1
|
Au HCT, Lam PH, Lim PK, McIntyre RS. Role of Glucagon-Like Peptide-1 on Amyloid, Tau, and α-Synuclein: Target Engagement and Rationale for the Development in Neurodegenerative Disorders. Neurosci Biobehav Rev 2025; 173:106159. [PMID: 40252880 DOI: 10.1016/j.neubiorev.2025.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Glucagon-like Peptide-1 (GLP-1) and Glucagon-Like Peptide-1 receptor agonist (GLP-1 RA) administration has been associated with neuroprotective effects in neurodegenerative disorders. We conducted a comprehensive synthesis of known effects of GLP-1 and GLP-1 RAs on the cognitive, cellular, and molecular changes in neurodegenerative diseases. METHODS We examined preclinical and clinical paradigms that investigated changes in neurodegenerative disease pathology following administration of GLP-1 and GLP-1 RAs. Relevant articles were retrieved through OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), PubMed, and Web of Science from database inception to September 27th, 2024. Primary studies investigating the aforementioned changes following GLP-1 and GLP-1 RA administration were retrieved for analysis (n = 62). RESULTS GLP-1 and GLP-1 RAs (i.e. dulaglutide, exenatide, liraglutide, lixisenatide, semaglutide, and tirzepatide) improved cognitive and motor function in neurodegenerative diseases in preclinical and clinical paradigms. Additionally, GLP-1 and GLP-1 RAs were associated with modulating changes in neuroinflammation, oxidative stress, and proliferative pathways. DISCUSSION We observed that GLP-1 and GLP-1 RAs modulate molecular and cellular changes known to govern the phenomenology of neurodegenerative diseases. Future research should examine the interaction between signaling molecules, neuronal subpopulations, and cognitive effects affected by GLP-1 and GLP-1 RA administration.
Collapse
Affiliation(s)
- Hezekiah C T Au
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Pak Ho Lam
- Institute of Epidemiology and Health Care, University College London, London, United Kingdom.
| | - Poh Khuen Lim
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
3
|
Pintado-Grima C, Ventura S. The role of amphipathic and cationic helical peptides in Parkinson's disease. Protein Sci 2025; 34:e70020. [PMID: 39720890 DOI: 10.1002/pro.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Peptides are attracting a growing interest for therapeutic applications in biomedicine. In Parkinson's disease (PD), different human endogenous peptides have been associated with beneficial effects, including protein aggregation inhibition, reduced inflammation, or the protection of dopaminergic neurons. Such effects seem to be connected to the spatial arrangement of peptide side chains, and many of these human molecules share common conformational traits, displaying a distinctive amphipathic and cationic helical structure, which is believed to be crucial for their activities. This review delves into the relationship between these structural properties and the current evidence connecting biogenic peptides to the amelioration of PD symptoms. We discuss their implications in the disease, the different mechanisms of action, their state of validation, and their therapeutic potential.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
4
|
Li S, Liu Y, Lu S, Xu J, Liu X, Yang D, Yang Y, Hou L, Li N. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem 2025; 480:139-157. [PMID: 38625515 DOI: 10.1007/s11010-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanbing Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiayi Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
6
|
Verma A, Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson's disease. Eur J Pharmacol 2024; 982:176936. [PMID: 39182542 DOI: 10.1016/j.ejphar.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
GLP-1 (Glucagon-like peptide 1) serves as both a peptide hormone and a growth factor, is released upon nutrient intake and contributes to insulin secretion stimulated by glucose levels. Also, GLP-1 is synthesized within several brain areas and plays a vital function in providing neuroprotection and reducing inflammation through the activation of the GLP-1 receptor. Parkinson's Disease (PD) is a neurodegenerative illness that worsens with time and is defined by considerable morbidity. Presently, there are few pharmaceutical choices available, and none of the existing therapies are capable of modifying the course of the disease. There is a suggestion that type 2 diabetes mellitus (T2DM) could increase the risk of PD, and the presence of both conditions concurrently might exacerbate PD symptoms and hasten neurodegeneration. GLP-1 receptor (GLP-1R) agonists exhibit numerous implications like enhancement of glucose-dependent insulin release and biosynthesis, suppression of glucagon secretion and gastric emptying. Also, some GLP-1R agonists have received clinical approval for the management of T2DM. Moreover, the use of GLP-1R agonists has demonstrated counter-inflammatory, neurotrophic, and neuroprotective actions in various preclinical models of neurodegenerative disorders. Considering the significant amount of evidence backing the potential of GLP-1R agonists to protect the nervous system across different research settings, this article delves into examining the hopeful prospect of GLP-1R agonists as a treatment option for PD. This review sheds light on combined neuroprotective benefits of GLP-1R agonists and the possible mechanisms driving the protective effects on the PD brain, through the collection of data from various preclinical and clinical investigations.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
7
|
Wang Y, Li Z, Li J, Sun C. LncRNA NEAT1 promotes MPP+ induced injury of PC12 cells and accelerates the progression of Parkinson's disease in mice through FUS mediated inhibition of PI3K/AKT/mTOR signalling pathway. Exp Gerontol 2024; 191:112436. [PMID: 38636570 DOI: 10.1016/j.exger.2024.112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in the progression of Parkinson's disease (PD), but the specific regulatory role needs further exploration. This study showed that the expression of NEAT1 was upregulated in the cerebrospinal fluid (CSF) and peripheral blood of patients with different stages of PD. 1-Methyl-4-phenylpyridine (MPP)-treated PC 12 cells were transfected with si-NEAT1, and MPP treatment promoted cell apoptosis, oxidative stress and inflammatory factor secretion. Si-NEAT1 reversed the effects of MPP. NEAT1 silencing eliminated the effect of MPP on the protein expression levels of LC3-II and p62/SQSTM1. By using an online bioinformatics database, Fused in Sarcoma (FUS) was confirmed to be an RNA binding protein of NEAT1, and it was highly expressed in the CSF and peripheral blood of patients with PD. Si-FUS was transfected into MPP-treated PC 12 cells to detect cell apoptosis, oxidative stress, inflammatory factor secretion and autophagy, and the results were the same as those of transfection of si-NEAT1. Furthermore, MPP treatment reduced the phosphorylation levels of PI3K, Akt and mTOR, whereas si-FUS reversed the effects of MPP. In vivo, compared with the model group, the PD mice showed reduced NEAT1 and FUS expression levels and activated PI3K pathway after being injected with si-NEAT1. The brain tissue of NEAT1-silenced PD mice had decreased inflammatory infiltration and apoptosis and increased neurological scores. In conclusion, NEAT1 is involved in PD progression through FUS-mediated inhibition of the PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Yonghui Wang
- Second Department of Neurology, Qingzhou People's Hospital, Weifang 262500, Shandong, China
| | - Zhuo Li
- Two Departments of Brain Disease, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai 264000, Shandong, China
| | - Jiwen Li
- Department of Neurosurgery, Jinan Zhangqiu District People's Hospital, Jinan 250200, Shandong, China
| | - Chao Sun
- Department of Neurology, Yantaishan Hospital, Yantai 264000, Shandong, China.
| |
Collapse
|
8
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
9
|
Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimarães GR, Gutierres JM, da C Fernandes M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol Neurobiol 2024; 61:2631-2652. [PMID: 37919602 DOI: 10.1007/s12035-023-03698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
This study investigated the neuroprotective effects of exendin-4 (EXE-4), an analog of the glucagon-like peptide 1 receptor (GLP-1R) on memory and on the neuronal populations that constitute the hippocampus of rats submitted to a sporadic dementia of Alzheimer's type (SDAT). Male Wistar rats received streptozotocin (STZ icv, 3 mg/kg diluted in aCFS, 5 µl/ventricle) and were treated for 21 days with EXE-4 (10 µg/kg, ip; saline as the vehicle). Four groups were formed: vehicle, EXE-4, STZ, and STZ + EXE-4. The groups were submitted to Y-Maze (YM), object recognition (ORT), and object displacement tasks (ODT) to assess learning and memory. The brains were used for immunohistochemical and immunofluorescent techniques with antibodies to NeuN, cleaved caspase-3 (CC3), PCNA, doublecortin (DCX), synaptophysin (SYP), and insulin receptor (IR). STZ worsened spatial memory in the YMT, as well as short-term (STM) and long-term (LTM) memories in the ORT and ODT, respectively. EXE-4 protected against memory impairment in STZ animals. STZ reduced mature neuron density (NeuN) and increased cell apoptosis (CC3) in the DG, CA1, and CA3. EXE-4 protected against neuronal death in all regions. EXE-4 increased PCNA+ cells in all regions of the hippocampus, and STZ attenuated this effect. STZ reduced neurogenesis in DG per se as well as synaptogenesis induced by EXE-4. EXE-4 increased immunoreactivity to IR in the CA1. From these findings, EXE-4 showed a beneficial effect on hippocampal pyramidal and granular neurons in the SDAT showing anti-apoptotic properties and promoting cell proliferation. In parallel, EXE-4 preserved the memory of SDAT rats. EXE-4 appears to enhance synapses at CA3 and DG. In conclusion, these data indicate that agonists to GLP-1R have a beneficial effect on hippocampal neurons in AD.
Collapse
Affiliation(s)
- Adriana M Zago
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Francine L Rahmeier
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marta Santin
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Giuliano R Guimarães
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Jessié M Gutierres
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marilda da C Fernandes
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Kalinderi K, Papaliagkas V, Fidani L. GLP-1 Receptor Agonists: A New Treatment in Parkinson's Disease. Int J Mol Sci 2024; 25:3812. [PMID: 38612620 PMCID: PMC11011817 DOI: 10.3390/ijms25073812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Yu L, Hu X, Xu R, Zhao Y, Xiong L, Ai J, Wang X, Chen X, Ba Y, Xing Z, Guo C, Mi S, Wu X. Piperine promotes PI3K/AKT/mTOR-mediated gut-brain autophagy to degrade α-Synuclein in Parkinson's disease rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117628. [PMID: 38158101 DOI: 10.1016/j.jep.2023.117628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper longum L., a medicinal and food homologous herb, has a traditional history of use in treating gastrointestinal and neurological disorders. Piperine (PIP) the main alkaloid of P. longum, exists neuroprotective effects on various animal models of Parkinson's disease (PD). Nevertheless, the underlying mechanism, particularly the role of PIP in promoting gut-brain autophagy for α-Synuclein (α-Syn) degradation in PD, remains incompletely understood. AIM OF THE STUDY To explore the role of PIP in regulating the gut-brain autophagy signaling pathway to reduce α-Syn levels in both the colon and substantia nigra (SN) of PD model rats. MATERIALS AND METHODS Behavioral experiments were conducted to assess the impact of PIP on 6-hydroxydopamine (6-OHDA)-induced PD rats. The intestinal microbiome composition and intestinal metabolites were analyzed by metagenomics and GC-MS/MS. The auto-phagosomes were visualized by transmission electron microscopy. Immunohistochemistry, immunofluorescence, and western blotting were performed to assess the levels of tyrosine hydroxylase (TH), α-Syn, LC3II/LC3I, p62, and the PI3K/AKT/mTOR pathway in both the SN and colon of the rats. The pathway-related inhibitor and agonist were used to verify the autophagy mechanism in the SH-SY5Y cells overexpressing A53T mutant α-Syn (A53T-α-Syn). RESULTS PIP improved autonomic movement and gastrointestinal dysfunctions, reduced α-Syn aggregation and attenuated the loss of dopaminergic neurons in 6-OHDA-induced PD rats. After oral administration of PIP, the radio of LC3II/LC3I increased and the expression of p62 was degraded, as well as the phosphorylation levels of PI3K, AKT and mTOR decreased in the SN and colon of rats. The effect of PIP on reducing A53T-α-Syn through the activation of the PI3K/AKT/mTOR-mediated autophagy pathway was further confirmed in A53T-α-Syn transgenic SH-SY5Y cells. This effect could be inhibited by the autophagy inhibitor bafilomycin A1 and the PI3K agonist 740 Y-P. CONCLUSIONS Our findings suggested that PIP could protect neurons by activating autophagy to degrade α-Syn in the SN and colon, which were related to the suppression of PIP on the activation of PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiaolu Hu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Rongrong Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Yimeng Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lijuan Xiong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jiaxuan Ai
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiaoqing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yinying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhikai Xing
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Chongye Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Elangovan A, Dahiya B, Kirola L, Iyer M, Jeeth P, Maharaj S, Kumari N, Lakhanpal V, Michel TM, Rao KRSS, Cho SG, Yadav MK, Gopalakrishnan AV, Kadhirvel S, Kumar NS, Vellingiri B. Does gut brain axis has an impact on Parkinson's disease (PD)? Ageing Res Rev 2024; 94:102171. [PMID: 38141735 DOI: 10.1016/j.arr.2023.102171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Parkinson's Disease (PD) is becoming a growing global concern by being the second most prevalent disease next to Alzheimer's Disease (AD). Henceforth new exploration is needed in search of new aspects towards the disease mechanism and origin. Evidence from recent studies has clearly stated the role of Gut Microbiota (GM) in the maintenance of the brain and as a root cause of various diseases and disorders including other neurological conditions. In the case of PD, with an unknown etiology, the GM is said to have a larger impact on the disease pathophysiology. Although GM and its metabolites are crucial for maintaining the normal physiology of the host, it is an undeniable fact that there is an influence of GM in the pathophysiology of PD. As such the Enteroendocrine Cells (EECs) in the epithelium of the intestine are one of the significant regulators of the gut-brain axis and act as a communication mediator between the gut and the brain. The communication is established via the molecules of neuroendocrine which are said to have a crucial part in neurological diseases such as AD, PD, and other psychiatry-related disorders. This review is focused on understanding the proper role of GM and EECs in PD. Here, we also focus on some of the metabolites and compounds that can interact with the PD genes causing various dysfunctions in the cell and facilitating the disease conditions using bioinformatical tools. Various mechanisms concerning EECs and PD, their identification, the latest studies, and available current therapies have also been discussed.
Collapse
Affiliation(s)
- Ajay Elangovan
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawna Dahiya
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India; Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Priyanka Jeeth
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sakshi Maharaj
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nikki Kumari
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda 151005, Punjab, India
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Dept. of Psychiatry Odense, Clinical Institute, University of Southern Denmark, J.B. Winslowsvej 20, Indg. 220B, Odense, Denmark
| | - K R S Sambasiva Rao
- Mangalayatan University - Jabalpur, Jabalpur - 481662, Madhya Pradesh, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004 Mizoram, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
13
|
Zhang Z, Shi M, Li Z, Ling Y, Zhai L, Yuan Y, Ma H, Hao L, Li Z, Zhang Z, Hölscher C. A Dual GLP-1/GIP Receptor Agonist Is More Effective than Liraglutide in the A53T Mouse Model of Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:7427136. [PMID: 37791037 PMCID: PMC10545468 DOI: 10.1155/2023/7427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is a complex syndrome with many elements, such as chronic inflammation, oxidative stress, mitochondrial dysfunction, loss of dopaminergic neurons, build-up of alpha-synuclein (α-syn) in cells, and energy depletion in neurons, that drive the disease. We and others have shown that treatment with mimetics of the growth factor glucagon-like peptide 1 (GLP-1) can normalize energy utilization, neuronal survival, and dopamine levels and reduce inflammation. Liraglutide is a GLP-1 analogue that recently showed protective effects in phase 2 clinical trials in PD patients and in Alzheimer disease patients. We have developed a novel dual GLP-1/GIP receptor agonist that can cross the blood-brain barrier and showed good protective effects in animal models of PD. Here, we test liraglutide against the dual GLP-1/GIP agonist DA5-CH (KP405) in the A53T tg mouse model of PD which expresses a human-mutated gene of α-synuclein. Drug treatment reduced impairments in three different motor tests, reduced levels of α-syn in the substantia nigra, reduced the inflammation response and proinflammatory cytokine levels in the substantia nigra and striatum, and normalized biomarker levels of autophagy and mitochondrial activities in A53T mice. DA5-CH was superior in almost all parameters measured and therefore may be a better drug treatment for PD than liraglutide.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ming Shi
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhengmin Li
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yuan Ling
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Luke Zhai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| |
Collapse
|
14
|
Xie Y, Wang Y, Pei W, Chen Y. Theranostic in GLP-1R molecular imaging: challenges and emerging opportunities. Front Mol Biosci 2023; 10:1210347. [PMID: 37780209 PMCID: PMC10540701 DOI: 10.3389/fmolb.2023.1210347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Theranostic in nuclear medicine combines diagnostic imaging and internal irradiation therapy using different therapeutic nuclear probes for visual diagnosis and precise treatment. GLP-1R is a popular receptor target in endocrine diseases, non-alcoholic steatohepatitis, tumors, and other areas. Likewise, it has also made breakthroughs in the development of molecular imaging. It was recognized that GLP-1R imaging originated from the study of insulinoma and afterwards was expanded in application including islet transplantation, pancreatic β-cell mass measurement, and ATP-dependent potassium channel-related endocrine diseases. Fortunately, GLP-1R molecular imaging has been involved in ischemic cardiomyocytes and neurodegenerative diseases. These signs illustrate the power of GLP-1R molecular imaging in the development of medicine. However, it is still limited to imaging diagnosis research in the current molecular imaging environment. The lack of molecular-targeted therapeutics related report hinders its radiology theranostic. In this article, the current research status, challenges, and emerging opportunities for GLP-1R molecular imaging are discussed in order to open a new path for theranostics and to promote the evolution of molecular medicine.
Collapse
Affiliation(s)
- Yang Xie
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yudi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Wenjie Pei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
15
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
16
|
Ni R. PET imaging in animal models of Parkinson's disease. Behav Brain Res 2023; 438:114174. [PMID: 36283568 DOI: 10.1016/j.bbr.2022.114174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Alpha-synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, are characterized by aberrant accumulation of alpha-synuclein and synaptic dysfunction leading to motor and cognitive deficits. Animal models of alpha-synucleinopathy have greatly facilitated the mechanistic understanding of the disease and the development of therapeutics. Various transgenic, alpha-synuclein fibril-injected, and toxin-injected animal models of Parkinson's disease and multiple system atrophy that recapitulate the disease pathology have been developed and widely used. Recent advances in positron emission tomography have allowed the noninvasive visualization of molecular alterations, underpinning behavioral dysfunctions in the brains of animal models and the longitudinal monitoring of treatment effects. Imaging studies in these disease animal models have employed multi-tracer PET designs to reveal dopaminergic deficits together with other molecular alterations. This review focuses on the development of new positron emission tomography tracers and studies of alpha-synuclein, synaptic vesicle glycoprotein 2A neurotransmitter receptor deficits such as dopaminergic receptor, dopaminergic transporter, serotonergic receptor, vesicular monoamine transporter 2, hypometabolism, neuroinflammation, mitochondrial dysfunction and leucine rich repeat kinase 2 in animal models of Parkinson's disease. The outstanding challenges and emerging applications are outlined, such as investigating the gut-brain-axis by using positron emission tomography in animal models, and provide a future outlook.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson's disease. Exp Mol Pathol 2023; 129:104846. [PMID: 36436571 DOI: 10.1016/j.yexmp.2022.104846] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
18
|
Chang JT, Liang YJ, Leu JG. Glucagon-like peptide-1 receptor regulates receptor of advanced glycation end products in high glucose-treated rat mesangial cells. J Chin Med Assoc 2023; 86:39-46. [PMID: 36599141 DOI: 10.1097/jcma.0000000000000844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hyperglycemia-induced advanced glycation end products (AGEs) and receptor for AGEs (RAGEs) play major roles in diabetic nephropathy progression. In previous study, both glucagon-like peptide-1 (GLP-1) and peroxisome proliferator-activated receptors delta (PPARδ) agonists were shown to have anti-inflammatory effect on AGE-treated rat mesangial cells (RMCs). The interaction among PPARδ agonists, GLP-1, and AGE-RAGE axis is, however, still unclear. METHODS In this study, the individual and synergic effect of PPARδ agonist (L-165 041) and siRNA of GLP-1 receptor (GLP-1R) on the expression of GLP-1, GLP-1R, RAGE, and cell viability in AGE-treated RMCs were investigated. RESULTS L-165 041 enhanced GLP-1R mRNA and protein expression only in the presence of AGE. The expression of RAGE mRNA and protein was enhanced by AGE, attenuated by L-165 041, and siRNA of GLP-1R reversed L-165 041-induced inhibition. Cell viability was also inhibited by AGE. L-165 041 attenuated AGE-induced inhibition and siRNA GLP-1R diminished L-165 041 effect. CONCLUSION PPARδ agonists increase GLP-1R expression on RMC in the presence of AGE. PPARδ agonists also attenuate AGE-induced upregulated RAGE expression and downregulated cell viability. The effect of PPARδ agonists needs the cooperation of GLP-1R activation.
Collapse
Affiliation(s)
- Jui-Ting Chang
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- Department & Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Jyh-Gang Leu
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- Department & Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
19
|
Elsaeed EM, Hamad AGA, Erfan OS, El-Shahat MA, Ebrahim FAE. Exenatide promotes the autophagic function in the diabetic hippocampus: a review. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 9:229-238. [DOI: 10.1080/2314808x.2022.2067388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 09/02/2023]
Affiliation(s)
| | | | - Omnia S. Erfan
- Human Anatomy and Embryology, Mansoura University, Al Mansurah, Egypt
| | - Mona A. El-Shahat
- Human Anatomy and Embryology, Mansoura University, Al Mansurah, Egypt
| | | |
Collapse
|
20
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
21
|
Chlorogenic Acid: a Polyphenol from Coffee Rendered Neuroprotection Against Rotenone-Induced Parkinson's Disease by GLP-1 Secretion. Mol Neurobiol 2022; 59:6834-6856. [PMID: 36048341 DOI: 10.1007/s12035-022-03005-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Parkinson's disease (PD) is a chronic motor disorder, characterized by progressive loss of dopaminergic neurons. Numerous studies suggest that glucagon-like peptide-1 (GLP-1) secretagogue has a neuroprotective role in PD models. The present study evaluated potential of coffee bioactive compounds in terms of their ability to bind GPR-40/43 and tested the neuroprotective effect of best candidate on rotenone-induced PD mice acting via GLP-1 release. In silico molecular docking followed by binding free energy calculation revealed that chlorogenic acid (CGA) has a strong binding affinity for GPR-40/43 in comparison to other bioactive polyphenols. Molecular dynamics simulation studies revealed stable nature of GPR40-CGA and GPR43-CGA interaction and also provided information about the amino acid residues involved in binding. Subsequently, in vitro studies demonstrated that CGA-induced secretion of GLP-1 via enhancing cAMP levels in GLUTag cells. Furthermore, in vivo experiments utilizing rotenone-induced mouse model of PD revealed a significant rise in plasma GLP-1 after CGA administration (50 mg/kg, orally for 13 weeks) with concomitant increase in colonic GPR-40 and GPR-43 mRNA expression. CGA treatment also prevented rotenone-induced motor and cognitive impairments and significantly restored the rotenone-induced oxidative stress. Meanwhile, western blot results confirmed that CGA treatment downregulated rotenone-induced phosphorylated alpha-synuclein levels by upregulating PI3K/AKT signaling and inactivating GSK-3β through the release of GLP-1. CGA treatment ameliorated rotenone-induced dopaminergic nerve degeneration and alpha-synuclein accumulation in substantia nigra and augmented mean density of dopaminergic nerve fibers in striatum. These findings demonstrated novel biological function of CGA as a GLP-1 secretagogue. An increase in endogenous GLP-1 may render neuroprotection against a rotenone mouse model of PD and has the potential to be used as a neuroprotective agent in management of PD.
Collapse
|
22
|
Liu DX, Zhao CS, Wei XN, Ma YP, Wu JK. Semaglutide Protects against 6-OHDA Toxicity by Enhancing Autophagy and Inhibiting Oxidative Stress. PARKINSON'S DISEASE 2022; 2022:6813017. [PMID: 35873704 PMCID: PMC9300292 DOI: 10.1155/2022/6813017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder for which no effective treatment is available. Studies have demonstrated that improving insulin resistance in type 2 diabetes mellitus (T2DM) can benefit patients with PD. In addition, a neuroprotective effect of glucagon-like peptide-1 (GLP-1) receptor agonists was demonstrated in experimental models of PD. In addition, there are some clinical trials to study the neuroprotective effect of GLP-1 analog on PD patients. Semaglutide is a long-acting, once-a-week injection treatment and the only available oral form of GLP-1 analog. In the present study, we treated the human neuroblastoma SH-SY5Y cell line with 6-hydroxydopamine (6-OHDA) as a PD in vitro model to explore the neuroprotective effects and potential mechanisms of semaglutide to protect against PD. Moreover, we compared the effect of semaglutide with liraglutide given at the same dose. We demonstrated that both semaglutide and liraglutide protect against 6-OHDA cytotoxicity by increasing autophagy flux and decreasing oxidative stress as well as mitochondrial dysfunction in SH-SY5Y cells. Moreover, by comparing the neuroprotective effects of semaglutide and liraglutide on PD cell models at the same dose, we found that semaglutide was superior to liraglutide for most parameters measured. Our results indicate that semaglutide, the new long-acting and only oral GLP-1 analog, may be represent a promising treatment for PD.
Collapse
Affiliation(s)
- Dong-xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Chen-sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Xiao-na Wei
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Yi-peng Ma
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Jian-kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
23
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
24
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
25
|
Cai J, Liang J, Zhang Y, Shen L, Lin H, Hu T, Zhan S, Xie M, Liang S, Xian M, Wang S. Cyclo-(Phe-Tyr) as a novel cyclic dipeptide compound alleviated ischemic stroke reperfusion brain injury via JUNB/JNK/NF-κB and SOX5/PI3K/AKT pathways. Pharmacol Res 2022; 180:106230. [PMID: 35483515 DOI: 10.1016/j.phrs.2022.106230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022]
Abstract
Ischemic stroke reperfusion (IR) can cause adverse reactions including apoptosis, oxidative stress, and inflammation, but the existing therapeutic strategies have been limited. Moreover, the regulation of microglia plays an important role in brain injury after reperfusion. Hence, it is imperative to find new and effective drugs for modulating microglia to treat IR brain injury. Cyclic peptide compound cyclo-(Phe-Tyr) (Sparganin C, SC) is a compound isolated from Sparganii Rhizoma. However, the protective effects of SC on the central nervous system are rather unclear. In an attempt to elucidate the protective effects and mechanism of SC on cerebral damage induced by the IR, we used a middle cerebral artery occlusion reperfusion (MCAO/R) model in rats and discovered that SC significantly decreased the size of cerebral infarcts, improved neurological scores, and blocked inflammatory and oxidative factor release. Using RNA-Seq and metabolomics association analyses, SC was shown to have a protective impact through the JUNB and SOX5-related pathways. Metabolomic analysis revealed twenty-eight differentially expressed biomarkers. In addition, the detection of SC content in brain tissue using LC/MS revealed that SC had blood-brain barrier penetration. To investigate the mechanism, we established an in vitro BV2 cell oxygen-glucose deprived re-oxygenation (OGD/R) model and used siRNA as well as an inhibitor. The protective effects of SC were dependent on the JUNB and SOX5 to inhibit inflammation and apoptosis in microglia. Our findings revealed for the first that SC against IR injury by reducing inflammation and apoptosis while simultaneously acting as potential therapeutic lead compound for ischemic stroke.
Collapse
Key Words
- 1-Deoxy-1-(N6-lysino)-D-fructose (PubChem CID: 433981164)
- 10Z
- 13Z
- 16Z)/16:0) (PubChem CID: 52923621)
- 2-O-(5,8,11,14,17-Eicosapentaenoyl)-1-O-hexadecylglycero-3-phosphocholine (PubChem CID: 10485310)
- Alanyl-Arginine (PubChem CID: 446132), PC (16:0/15:0) (PubChem CID: 24778680)
- Cyclo(Tyr-Phe) (PubChem CID: 44198062)
- Cyclo-(Phe-Tyr)
- Diacetone alcohol (PubChem CID: 31256)
- Homoanserine (PubChem CID: 20849429)
- Ischemic stroke reperfusion
- JUNB
- Methyl jasmonate (PubChem CID: 5281929)
- PC(22:4(7Z
- PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) (PubChem CID: 53480781)
- RNA-sequence
- SOX5
- metabolomics
Collapse
Affiliation(s)
- Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Jiayin Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Yutong Zhang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Meixia Xie
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Shengwang Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China.
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China.
| |
Collapse
|
26
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
27
|
Deden LN, Booij J, Grandjean J, Homberg JR, Hazebroek EJ, Gotthardt M, Boss M. Brain Imaging of the GLP-1 Receptor in Obesity Using 68Ga-NODAGA-Exendin-4 PET. Brain Sci 2021; 11:brainsci11121647. [PMID: 34942949 PMCID: PMC8699257 DOI: 10.3390/brainsci11121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Stimulation of glucagon-like peptide-1 (GLP-1) receptors increases the insulin release in the pancreas during high glucose levels, and also stimulates a feeling of satiety. Likewise, synthetic GLP-1 receptor agonists derived from exendin are used successfully in the treatment of type-2 diabetes mellitus and obesity. Interestingly, preclinical and clinical studies further suggest that GLP-1 receptor agonists may decrease motor, behavioral, and cognitive symptoms in (animal models) Parkinson’s disease and Alzheimer’s disease and may slow down neurodegeneration. These observations suggest stimulation of GLP-1 receptors in the brain. The GLP-1 positron emission tomography (PET) tracer 68Ga-NODAGA-exendin-4 has been developed and successfully used for imaging in humans. In an ongoing study on the effects of bariatric surgery on GLP-1 receptor expression, we performed 68Ga-NODAGA-exendin-4 PET in obese subjects. Here we evaluated whether GLP-1 receptor binding could be visualized in the central nervous system in 10 obese subjects (seven woman; body mass index: mean ± SD: 39 ± 4.4 kg/m2) before bariatric surgery. Although we observed clear uptake in the pituitary area (mean SUVmax 4.3 ± 2.3), we found no significant uptake in other parts of the brain. We conclude that 68Ga-NODAGA-exendin-4 PET cannot be used to analyze GLP-1 receptors in the brain of obese subjects.
Collapse
Affiliation(s)
- Laura N. Deden
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Department of Surgery, Vitalys Clinic, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Jan Booij
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Center for Medical Neuroscience, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Center for Medical Neuroscience, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands;
| | - Eric J. Hazebroek
- Department of Surgery, Vitalys Clinic, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
- Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Correspondence:
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
| |
Collapse
|
28
|
Elabi OF, Davies JS, Lane EL. L-dopa-Dependent Effects of GLP-1R Agonists on the Survival of Dopaminergic Cells Transplanted into a Rat Model of Parkinson Disease. Int J Mol Sci 2021; 22:ijms222212346. [PMID: 34830228 PMCID: PMC8618072 DOI: 10.3390/ijms222212346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a promising treatment for Parkinson's disease (PD), however clinical trials to date have shown relatively low survival and significant patient-to-patient variability. Glucagon Like Peptide-1 receptor (GLP-1R) agonists have potential neuroprotective effects on endogenous dopaminergic neurons. This study explores whether these agents could similarly support the growth and survival of newly transplanted neurons. 6-OHDA lesioned Sprague Dawley rats received intra-striatal grafts of dopaminergic ventral mesencephalic cells from embryonic day 14 Wistar rat embryos. Transplanted rats then received either saline or L-dopa (12 mg/kg) administered every 48 h prior to, and following cell transplantation. Peripheral GLP-1R agonist administration (exendin-4, 0.5 μg/kg twice daily or liraglutide, 100 μg/kg once daily) commenced immediately after cell transplantation and was maintained throughout the study. Graft survival increased under administration of exendin-4, with motor function improving significantly following treatment with both exendin-4 and liraglutide. However, this effect was not observed in rats administered with L-dopa. In contrast, L-dopa treatment with liraglutide increased graft volume, with parallel increases in motor function. However, this improvement was accompanied by an increase in leukocyte infiltration around the graft. The co-administration of L-dopa and exendin-4 also led to indicators of insulin resistance not seen with liraglutide, which may underpin the differential effects observed between the two GLP1-R agonists. Overall, there may be some benefit to the supplementation of grafted patients with GLP-1R agonists but the potential interaction with other pharmacological treatments needs to be considered in more depth.
Collapse
Affiliation(s)
- Osama F. Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: (O.F.E.); (E.L.L.)
| | - Jeffrey S. Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK;
| | - Emma L. Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: (O.F.E.); (E.L.L.)
| |
Collapse
|
29
|
Zummo FP, Krishnanda SI, Georgiou M, O'Harte FP, Parthsarathy V, Cullen KS, Honkanen-Scott M, Shaw JA, Lovat PE, Arden C. Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca 2+-PPP3/calcineurin-TFEB axis. Autophagy 2021; 18:799-815. [PMID: 34338148 PMCID: PMC9037459 DOI: 10.1080/15548627.2021.1956123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Macroautophagy/autophagy is critical for the regulation of pancreatic β-cell mass and its deregulation has been implicated in the pathogenesis of type 2 diabetes (T2D). We have previously shown that treatment of pancreatic β-cells with the GLP1R (glucagon like peptide 1 receptor) agonist exendin-4 stimulates autophagic flux in a setting of chronic nutrient excess. The aim of this study was to identify the underlying pathways contributing to enhanced autophagic flux. Pancreatic β-cells (INS-1E),mouse and human islets were treated with glucolipotoxic stress (0.5 mM palmitate and 25 mM glucose) in the presence of exendin-4. Consistent with our previous work, exendin-4 stimulated autophagic flux. Using chemical inhibitors and siRNA knockdown, we identified RAPGEF4/EPAC2 (Rap guanine nucleotide exchange factor 4) and downstream calcium signaling to be essential for regulation of autophagic flux by exendin-4. This pathway was independent of AMPK and MTOR signaling. Further analysis identified PPP3/calcineurin and its downstream regulator TFEB (transcription factor EB) as key proteins mediating exendin-4 induced autophagy. Importantly, inhibition of this pathway prevented exendin-4-mediated cell survival and overexpression of TFEB mimicked the cell protective effects of exendin-4 in INS-1E and human islets. Moreover, treatment of db/db mice with exendin-4 for 21 days increased the expression of lysosomal markers within the pancreatic islets. Collectively our data identify the RAPGEF4/EPAC2-calcium-PPP3/calcineurin-TFEB axis as a key mediator of autophagic flux, lysosomal function and cell survival in pancreatic β-cells. Pharmacological modulation of this axis may offer a novel therapeutic target for the treatment of T2D. Abbreviations: AKT1/protein kinase B: AKT serine/threonine kinase 1; AMPK: 5’ AMP-activated protein kinase; CAMKK: calcium/calmodulin-dependent protein kinase kinase; cAMP: cyclic adenosine monophosphate; CASP3: caspase 3; CREB: cAMP response element-binding protein; CTSD: cathepsin D; Ex4: exendin-4(1-39); GLP-1: glucagon like peptide 1; GLP1R: glucagon like peptide 1 receptor; GLT: glucolipotoxicity; INS: insulin; MTOR: mechanistic target of rapamycin kinase; NFAT: nuclear factor of activated T-cells; PPP3/calcineurin: protein phosphatase 3; PRKA/PKA: protein kinase cAMP activated; RAPGEF3/EPAC1: Rap guanine nucleotide exchange factor 3; RAPGEF4/EPAC2: Rap guanine nucleotide exchange factor 4; SQSTM1/p62: sequestosome 1; T2D: type 2 diabetes; TFEB: transcription factor EB
Collapse
Affiliation(s)
- Francesco P Zummo
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Stanislaus I Krishnanda
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.,Department of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Merilin Georgiou
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Finbarr Pm O'Harte
- The SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Vadivel Parthsarathy
- The SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Kirsty S Cullen
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Minna Honkanen-Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - James Am Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Penny E Lovat
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
30
|
Feng X, Ma W, Zhu J, Jiao W, Wang Y. Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol Med Rep 2021; 24:661. [PMID: 34278508 PMCID: PMC8335733 DOI: 10.3892/mmr.2021.12300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem and a major cause of mortality and disability that imposes a substantial economic burden worldwide. Dexmedetomidine (DEX), a highly selective α-2-adrenergic receptor agonist that functions as a sedative and analgesic with minimal respiratory depression, has been reported to alleviate early brain injury (EBI) following traumatic brain injury by reducing reactive oxygen species (ROS) production, apoptosis and autophagy. Autophagy is a programmed cell death mechanism that serves a vital role in neuronal cell death following TBI. However, the precise role of autophagy in DEX-mediated neuroprotection following TBI has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of DEX in TBI-induced EBI by regulating neural autophagy in a C57BL/6 mouse model. Mortality, the neurological score, brain water content, neuroinflammatory cytokine levels, ROS production, malondialdehyde levels and neuronal death were evaluated by TUNEL staining, Evans blue extravasation, ELISA, analysis of ROS/lipid peroxidation and western blotting. The results showed that DEX treatment markedly increased the survival rate and neurological score, increased neuron survival, decreased the expression of the LC3, Beclin-1 and NF-κB proteins, as well as the cytokines IL-1β, IL-6 and TNF-α, which indicated that DEX-mediated inhibition of autophagy and neuroinflammation ameliorated neuronal death following TBI. The neuroprotective capacity of DEX is partly dependent on the ROS/nuclear factor erythroid 2-related factor 2 signaling pathway. Taken together, the results of the present study indicated that DEX improves neurological outcomes in mice and reduces neuronal death by protecting against neural autophagy and neuroinflammation.
Collapse
Affiliation(s)
- Xiaoyan Feng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Weiwei Ma
- Clinical Medicine Five‑Year Program, 11 Class, 2019 Grade, Wannan Medical College, Wuhu, Jiangsu 241002, P.R. China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Wei Jiao
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|