pawlak
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Wajdi Dhifli
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Aurélien Dispot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Jules Dusol
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Maria Kondratova
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Sophie Martin
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Mélissa Messé
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200, Strasbourg, France
| | - David Tulasne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098, Strasbourg, France
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France.
| |
Collapse
|
6
|
Dehghan Manshadi M, Tajik F, Saeednejad Zanjani L, Hashemi F, Rahimi M, Fattahi F, Safaei S, Madjd Z, Ghods R. Lower cytoplasmic expression of DDIT4 is associated with poor prognosis in gastric cancer patients. Discov Oncol 2025; 16:374. [PMID: 40120027 PMCID: PMC11929655 DOI: 10.1007/s12672-025-02065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
INTRODUCTION DNA damage-inducible transcript 4 (DDIT4), also known as Redd1, Dig2, and RTP801 was identified to be upregulated in response to a variety of cellular stresses, including DNA damage, endoplasmic reticulum stress, and energy stress. Several studies have discovered that dysregulation of DDIT4 involved in various cancers with paradoxical expression and roles. Hence, this study was designed to investigate the clinical significance and prognostic value of DDIT4 in different subtypes of gastric cancer (GC). MATERIALS AND METHODS To evaluate the expression pattern of DDIT4 in GC tissues as well as adjacent normal tissue, we utilized immunohistochemistry on tissue microarray (TMA) slides. RESULTS Our findings revealed that nuclear expression of DDIT4 was higher in GC tissues than in non-malignant samples. Also, the cytoplasmic and membranous expression of DDIT4 were significantly lower in tumor samples (P = 0.007 and P = 0.002, respectively). The results indicated that there was a statistically significant association between low cytoplasmic and membranous expression of DDIT4 and advanced histological grade (P = 0.001 and P = 0.016). The survival analysis revealed that lowered cytoplasmic expression of DDIT4 is significantly associated with worse DSS (P = 0.038). CONCLUSION Lower cytoplasmic expression of DDIT4 could serve as a promising prognostic biomarker in GC.
Collapse
Affiliation(s)
- Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Safaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sadeghipour A, Fattahi F, Madjd Z, Tajik F, Sedaghati F, Saeednejad Zanjani L. Increased nuclear expression of DNA damage inducible transcript 4 can serve as a potential prognostic biomarker in patients with gliomas: a study based on data mining and experimental tools. Discov Oncol 2025; 16:124. [PMID: 39915428 PMCID: PMC11802953 DOI: 10.1007/s12672-025-01865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION DNA damage-inducible transcript 4 (DDIT4), induced under cellular stress conditions, has been implicated in malignancies due to its abnormal expression patterns. MATERIALS AND METHODS The expression of DDIT4 at the mRNA level and its potential role as a prognostic biomarker in gliomas were analyzed using the GEPIA tool. To validate these findings, DDIT4 protein expression levels and their prognostic significance were examined in tissue microarrays from glioma patients using immunohistochemistry in clinical samples. RESULTS Bioinformatics analysis revealed that DDIT4 overexpression in glioma tumors and its high mRNA expression levels are associated with poor outcomes, likely through mTOR signaling. At the protein level, positive nuclear DDIT4 expression was linked to higher histological grades and temozolomide treatment. Kaplan-Meier survival analysis demonstrated that positive nuclear DDIT4 expression is a significant predictor of poor disease-specific survival (DSS) and recurrence-free survival (RFS). Additionally, nuclear DDIT4 expression was identified as an independent prognostic factor for DSS. CONCLUSION Our findings suggest that nuclear DDIT4 expression may serve as a potential prognostic biomarker and therapeutic target in glioma patients. However, further studies with larger sample sizes and long-term follow-ups are needed to validate these observations and confirm their clinical relevance.
Collapse
Affiliation(s)
- Alireza Sadeghipour
- Department of Pathology, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Surgery, Irvine Medical Center, University of California, Orange, CA, USA
| | - Farnoosh Sedaghati
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Ho KH, Hsu SY, Chen PH, Cheng CH, Liu AJ, Chien MH, Chen KC. Hypoxia enhances IL-8 signaling through inhibiting miR-128-3p expression in glioblastomas. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119885. [PMID: 39631468 DOI: 10.1016/j.bbamcr.2024.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive type of brain tumor known for its hypoxic microenvironment. Understanding the dysregulated mechanisms in hypoxic GBM is crucial for its effective treatment. Through data mining of The Cancer Genome Atlas (TCGA) with hypoxia enrichment scores and in vitro experiments, miR-128-3p was negatively correlated with hypoxia signaling and the epithelial-mesenchymal transition (EMT). Additionally, lower miR-128-3p levels existed in hypoxic GBM, leading to desensitizing temozolomide (TMZ)'s efficacy, a first-line therapeutic drug for GBM. Overexpressing miR-128-3p enhanced both the in vitro and in vivo sensitivity of hypoxic gliomas to TMZ treatment. Mechanistically, HIF-1α suppressed miR-128-3p expression in hypoxic GBM. Through establishing miR-128-3p-mediated transcriptomic profiles and data mining, interleukin (IL)-8 was selected. IL-8 respectively showed positive and negative correlations with hypoxia and miR-128-3p, and was associated with poor TMZ therapeutic results in GBM. Elevated miR-128-3p, which targets both the 3'-untranslated region (UTR) and 5'UTR of IL-8, resulted in suppression of IL-8 expression. Moreover, IL-8 was validated to be involved in HIF-1α/miR-128-3p-regulated TMZ sensitivity and the EMT in hypoxic GBM cells. Collectively, the HIF-1α/miR-128-3p/IL-8 signaling pathway plays a critical role in promoting the progression of hypoxic GBM. Targeting this signaling pathway holds promise as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shao-Yuan Hsu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Peng-Hsu Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Jin Q, Wang F, Ye W, Wang Q, Xu S, Jiang S, Li X, Yue M, Yu D, Jin M, Fu A, Li W. Compound Bacillus improves eggshell quality and egg metabolites of hens by promoting the metabolism balance of calcium and phosphorus and uterine cell proliferation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:355-369. [PMID: 39640545 PMCID: PMC11617893 DOI: 10.1016/j.aninu.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Probiotics have beneficial effects on improving egg quality, but there is little research about the effect of probiotics on metabolite composition, and the mechanisms are not yet fully understood. The aim of this study was to investigate the potential mechanisms by which compound Bacillus improves egg quality and metabolite composition. A total of 20,000 Jingfen No. 6 laying hens at 381 d old were randomly divided into two treatments: control group with a basal diet, and the basal diet with 5 × 108 CFU/kg compound Bacillus supplementation (Ba) group. The trial lasted eight weeks. The results showed that compound Bacillus improved the gloss and strength of eggshells and reduced the ratio of sand-shell eggs by 23.8%. Specifically, the effective layer of eggshell was thicker and its calcite column was closely connected. Compound Bacillus increased the contents of beneficial fatty acids in the egg yolk, and lipids and lipid-like molecules in the albumen (P < 0.01), while decreased the contents of total cholesterol, triglycerides, and benzene ring compounds in the egg yolk and organic oxygen compounds in the albumen (P < 0.01). In addition, the compound Bacillus increased the calcium absorption in the duodenum by up-regulating the expression of transporters and serum hormone synergism (P < 0.05), and promoted metabolic balance of calcium and phosphorus. Simultaneously, uterine transcriptome showed that the expression of ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (C1GALT1), phosphatidylinositol-4-phosphate 5-kinase type 1 beta (PIP5K1B), methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), brain enriched myelin associated protein 1 (BCAS1), and squalene epoxidase (SQLE) genes were increased (P < 0.01), indicating that nutrient metabolism activity was enhanced. The expression of the BCAS1, C1GALT1, KLF transcription factor 13 (KLF13), and leucine rich repeat neuronal 1 (LRRN1) was increased (P < 0.01), indicating that the cell proliferation was enhanced, which slowed uterus aging. In conclusion, compound Bacillus improved the eggshell strength and metabolite composition in the egg by promoting metabolic balance of calcium and phosphorus, cell proliferation, and nutrient metabolism in the uterus.
Collapse
Affiliation(s)
- Qian Jin
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weisheng Ye
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shaoxiong Jiang
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
10
|
Zhou Q, Shi R, Liu J, Liu Z. Identification and characterization of novel ferroptosis-related genes in acute myocardial infarction. Hum Genomics 2024; 18:123. [PMID: 39538299 PMCID: PMC11562590 DOI: 10.1186/s40246-024-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of death and morbidity worldwide. Ferroptosis, a form of regulated cell death, plays a critical role in modulating immune functions during AMI. This study aimed to identify ferroptosis-related hub genes that could serve as potential therapeutic targets in the progression of AMI. METHODS Bioinformatics was used to identify overlapping genes associated with ferroptosis and the infiltration of 22 immune cells by Cell-type Identification by Estimating Relative Subsets of RNA Transcript (CIBERSORT) analysis. The expression of ferroptosis-related genes in AMI was validated across independent datasets, clinical samples, and in vitro cellular experiments. The predictive value for heart failure was evaluated in the first dimension of principal component analysis (PCA) using receiver operating characteristic (ROC) analysis. RESULTS The study identified 11 key ferroptosis-related genes significantly correlated with immune cell abundance. CIBERSORT analysis highlighted immune dysregulation in AMI. JDP2, DUSP1, TLR4, NFS1, and SLC1A5 were identified as potential biomarkers for AMI progression. Additionally, JDP2, DUSP1, and DDIT4 demonstrated strong predictive value for long-term heart failure. CONCLUSION This study highlights the potential association of ferroptosis-related genes with the pathogenesis of AMI, suggesting a role in the molecular mechanisms that may underlie acute coronary events.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular Medicine, Postdoctoral Station of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Su J, Zhao Y, Chen WD, Wang YD. Activation of the G Protein-Coupled Bile Acid Receptor TGR5 Modulates the HCP5/miR-139-5p/DDIT4 Axis to Antagonize Cervical Cancer Progression. Int J Mol Sci 2024; 25:8932. [PMID: 39201624 PMCID: PMC11354701 DOI: 10.3390/ijms25168932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
A growing body of evidence indicates that the G protein-coupled bile acid receptor, TGR5, plays a critical role in multiple physiological processes ranging from metabolic disorders to cancers. However, the biological functions of TGR5 in cervical cancer (CC) have not been elucidated. Here, using TGR5 knockout mice, we found that a deficiency of TGR5 leads to greater sensitivity to the progression of cervical inflammation. Activation of TGR5 by its specific ligands significantly attenuated the malignant behavior of CC cells. In addition, we found that TGR5 can negatively modulate the expression of lncRNA HCP5 by blocking its transcription activation when mediated by p65. HCP5 was highly expressed in CC tissues, which was positively correlated with the poor prognosis of CC patients. HCP5 knockdown notably restrained CC cell proliferation, colony formation, and migration in vitro, and inhibited tumor growth in vivo. Furthermore, HCP5 can function as the molecular sponge for miR-139-5p to upregulate DNA damage-induced transcript 4 (DDIT4) in CC cells. Murine xenograft studies demonstrated that TGR5 suppressed the tumor formation of CC cells and downregulated HCP5 and DDIT4 while increasing miR-139-5p in the xenografts. Taken together, these findings, for the first time, indicate that TGR5 inhibits CC progression by regulating the HCP5/miR-139-5p/DDIT4 axis, suggesting that it may represent a novel and potent target for CC treatment.
Collapse
Affiliation(s)
- Jia Su
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (Y.Z.)
| | - Yiqi Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (Y.Z.)
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010107, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (Y.Z.)
| |
Collapse
|
12
|
Liu Y, Sun Y, Cheng S. Advances in the use of organoids in endometrial diseases. Int J Gynaecol Obstet 2024; 166:502-511. [PMID: 38391201 DOI: 10.1002/ijgo.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The endometrium undergoes cyclical changes in response to hormones and there is a certain degree of heterogeneity among individuals. In vivo identification of the physiologic changes of the endometrium and the pathologic process of related diseases is challenging. There have been recent advances in the use of organoids that mimic the characteristics of the corresponding organs and the morphologic, functional, and personalized characteristics involved in different stages of diseases. In this paper, we discuss the process of creating endometrial organoids, cell sources, types of extracellular matrices, and their application in the study of physiologic endometrial states and various diseases.
Collapse
Affiliation(s)
- Yaofang Liu
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Sun
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shaolong Cheng
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Che G, Yin J, Wang W, Luo Y, Chen Y, Yu X, Wang H, Liu X, Chen Z, Wang X, Chen Y, Wang X, Tang K, Tang J, Shao W, Wu C, Sheng J, Li Q, Liu J. Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics. Drug Resist Updat 2024; 74:101080. [PMID: 38579635 DOI: 10.1016/j.drup.2024.101080] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. METHODS We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. RESULTS Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. CONCLUSION Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.
Collapse
Affiliation(s)
- Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Jie Yin
- Department of Colorectal Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wankun Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yandong Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zhendong Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xing Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xujin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Kaicheng Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiao Tang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics of (NUAA), Nanjing 211106, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics of (NUAA), Nanjing 211106, China
| | - Chao Wu
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China.
| | - Jianpeng Sheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Center for Intelligent Oncology Designated by State Ministry of Education, Chongqing University, Chongqing 400030, China; Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Qing Li
- College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jian Liu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
14
|
Fehsel K, Bouvier ML, Capobianco L, Lunetti P, Klein B, Oldiges M, Majora M, Löffler S. Neuroreceptor Inhibition by Clozapine Triggers Mitohormesis and Metabolic Reprogramming in Human Blood Cells. Cells 2024; 13:762. [PMID: 38727298 PMCID: PMC11083702 DOI: 10.3390/cells13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marko Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marc Majora
- Leibniz Research Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany;
| | - Stefan Löffler
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, Starkenburgring 66, 63069 Offenbach, Germany;
| |
Collapse
|
15
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, Vanoirbeek JAJ, Vande Velde G, Van den Steen PE. Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog 2024; 20:e1011929. [PMID: 38236930 PMCID: PMC10826972 DOI: 10.1371/journal.ppat.1011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Chloë Thienpont
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Qin Y, Xiong S, Ren J, Sethi G. Autophagy machinery in glioblastoma: The prospect of cell death crosstalk and drug resistance with bioinformatics analysis. Cancer Lett 2024; 580:216482. [PMID: 37977349 DOI: 10.1016/j.canlet.2023.216482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Brain tumors are common malignancies with high mortality and morbidity in which glioblastoma (GB) is a grade IV astrocytoma with heterogeneous nature. The conventional therapeutics for the GB mainly include surgery and chemotherapy, however their efficacy has been compromised due to the aggressiveness of tumor cells. The dysregulation of cell death mechanisms, especially autophagy has been reported as a factor causing difficulties in cancer therapy. As a mechanism contributing to cell homeostasis, the autophagy process is hijacked by tumor cells for the purpose of aggravating cancer progression and drug resistance. The autophagy function is context-dependent and its role can be lethal or protective in cancer. The aim of the current paper is to highlight the role of autophagy in the regulation of GB progression. The cytotoxic function of autophagy can promote apoptosis and ferroptosis in GB cells and vice versa. Autophagy dysregulation can cause drug resistance and radioresistance in GB. Moreover, stemness can be regulated by autophagy and overall growth as well as metastasis are affected by autophagy. The various interventions including administration of synthetic/natural products and nanoplatforms can target autophagy. Therefore, autophagy can act as a promising target in GB therapy.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Afflicted Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Shengjun Xiong
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
17
|
Tajik F, Fattahi F, Rezagholizadeh F, Bouzari B, Babaheidarian P, Baghai Wadji M, Madjd Z. Nuclear overexpression of DNA damage-inducible transcript 4 (DDIT4) is associated with aggressive tumor behavior in patients with pancreatic tumors. Sci Rep 2023; 13:19403. [PMID: 37938616 PMCID: PMC10632485 DOI: 10.1038/s41598-023-46484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. Several studies showed that the dysregulation of DDIT4 is involved in different malignancies with paradoxical expressions and roles. Therefore, this study investigated the clinical significance, prognostic, and diagnostic value of DDIT4 in different types of pancreatic tumors (PT). The expression of DDIT4 and long non-coding RNA (TPTEP1) in mRNA level was examined in 27 fresh PT samples using Real-time quantitative PCR (RT-qPCR). Moreover, 200 formalin-fixed paraffin-embedded PT tissues, as well as 27 adjacent normal tissues, were collected to evaluate the clinical significance, prognostic, and diagnosis value of DDIT4 expression by immunohistochemistry (IHC) on tissue microarrays (TMA) slides. The results of RT-qPCR showed that the expression of DDIT4 in tumor samples was higher than in normal samples which was associated with high tumor grade (P = 0.015) and lymphovascular invasion (P = 0.048). Similar to this, IHC findings for nucleus, cytoplasm, and membrane localization showed higher expression of DDIT4 protein in PT samples rather than in nearby normal tissues. A statistically significant association was detected between a high level of nuclear expression of DDIT4 protein, and lymphovascular invasion (P = 0.025), as well as advanced TNM stage (P = 0.034) pancreatic ductal adenocarcinoma (PDAC) and in pancreatic neuroendocrine tumor (PNET), respectively. In contrast, a low level of membranous expression of DDIT4 protein showed a significant association with advanced histological grade (P = 0.011), margin involvement (P = 0.007), perineural invasion (P = 0.023), as well as lymphovascular invasion (P = 0.005) in PDAC. No significant association was found between survival outcomes and expression of DDIT4 in both types. It was found that DDIT4 has rational accuracy and high sensitivity as a diagnostic marker. Our results revealed a paradoxical role of DDIT4 expression protein based on the site of nuclear and membranous expression. The findings of this research indicated that there is a correlation between elevated nuclear expression of DDIT4 and the advancement and progression of disease in patients with PT. Conversely, high membranous expression of DDIT4 was associated with less aggressive tumor behavior in patients with PDAC. However, further studies into the prognostic value and biological function of DDIT4 are needed in future studies.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Baghai Wadji
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Klug K, Spitzel M, Hans C, Klein A, Schottmann NM, Erbacher C, Üçeyler N. Endothelial Cell Dysfunction and Hypoxia as Potential Mediators of Pain in Fabry Disease: A Human-Murine Translational Approach. Int J Mol Sci 2023; 24:15422. [PMID: 37895103 PMCID: PMC10607880 DOI: 10.3390/ijms242015422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Fabry disease (FD) is caused by α-galactosidase A (AGAL) enzyme deficiency, leading to globotriaosylceramide accumulation (Gb3) in several cell types. Pain is one of the pathophysiologically incompletely understood symptoms in FD patients. Previous data suggest an involvement of hypoxia and mitochondriopathy in FD pain development at dorsal root ganglion (DRG) level. Using immunofluorescence and quantitative real-time polymerase chain reaction (qRT PCR), we investigated patient-derived endothelial cells (EC) and DRG tissue of the GLA knockout (KO) mouse model of FD. We address the question of whether hypoxia and mitochondriopathy contribute to FD pain pathophysiology. In EC of FD patients (P1 with pain and, P2 without pain), we found dysregulated protein expression of hypoxia-inducible factors (HIF) 1a and HIF2 compared to the control EC (p < 0.01). The protein expression of the HIF downstream target vascular endothelial growth factor A (VEGFA, p < 0.01) was reduced and tube formation was hampered in the P1 EC compared to the healthy EC (p < 0.05). Tube formation ability was rescued by applying transforming growth factor beta (TGFβ) inhibitor SB-431542. Additionally, we found dysregulated mitochondrial fusion/fission characteristics in the P1 and P2 EC (p < 0.01) and depolarized mitochondrial membrane potential in P2 compared to control EC (p < 0.05). Complementary to human data, we found upregulated hypoxia-associated genes in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). At protein level, nuclear HIF1a was higher in the DRG neurons of old GLA KO mice compared to WT mice (p < 0.01). Further, the HIF1a downstream target CA9 was upregulated in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). Similar to human EC, we found a reduction in the vascular characteristics in GLA KO DRG compared to WT (p < 0.05). We demonstrate increased hypoxia, impaired vascular properties, and mitochondrial dysfunction in human FD EC and complementarily at the GLA KO mouse DRG level. Our data support the hypothesis that hypoxia and mitochondriopathy in FD EC and GLA KO DRG may contribute to FD pain development.
Collapse
Affiliation(s)
- Katharina Klug
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Marlene Spitzel
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Clara Hans
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Alexandra Klein
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nicole Michelle Schottmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Christoph Erbacher
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
19
|
Yoshikawa N, Yoshida K, Liu W, Matsukawa T, Hattori S, Yoshihara M, Tamauchi S, Ikeda Y, Yokoi A, Shimizu Y, Niimi K, Kajiyama H. The prognostic significance of DDIT4 in endometrial cancer. Cancer Biomark 2023:CBM220368. [PMID: 37302026 DOI: 10.3233/cbm-220368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite extensive research on endometrial cancer and tumor hypoxic microenvironment, there are no reports exploring the role of DDIT4 in endometrial cancer. OBJECTIVE This study aimed to elucidate the significance of DDIT4, as a prognostic biomarker for endometrial cancer by immunohistochemical staining and statistical analysis. METHODS Four endometrial cancer cells were cultured under normoxia and hypoxia, and the differentially expressed genes were examined using RNA-seq. Immunohistochemical staining for DDIT4 and HIF1A was performed in 86 patients with type II endometrial cancer treated at our hospital, and their correlation with other clinicopathological factors and the prognostic role was analyzed using statistical methods. RESULTS The expression analysis of hypoxia-inducible genes using four types of endometrial cancer cells revealed that DDIT4 was among the 28 genes that were upregulated in all cells. Based on our results of immunohistochemistry of DDIT4 expression in endometrial cancer tissues, univariate and multivariate analyses based on COX regression analysis showed that high DDIT4 expression significantly correlated to favorable prognosis in both progression-free survival and overall survival. Limited to recurrent cases, metastasis to only lymph nodes was significantly related to high DDIT4 expression, whereas metastasis to other parenchymal organs was significantly dominant in patients with low DDIT4 expression. CONCLUSIONS The expression of DDIT4 enables to predict survival and recurrence in type II endometrial cancer.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wenting Liu
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Matsukawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satomi Hattori
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
21
|
Hareendran S, Yang X, Sharma VK, Loh YP. Carboxypeptidase E and its splice variants: Key regulators of growth and metastasis in multiple cancer types. Cancer Lett 2022; 548:215882. [PMID: 35988818 PMCID: PMC9532369 DOI: 10.1016/j.canlet.2022.215882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Mechanisms driving tumor growth and metastasis are complex, and involve the recruitment of many genes working in concert with each other. The tumor is characterized by the expression of specific sets of genes depending on its environment. Here we review the role of the carboxypeptidase E (CPE) gene which has been shown to be important in driving growth, survival and metastasis in many cancer types. CPE was first discovered as a prohormone processing enzyme, enriched in endocrine tumors, and later found to be expressed and secreted from many epithelial-derived tumors and cancer cell lines. Numerous studies have shown that besides wild-type CPE, a N-terminal truncated splice variant form of CPE (CPE-ΔN) has been cloned and found to be highly expressed in malignant tumors and cell lines derived from prostate, breast, liver and lung cancers and gliomas. The mechanisms of action of CPE and the splice variant in promoting tumor growth and metastasis in different cancer types are discussed. Mechanistically, secreted CPE activates the Erk/wnt pathways, while CPE-ΔN interacts with HDACs in a protein complex in the nucleus, to recruit various cell cycle genes and metastatic genes, respectively. Clinical studies suggest that CPE and CPE-ΔN mRNA and protein are potential diagnostic and prognostic biomarkers for multiple cancer types, assayed using solid tumors and secreted serum exosomes. CPE has been shown to be a therapeutic target for multiple cancer types. CPE/CPE-ΔN siRNA transported via exosomes and taken up by recipient high metastatic cancer cells, suppressed growth and proliferation of these cells. Thus future studies, delivering CPE/CPE-ΔN siRNA, perhaps via exosomes, to the tumor could be a novel treatment approach to suppress tumor growth and metastasis.
Collapse
Affiliation(s)
- Sangeetha Hareendran
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Vinay Kumar Sharma
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA.
| |
Collapse
|
22
|
He Z, Cheng M, Hu J, Liu L, Liu P, Chen L, Cao D, Tang J. miR-1297 sensitizes glioma cells to temozolomide (TMZ) treatment through targeting adrenomedullin (ADM). J Transl Med 2022; 20:443. [PMID: 36183123 PMCID: PMC9526964 DOI: 10.1186/s12967-022-03647-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gliomas account for about 80% of all malignant brain and other central nervous system (CNS) tumors. Temozolomide (TMZ) resistance represents a major treatment hurdle. Adrenomedullin (ADM) has been reported to induce glioblastoma cell growth. METHODS Cell viability was measured using the CCK-8 assay. The apoptosis analysis was performed using the Annexin V-FITC Apoptosis Detection Kit. The mitochondrial membrane potential was determined by JC-1 staining. A nude mouse tumor assay was used to detect tumor formation. Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were performed in tissue sections. Activation of Akt and Erk and expression of apoptosis-related proteins were determined by immunoblotting. RESULTS ADM expression has been found upregulated in TMZ -resistant glioma samples based on bioinformatics and experimental analyses. Knocking down ADM in glioma cells enhanced the suppressive effects of TMZ on glioma cell viability, promotive effects on cell apoptosis, and inhibitory effects on mitochondrial membrane potential. Moreover, ADM knockdown also enhanced TMZ effects on Bax/Bcl-2, Akt phosphorylation, and Erk1/2 phosphorylation. Bioinformatics and experimental investigation indicated that miR-1297 directly targeted ADM and inhibited ADM expression. miR-1297 overexpression exerted similar effects to ADM knockdown on TMZ-treated glioma cells. More importantly, under TMZ treatment, inhibition of miR-1297 attenuated TMZ treatment on glioma cells; ADM knockdown partially attenuated the effects of miR-1297 inhibition on TMZ-treated glioma cells. CONCLUSIONS miR-1297 sensitizes glioma cells to TMZ treatment through targeting ADM. The Bax/Bcl-2, Akt, and Erk1/2 signaling pathways, as well as mitochondrial functions might be involved.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Junting Hu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Deqian Cao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Jian Tang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
23
|
Zhang Y, Liu X, Wang Y, Lai S, Wang Z, Yang Y, Liu W, Wang H, Tang B. The m 6A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway. Mol Cancer 2022; 21:174. [PMID: 36056355 PMCID: PMC9438157 DOI: 10.1186/s12943-022-01647-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background Chemoresistance is a major factor contributing to the poor prognosis of patients with pancreatic cancer, and cancer stemness is one of the most crucial factors associated with chemoresistance and a very promising direction for cancer treatment. However, the exact molecular mechanisms of cancer stemness have not been completely elucidated. Methods m6A-RNA immunoprecipitation and sequencing were used to screen m6A-related mRNAs and lncRNAs. qRT-PCR and FISH were utilized to analyse DDIT4-AS1 expression. Spheroid formation, colony formation, Western blot and flow cytometry assays were performed to analyse the cancer stemness and chemosensitivity of PDAC cells. Xenograft experiments were conducted to analyse the tumour formation ratio and growth in vivo. RNA sequencing, Western blot and bioinformatics analyses were used to identify the downstream pathway of DDIT4-AS1. IP, RIP and RNA pulldown assays were performed to test the interaction between DDIT4-AS1, DDIT4 and UPF1. Patient-derived xenograft (PDX) mouse models were generated to evaluate chemosensitivities to GEM. Results DDIT4-AS1 was identified as one of the downstream targets of ALKBH5, and recruitment of HuR onto m6A-modified sites is essential for DDIT4-AS1 stabilization. DDIT4-AS1 was upregulated in PDAC and positively correlated with a poor prognosis. DDIT4-AS1 silencing inhibited stemness and enhanced chemosensitivity to GEM (Gemcitabine). Mechanistically, DDIT4-AS1 promoted the phosphorylation of UPF1 by preventing the binding of SMG5 and PP2A to UPF1, which decreased the stability of the DDIT4 mRNA and activated the mTOR pathway. Furthermore, suppression of DDIT4-AS1 in a PDX-derived model enhanced the antitumour effects of GEM on PDAC. Conclusions The ALKBH5-mediated m6A modification led to DDIT4-AS1 overexpression in PDAC, and DDIT-AS1 increased cancer stemness and suppressed chemosensitivity to GEM by destabilizing DDIT4 and activating the mTOR pathway. Approaches targeting DDIT4-AS1 and its pathway may be an effective strategy for the treatment of chemoresistance in PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01647-0.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.,Department of Genaral Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Xiaomeng Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Yan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Shihui Lai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiqian Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yudie Yang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Wenhui Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhu West Road, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
24
|
Jiang L, Yang J, Xu Q, Lv K, Cao Y. Machine learning for the micropeptide encoded by LINC02381 regulates ferroptosis through the glucose transporter SLC2A10 in glioblastoma. BMC Cancer 2022; 22:882. [PMID: 35962317 PMCID: PMC9373536 DOI: 10.1186/s12885-022-09972-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary intracranial tumor in the central nervous system, and resistance to temozolomide is an important reason for the failure of GBM treatment. We screened out that Solute Carrier Family 2 Member 10 (SLC2A10) is significantly highly expressed in GBM with a poor prognosis, which is also enriched in the NF-E2 p45-related factor 2 (NRF2) signalling pathway. The NRF2 signalling pathway is an important defence mechanism against ferroptosis. SLC2A10 related LINC02381 is highly expressed in GBM, which is localized in the cytoplasm/exosomes, and LINC02381 encoded micropeptides are localized in the exosomes. The micropeptide encoded by LINC02381 may be a potential treatment strategy for GBM, but the underlying mechanism of its function is not precise yet. We put forward the hypothesis: “The micropeptide encoded by LINC02381 regulates ferroptosis through the glucose transporter SLC2A10 in GBM.” This study innovatively used machine learning for micropeptide to provide personalized diagnosis and treatment plans for precise treatment of GBM, thereby promoting the development of translational medicine. The study aimed to help find new disease diagnoses and prognostic biomarkers and provide a new strategy for experimental scientists to design the downstream validation experiments.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Qiancheng Xu
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China. .,Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China. .,Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China.
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
25
|
Lee Y, Song MJ, Park JH, Shin MH, Kim MK, Hwang D, Lee DH, Chung JH. Histone deacetylase 4 reverses cellular senescence via DDIT4 in dermal fibroblasts. Aging (Albany NY) 2022; 14:4653-4672. [PMID: 35680564 PMCID: PMC9217707 DOI: 10.18632/aging.204118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/07/2022] [Indexed: 12/15/2022]
Abstract
Histone deacetylases (HDACs) remove acetyl groups from lysine chains on histones and other proteins and play a crucial role in epigenetic regulation and aging. Previously, we demonstrated that HDAC4 is consistently downregulated in aged and ultraviolet (UV)-irradiated human skin in vivo. Cellular senescence is a permanent cell cycle arrest induced by various stressors. To elucidate the potential role of HDAC4 in the regulation of cellular senescence and skin aging, we established oxidative stress- and UV-induced cellular senescence models using primary human dermal fibroblasts (HDFs). RNA sequencing after overexpression or knockdown of HDAC4 in primary HDFs identified candidate molecular targets of HDAC4. Integrative analyses of our current and public mRNA expression profiles identified DNA damage-inducible transcript 4 (DDIT4) as a critical senescence-associated factor regulated by HDAC4. Indeed, DDIT4 and HDAC4 expressions were downregulated during oxidative stress- and UV-induced senescence. HDAC4 overexpression rescued the senescence-induced decrease in DDIT4 and senescence phenotype, which were prevented by DDIT4 knockdown. In addition, DDIT4 overexpression reversed changes in senescence-associated secretory phenotypes and aging-related genes, suggesting that DDIT4 mediates the reversal of cellular senescence via HDAC4. Collectively, our results identify DDIT4 as a promising target regulated by HDAC4 associated with cellular senescence and epigenetic skin aging.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Mi Hee Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Li W, Hu S, Tian C, Wan X, Yu W, Guo P, Zhao F, Hua C, Lu X, Xue G, Han S, Guo W, Wang D, Deng W. TRIP4 transcriptionally activates DDIT4 and subsequent mTOR signaling to promote glioma progression. Free Radic Biol Med 2021; 177:31-47. [PMID: 34648907 DOI: 10.1016/j.freeradbiomed.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
In spite of significant advances in the understanding of glioma biology and pathology, survival remains poor. Therefore, it is still of great significance to further explore the key factors involved in tumorigenesis and development in glioma and find potential new therapeutic targets. Here, we show that thyroid hormone receptor interactor 4 (TRIP4) is highly expressed in glioma cells and tissues. Patients of glioma with high expression of TRIP4 possess poor overall survival. Knockdown of TRIP4 inhibited tumor cell proliferation, metastasis, and apoptosis suppression, whereas overexpression of TRIP4 displays the opposite effects. Further research showed that TRIP4 promoted glioma progression through regulating DDIT4 expression and subsequent activation of mTOR signaling. DDIT4 overexpression restored the inhibition of tumor growth by TRIP4 knockdown in vitro and in vivo. Consistently, mTOR activity inhibition reversed TRIP4 overexpression-mediated tumor promotion in vitro and in vivo. Moreover, molecular mechanism exploration demonstrates that TRIP4 functions as a specific transcriptional activator to anchor at the promoter region of DDIT4 gene (-196 to -11) to regulate its transcription and such regulation was affected by HIF1α. Clinically, TRIP4 expression is positively correlated with DDIT4 expression in glioma samples based on tissue microarray analysis and both of their high expression predicts the malignancy of the disease. Altogether, our findings identify TRIP4 as a critical promoter of glioma progression by targeting DDIT4 and mTOR signaling successively and suggest that TRIP4-DDIT4 axis has potential to be a novel therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Wenyang Li
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Xinyu Wan
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Feng Zhao
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunyu Hua
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Xiaona Lu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Guoqing Xue
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Shilong Han
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, China.
| | - Dong Wang
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
27
|
Chai M, Li X, Zhang Y, Tang Y, Shu P, Lin J, Shi K, Wang L, Huang X. A Nomogram Integrating Ferroptosis- and Immune-Related Biomarkers for Prediction of Overall Survival in Lung Adenocarcinoma. Front Genet 2021; 12:706814. [PMID: 34539740 PMCID: PMC8441018 DOI: 10.3389/fgene.2021.706814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis plays a dual role in cancer, which is known to be affected to antitumor immune responses. However, the association between ferroptosis and antitumor immune responses is uncertain in lung adenocarcinoma (LUAD). In this work, 38 ferroptosis-related genes (FRGs) and 429 immune-related genes (IRGs) were identified as being differentially expressed between tumor and normal samples. Two risk score formulas consisting of seven FRGs and four IRGs, respectively, were developed by Lasso-penalized Cox regression and verified in the GSE13213 dataset. The CIBERSORT algorithm was used to estimate the relative abundance of immune cells in tumors. The correlation between FRGs and immune cells was evaluated using the TIMER database. The results indicated that the development of ferroptosis was synergistic with that of anti-tumor immunity in LUAD. The concordance index and calibration curves showed that the performance of a nomogram that combines clinical staging and risk scores is superior to that of models using a single prognostic factor. In conclusion, ferroptosis might be synergistic with anti-tumor immunity in LUAD. The combined nomogram could reliably predict the probability of overall survival of LUAD patients. These findings may be useful for future investigation of prognostic value and therapeutic potential related to ferroptosis and tumor immunity in LUAD.
Collapse
Affiliation(s)
- Mengyu Chai
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiuchun Li
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yaxin Zhang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yemeng Tang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Pingping Shu
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jing Lin
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
28
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Rawlings TM, Makwana K, Taylor DM, Molè MA, Fishwick KJ, Tryfonos M, Odendaal J, Hawkes A, Zernicka-Goetz M, Hartshorne GM, Brosens JJ, Lucas ES. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife 2021; 10:e69603. [PMID: 34487490 PMCID: PMC8523170 DOI: 10.7554/elife.69603] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.
Collapse
Affiliation(s)
- Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Komal Makwana
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Deborah M Taylor
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS TrustCoventryUnited Kingdom
| | - Matteo A Molè
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Maria Tryfonos
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Joshua Odendaal
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Amelia Hawkes
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Synthetic Mouse and Human Embryology Group, California Institute of Technology (Caltech), Division of Biology and Biological EngineeringPasadenaUnited Kingdom
| | - Geraldine M Hartshorne
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS TrustCoventryUnited Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
30
|
Yi YW, Park NY, Park JI, Seong YS, Hong YB. Doxycycline potentiates the anti-proliferation effects of gemcitabine in pancreatic cancer cells. Am J Cancer Res 2021; 11:3515-3536. [PMID: 34354858 PMCID: PMC8332860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023] Open
Abstract
Gemcitabine is often recommended as a first-line treatment for patients with metastatic pancreatic cancer. However, gemcitabine resistance is a major challenge in the treatment of pancreatic ductal adenocarcinoma. Our group serendipitously identified the role of doxycycline as a potentiator of gemcitabine efficacy in pancreatic cancer cells. Doxycycline and gemcitabine co-treatment was significantly more cytotoxic to pancreatic cancer cells compared to gemcitabine alone. Interestingly, doxycycline only exerted synergistic effects when coupled with gemcitabine as opposed to other conventional chemotherapeutics including nucleoside analogs. The anti-clonogenic effects of gemcitabine on pancreatic cancer cells were also enhanced by doxycycline. According to cell cycle analyses, doxycycline prolonged gemcitabine-mediated S phase cell cycle arrest. Further, gene expression profiling analyses indicated that a small set of genes involved in cell cycle regulation were uniquely modulated by gemcitabine and doxycycline co-treatment compared to gemcitabine alone. Western blot analyses indicated that several cell cycle-related proteins, including cyclin D1, p21, and DNA damage inducible transcript 4 (DDIT4), were further modulated by doxycycline and gemcitabine co-treatment. Taken together, our findings indicate that doxycycline enhances the effects of gemcitabine on cell cycle progression, thus rendering pancreatic cancer cells more sensitive to gemcitabine. However, additional studies are required to assess the mechanisms of doxycycline and gemcitabine synergism, which might lead to novel treatment options for pancreatic cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook UniversityCheonan, Korea
| | - Na Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
| | - Joo-In Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusan 49201, Korea
| | - Yeon-Sun Seong
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook UniversityCheonan, Korea
- Department of Biochemistry, College of Medicine, Dankook UniversityCheonan 31116, Korea
- Graduate School of Convergence Medical Science, Dankook UniversityCheonan 31116, Korea
| | - Young Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusan 49201, Korea
| |
Collapse
|
31
|
Fattahi F, Saeednejad Zanjani L, Habibi Shams Z, Kiani J, Mehrazma M, Najafi M, Madjd Z. High expression of DNA damage-inducible transcript 4 (DDIT4) is associated with advanced pathological features in the patients with colorectal cancer. Sci Rep 2021; 11:13626. [PMID: 34211002 PMCID: PMC8249407 DOI: 10.1038/s41598-021-92720-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. This study was conducted to investigate expression and prognostic significance of DDIT4 protein as a biomarker in the patients with colorectal cancer (CRC). PPI network and KEGG pathway analysis were applied to identify hub genes among obtained differentially expressed genes in CRC tissues from three GEO Series. In clinical, expression of DDIT4 as one of hub genes in three subcellular locations was evaluated in 198 CRC tissues using immunohistochemistry method on tissue microarrays. The association between DDIT4 expression and clinicopathological features as well as survival outcomes were analyzed. Results of bioinformatics analysis indicated 14 hub genes enriched in significant pathways according to KEGG pathways analysis among which DDIT4 was selected to evaluate CRC tissues. Overexpression of nuclear DDIT4 protein was found in CRC tissues compared to adjacent normal tissues (P = 0.003). Furthermore, higher nuclear expression of DDIT4 was found to be significantly associated with the reduced tumor differentiation and advanced TNM stages (all, P = 0.009). No significant association was observed between survival outcomes and nuclear expression of DDIT4 in CRC cases. Our findings indicated higher nuclear expression of DDIT4 was significantly associated with more aggressive tumor behavior and more advanced stage of disease in the patients with CRC.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
DDIT4 Novel Mutations in Pancreatic Cancer. Gastroenterol Res Pract 2021; 2021:6674404. [PMID: 34007269 PMCID: PMC8110378 DOI: 10.1155/2021/6674404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Pancreatic cancer is one of the most common malignancies worldwide. This study is aimed at searching the possible genetic mutations and the value of novel gene mutation in the DNA damage-inducible transcript 4 (DDIT4) and signaling pathway in pancreatic cancer. Polymerase chain reaction (PCR) was performed to amplify the DNA sequences of DDIT4 from patients with pancreatic ductal adenocarcinoma. In addition, we used IHC to detect the expression level of DDIT4 in patients with pancreatic cancer in different types of gene mutation. Double-labeled immunofluorescence was employed to explore the expression levels of DDIT4/LC3 and their potential correlation. Our work indicated the two novel stable gene mutations in DDIT4 mRNA 3'-untranslated region (m.990 U>A and m.1246 C>U). Thirteen samples were found to have mutation in the DDIT4 3'-untranslated regions (UTR). To further verify the influence of gene mutation on protein expression, we performed immunohistochemistry on different gene mutation types, and we found a correlation between DDIT4 expression and gene mutation, which is accompanied by nuclear staining deepening. In order to further discuss the clinical value of DDIT4 gene mutation, immunofluorescence suggested that the expression of DDIT4 colocated with LC3; thus, we speculated that DDIT4 mutation may be involved in autophagy in pancreatic cancer cell. In this study, we found mutation in the 3'-UTR region of DDIT4, which may be associated with DDIT4 expression and tumor autophagy in pancreatic cancer tissues.
Collapse
|
33
|
Jiang S, Yang J, Fang DA. Transcriptome changes of Takifugu obscurus liver after acute exposure to the oxygenated-PAH 9,10-phenanthrenequione. Physiol Genomics 2020; 52:305-313. [PMID: 32538278 DOI: 10.1152/physiolgenomics.00022.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Contamination with polycyclic aromatic hydrocarbons (PAHs) causes noticeable ecological problems in aquatic ecosystems. 9,10-Phenanthrenequione (9,10-PQ) is an oxidized PAH and is highly toxic to aquatic animals. However, the effects of 9,10-PQ on the molecular metabolism of fish remain largely unknown. In this study, Takifugu obscurus juveniles were acutely exposed to 44.30 µg/L 9,10-PQ for 3 days. The transcriptome profile changes in their livers were compared between the 9,10-PQ treatment group and the control using T. rubripes as the reference genome. The results identified 22,414 genes in our transcriptome. Among them, 767 genes were differentially expressed after exposure to 9,10-PQ, which enriched 16 KEGG pathways. Among them, the glycolysis, phagosome, and FOXO signaling pathways were significantly activated in 9,10-PQ treatment compared with the control. These data indicate that 9,10-PQ increased the glycolysis capacity to produce more energy for resistance and harmed immune function. Moreover, several genes related to tumorigenesis were significantly upregulated in response to 9,10-PQ, displaying the carcinogenic toxicity of 9,10-PQ to T. obscurus. Genes in steroid biosynthesis pathways were downregulated in the 9,10-PQ treatment group, suggesting interference with the endocrine system. Overall, these findings provide information to help evaluate the environmental risks that oxygenated-PAHs present to T. obscurus.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|