1
|
Shen Y, Zhang M, Liu X, Jin X, Liu Z, Liu S. Resveratrol-mediated NRF2/HO-1 signaling pathway to improve postoperative cognitive dysfunction in elderly rats. Neuroreport 2025; 36:297-305. [PMID: 40177831 PMCID: PMC11949208 DOI: 10.1097/wnr.0000000000002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025]
Abstract
To investigate the effects of resveratrol (RES) on cognitive function and its modulation of the NRF2/HO-1 signaling pathway in a rodent model of postoperative cognitive dysfunction (POCD). A POCD model was established in aged Sprague-Dawley rats using sevoflurane anesthesia and laparotomy. Rats were divided into four groups: control, POCD, RES, and POCD + RES. Cognitive performance was assessed using the Morris water maze. Hippocampal tissues were analyzed for neuronal condition using hematoxylin and eosin and Nissl staining. The expression levels of inflammatory cytokines and oxidative stress markers were quantified by enzyme-linked immunosorbent assay. The messenger RNA and protein levels of NRF2, KEAP1, HO-1, and SOD2 were measured using real-time quantitative polymerase chain reaction and western blotting. RES treatment improved cognitive function, as evidenced by reduced escape latency and increased platform crossings in the Morris water maze. Histopathological analysis showed restoration of hippocampal structure and increased neuronal viability. RES significantly reduced proinflammatory cytokines interleukin (IL)-1 and IL-6 while increasing IL-10 levels. In addition, RES activated the NRF2/HO-1 pathway by upregulating NRF2, HO-1, and SOD2 expression while downregulating KEAP1. RES mitigates cognitive deficits in POCD by reducing neuroinflammation and oxidative stress through activation of the NRF2/HO-1 signaling pathway. These findings suggest RES is a potential therapeutic candidate for the treatment of POCD in elderly patients.
Collapse
Affiliation(s)
- Yousu Shen
- Department of Anesthesiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Mingsheng Zhang
- Department of Anesthesiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiaobing Liu
- Department of Anesthesiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xia Jin
- Department of Anesthesiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhongyu Liu
- Department of Anesthesiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Shuaiping Liu
- Department of Anesthesiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
2
|
El-Sayed SAM, Fouad GI, Rizk MZ, Beherei HH, Mabrouk M. Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats. Mol Neurobiol 2025; 62:2710-2725. [PMID: 39152208 PMCID: PMC11790707 DOI: 10.1007/s12035-024-04415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Demyelination is a frequent yet crippling neurological disease associated with multiple sclerosis (MS). The cuprizone (CZ) model, which causes demyelination through oxidative stress and neuroinflammation, is a popular tool used by researchers to examine this process. The polyphenol resveratrol (RESV) has become a promising neuroprotective agent in seeking for efficient therapies. In a rat model given CZ, we created and examined iron oxide nanoparticles (IONPs) loaded with RESV (IONP-RESV) to see how effective they were as a therapeutic agent against free RESV. According to molecular mechanisms, exposure to CZ resulted in a marked downregulation of myelin proteolipid protein (PLP) expression and an overexpression of the inflammatory markers tumor necrosis factor-α (TNF-α) and S100β, which are indicators of demyelination and neuroinflammation. It is remarkable that these CZ-induced alterations could be reversed by therapy with either RESV or IONP-RESV. Interestingly, IONP-RESV showed even stronger anti-inflammatory activity, as shown by a more noticeable downregulation of TNF-α and S100β expression. These results were confirmed by histopathological examination of the cerebral cortices. Our findings support the better neuroprotective benefits of RESV-loaded IONPs over free RESV in reducing demyelination and neuroinflammation brought on by CZ. Owing to their pro-remyelinating, anti-inflammatory, and antioxidant properties, RESV-loaded IONPs show promise as a neurotherapeutic intervention in the future for neurological diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
3
|
Zhu H, Cai F, Li Z, Zhang L, Zhou X, Yao J, Wang W, Zhou L, Jiang X, Xi K, Gu Y, Chen L, Zhou Y. Neutrophil membrane-coated multifunctional biomimetic nanoparticles for spinal cord injuries. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:415-439. [PMID: 39298153 DOI: 10.1080/09205063.2024.2404760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/11/2024] [Indexed: 02/25/2025]
Abstract
Spinal cord injury (SCI) is one of the most complex diseases. After SCI, severe secondary injuries can cause intense inflammatory storms and oxidative stress responses, leading to extensive neuronal apoptosis. Effective regulation of inflammation and oxidative stress after SCI remains an unresolved challenge. In this study, resveratrol-loaded nanoparticles coated with neutrophil membranes (NMR) were prepared using the emulsion-solvent evaporation method and membrane encapsulation technology. Multifunctional biomimetic nanoparticles retain neutrophil membrane-related receptors and possess a strong adsorption capacity for inflammatory factors. As a drug carrier, NMR can sustainably release resveratrol for >72 h. Moreover, co-culture studies in vitro show that the NMR help regulate macrophage polarization to relieve inflammatory response, reduce intracellular reactive oxygen species by approximately 50%, and improve mitochondrial membrane potential to alleviate oxidative stress. After injecting NMR into the injury site, it reduces early apoptosis, inhibit scar formation, and promote neural network recovery to improve motor function. This study demonstrates the anti-inflammatory, antioxidant, and neuroprotective effects of NMR, thus providing a novel therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Feng Cai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ziang Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Lichen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jiapei Yao
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Liang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Yidi Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
4
|
Peng Y, Hu L, Xu H, Fang J, Zhong H. Resveratrol alleviates reactive oxygen species and inflammation in diabetic retinopathy via SIRT1/HMGB1 pathway-mediated ferroptosis. Toxicol Appl Pharmacol 2025; 495:117214. [PMID: 39719253 DOI: 10.1016/j.taap.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
This study aims to explore the potential of using resveratrol (RES) to treat diabetic retinopathy (DR), as well as the involved molecular mechanisms underlying RES-mediated protection against DR. High concentration of glucose (HG)-induced Human retinal capillary endothelial cells (HRCECs) cell model and streptozotocin (STZ)-induced DR mice model were established. Then, cell viability, apoptosis, reactive oxygen species (ROS) levels, pro-inflammatory factors, and expression of the related proteins SIRT1, HMGB1, VEGF, and CD31 were assayed by a series of cell biology methods. Also, the ferroptosis-related indicators were also explored, including contents of Fe2+, glutathione (GSH), malondialdehyde (MDA), SLC7A11 and GPX4 protein expression. Results showed that RES could alleviate inflammation and oxidative stress in HG-induced HRCECs. In addition, the mRNA and protein expression of SIRT1 and HMGB1 were significantly changed in HG-induced HRCECs and STZ-induced DR mice, while RES treatment could reverse this alteration. In addition, the HMGB1 acetylation level was enhanced after downregulation of SIRT1. Moreover, the ROS generation, expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α), CD31, and VEGF changed by RES administration were reversed by SIRT1-silence. Besides, HG implement could dramatically up-regulated the Fe2+ and MDA contents, and down-regulated the content of GSH and SLC7A11 and GPX4 protein expression in HRCECs, as well as STZ-induced DR mice. RES implement could reverse the above alterations, while SIRT1-silence dramatically reversed these alterations changed by RES treatment. In conclusion, RES suppresses inflammation in DR, as well as inhibit retinal angiogenesis and oxidative stress, and inhibits ferroptosis to alleviate DR via SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ye Peng
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Long Hu
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Huilei Xu
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Jian Fang
- Haiyan Bang'er Hospital, Jiaxing, Zhejiang, China
| | - Hongliang Zhong
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an 325200, Zhejiang, China.
| |
Collapse
|
5
|
Pekdemir B, Raposo A, Saraiva A, Lima MJ, Alsharari ZD, BinMowyna MN, Karav S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024; 16:4368. [PMID: 39770989 PMCID: PMC11677798 DOI: 10.3390/nu16244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms. Some agents that can cross the blood-brain barrier and reach neurons show neuroprotective effects in the brain due to their anti-apoptotic, anti-inflammatory and antioxidant properties. In particular, some agents act by reducing or modulating the accumulation of protein aggregates in neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and prion disease) caused by protein accumulation. Substrate accumulation causes increased oxidative stress and stimulates the brain's immune cells, microglia, and astrocytes, to secrete proinflammatory cytokines. Long-term or chronic neuroinflammatory response triggers apoptosis. Brain damage is observed with neuronal apoptosis and brain functions are impaired. This situation negatively affects processes such as motor movements, memory, perception, and learning. Neuroprotective agents prevent apoptosis by modulating molecules that play a role in apoptosis. In addition, they can improve impaired brain functions by supporting neuroplasticity and neurogenesis. Due to the important roles that these agents play in central nervous system damage or neurodegenerative diseases, it is important to elucidate many mechanisms. This review provides an overview of the mechanisms of flavonoids, which constitute a large part of the agents with neuroprotective effects, as well as vitamins, neurotransmitters, hormones, amino acids, and their derivatives. It is thought that understanding these mechanisms will enable the development of new therapeutic agents and different treatment strategies.
Collapse
Affiliation(s)
- Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
6
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
7
|
Wilar G, Suhandi C, Wathoni N, Fukunaga K, Kawahata I. Nanoparticle-Based Drug Delivery Systems Enhance Treatment of Cognitive Defects. Int J Nanomedicine 2024; 19:11357-11378. [PMID: 39524925 PMCID: PMC11550695 DOI: 10.2147/ijn.s484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticle-based drug delivery presents a promising solution in enhancing therapies for neurological diseases, particularly cognitive impairment. These nanoparticles address challenges related to the physicochemical profiles of drugs that hinder their delivery to the central nervous system (CNS). Benefits include improved solubility due to particle size reduction, enhanced drug penetration across the blood-brain barrier (BBB), and sustained release mechanisms suitable for long-term therapy. Successful application of nanoparticle delivery systems requires careful consideration of their characteristics tailored for CNS delivery, encompassing particle size and distribution, surface charge and morphology, loading capacity, and drug release kinetics. Literature review reveals three main types of nanoparticles developed for cognitive function enhancement: polymeric nanoparticles, lipid-based nanoparticles, and metallic or inorganic nanoparticles. Each type and its production methods possess distinct advantages and limitations. Further modifications such as coating agents or ligand conjugation have been explored to enhance their brain cell uptake. Evidence supporting their development shows improved efficacy outcomes, evidenced by enhanced cognitive function assessments, modulation of pro-oxidant markers, and anti-inflammatory activities. Despite these advancements, clinical trials validating the efficacy of nanoparticle systems in treating cognitive defects are lacking. Therefore, these findings underscore the need for researchers to expedite clinical testing to provide robust evidence of the potential of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
8
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Shamsher E, Khan RS, Davis BM, Dine K, Luong V, Cordeiro MF, Shindler KS. Intranasal Resveratrol Nanoparticles Enhance Neuroprotection in a Model of Multiple Sclerosis. Int J Mol Sci 2024; 25:4047. [PMID: 38612856 PMCID: PMC11012060 DOI: 10.3390/ijms25074047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.
Collapse
Affiliation(s)
- Ehtesham Shamsher
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (E.S.)
- Jules-Gonin Eye Hospital, Lausanne University, 1011 Lausanne, Switzerland
| | - Reas S. Khan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA (K.D.)
| | - Benjamin M. Davis
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (E.S.)
| | - Kimberly Dine
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA (K.D.)
| | - Vy Luong
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (E.S.)
| | - M. Francesca Cordeiro
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (E.S.)
- Imperial College London Ophthalmology Research Group, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| | - Kenneth S. Shindler
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA (K.D.)
| |
Collapse
|
10
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|