1
|
Rawat SK, Nema RK, Nema S, Gupta S, Biswas D. Molecular Typing of Chikungunya Virus at a Regional Advanced Healthcare Facility in Central India: A Three-Year Prospective Study. Cureus 2025; 17:e80185. [PMID: 40196062 PMCID: PMC11973400 DOI: 10.7759/cureus.80185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Chikungunya virus (CHIKV) has emerged as a significant public health concern due to its tendency to re-emerge, causing massive outbreaks in India and globally. Recent outbreaks demonstrate the virus's ability to spread rapidly, evade the host's immune responses, and lead to debilitating illnesses. Despite advances in public health surveillance and vector control, the cyclical, unpredictable resurgence of CHIKV underscores gaps in our understanding of its molecular dynamics and epidemiological patterns that vary by region. This study investigates the molecular and phylogenetic characteristics of CHIKV infections from 2020 to 2023 at an advanced regional tertiary care facility in Central India. A total of 1,021 serum samples were collected from patients presenting exhibiting symptoms consistent with chikungunya infection. Of these, 178 tested positive for CHIKV IgM, and 16 were confirmed positive for CHIKV by reverse transcription-polymerase chain reaction (RT-PCR). The PCR-positive samples were then sequenced to analyze the entire viral genome. Genome annotation was performed using the Bacterial and Viral Bioinformatics Resource Center (BVBRC) database, and multiple sequence alignment (MSA) was performed using Molecular Evolutionary Genetics Analysis (MEGA) Version 11.0 (Pennsylvania State University, University Park, PA, United States). Phylogenetic analysis revealed that the circulating strains belonged to a single clade within the East-Central-South-African (ECSA) genotype. By comparing these strains with previously reported sequences from India, we identified notable mutations in the E1 region, such as S72N, K211E, M269V, D284E, A315V, and I317V, previously found strains from Central India and New Delhi. Mutations such as M31I, I54V, and S105T, as well as the A226V mutation previously reported in India, were absent, suggesting that the currently circulating CHIKV strains in our region are primarily transmitted through Aedes aegypti . In contrast, mutations previously observed in the nonstructural region before 2014, such as nsP2-E145D and nsP3-V376T, re-emerged in our isolates. These findings enhance our understanding of CHIKV's genetic diversity, delineating the evolution of local CHIKV clades and their implications for regional epidemiology and public health in Central India.
Collapse
Affiliation(s)
- Sumit K Rawat
- Microbiology, Bundelkhand Medical College, Sagar, IND
- Microbiology, All India Institute of Medical Sciences, Bhopal, IND
| | - Ram Kumar Nema
- Environmental Biotechnology, Genetics and Molecular Biology, Indian Council of Medical Research (ICMR)National Institute for Research in Environmental Health Bhopal, Bhopal, IND
| | - Shashwati Nema
- Microbiology, All India Institute of Medical Sciences, Bhopal, IND
| | - Sudheer Gupta
- Next Generation Sequencing (NGS) and Bioinformatics Division, 3B BlackBio Biotech India Ltd., Bhopal, IND
| | - Debasis Biswas
- Microbiology, All India Institute of Medical Sciences, Bhopal, IND
| |
Collapse
|
2
|
Gotay W, Rodrigues R, Yaochite J. Influence of host genetic polymorphisms involved in immune response and their role in the development of Chikungunya disease: a review. Braz J Med Biol Res 2023; 56:e12557. [PMID: 37703107 PMCID: PMC10496760 DOI: 10.1590/1414-431x2023e12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/22/2023] [Indexed: 09/15/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by the bite of infected mosquitoes and can cause significant pathogenicity in humans. Moreover, its importance has increased in the Americas since 2013. The primary vectors for viral delivery are the mosquito species Aedes aegypti and Aedes albopictus. Several factors, including host genetic variations and immune response against CHIKV, influence the outcomes of Chikungunya disease. This work aimed to gather information about different single nucleotide polymorphisms (SNPs) in genes that influence the host immune response during an infection by CHIKV. The viral characteristics, disease epidemiology, clinical manifestations, and immune response against CHIKV are also addressed. The main immune molecules related to this arboviral disease elucidated in this review are TLR3/7/8, DC-SIGN, HLA-DRB1/HLA-DQB1, TNF, IL1RN, OAS2/3, and CRP. Advances in knowledge about the genetic basis of the immune response during CHIKV infection are essential for expanding the understanding of disease pathophysiology, providing new genetic markers for prognosis, and identifying molecular targets for the development of new drug treatments.
Collapse
Affiliation(s)
- W.J.P. Gotay
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.O. Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J.N.U. Yaochite
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
3
|
Varikkodan MM, Kunnathodi F, Azmi S, Wu TY. An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need. Vaccines (Basel) 2023; 11:1102. [PMID: 37376491 DOI: 10.3390/vaccines11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is an infectious agent spread by mosquitos, that has engendered endemic or epidemic outbreaks of Chikungunya fever (CHIKF) in Africa, South-East Asia, America, and a few European countries. Like most tropical infections, CHIKV is frequently misdiagnosed, underreported, and underestimated; it primarily affects areas with limited resources, like developing nations. Due to its high transmission rate and lack of a preventive vaccine or effective treatments, this virus poses a serious threat to humanity. After a 32-year hiatus, CHIKV reemerged as the most significant epidemic ever reported, in India in 2006. Since then, CHIKV-related research was begun in India, and up to now, more than 800 peer-reviewed research papers have been published by Indian researchers and medical practitioners. This review gives an overview of the outbreak history and CHIKV-related research in India, to favor novel high-quality research works intending to promote effective treatment and preventive strategies, including vaccine development, against CHIKV infection.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
4
|
Sengupta S, Bhattacharya N, Tripathi A. Increased CRP, anti-CCP antibody, IL-2R, COMP levels in prognosis of post-chikungunya chronic arthritis and protective role of their specific genotypes against arthritic manifestation. Virus Res 2023; 323:198998. [PMID: 36356677 PMCID: PMC10194367 DOI: 10.1016/j.virusres.2022.198998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Chikungunya infection leads to acute/chronic polyarthritis/polyarthralgia causing long-term morbidity among patients. Prognosis of post-chikungunya chronic arthritis (PCA) is of utmost necessity for proper disease management. Arthritic and hepatic biomarkers were evaluated among chikungunya patients without arthritis, with acute arthritis and with post-chikungunya chronic arthritis in the study. Serum levels of arthritic [CRP (C-reactive protein), anti cyclic-citrullinated-peptide (anti-CCP) antibody, soluble interleukin-2 receptor (sIL-2R), cartilage oligomeric matrix protein (COMP)] and hepatic [ALT (alanine aminotransferase), AST (aspartate aminotransferase), ALP (alkaline phosphatase), albumin and bilirubin] biomarkers of 167 chikungunya positive patients were determined by sandwich-ELISA/immunoturbidimetry/auto-analyser. 167 chikungunya-patients and 102 healthy controls were genotyped to understand role of CRP-rs3093059/rs3091244, IL-2R-rs743777 and COMP-rs144778694 polymorphisms towards chikungunya virus (CHIKV) infectivity and arthralgic manifestation. CRP, anti-CCP antibody, IL-2R and COMP levels significantly increased among PCA patients. Concentrations of AST, ALT, AST/ALT-ratio, bilirubin and ALP increased among arthritic chikungunya patients. Principal component analysis differentiated PCA groups from acute (AA) and non-arthritic groups. Patients with IL-2R-rs743777-GA, G-allele and COMP-rs144778694-GA genotypes were susceptible to chikungunya infection. Moreover, patients with CRP-rs3093059-CT, rs3091244-TT, IL-2R-rs743777-GA and COMP-rs144778694-AA genotypes were significantly protected from arthralgia, whereas, COMP-rs144778694-GA genotype was susceptible towards it. Patients with certain genotypes of CRP, IL-2R and COMP demonstrated significantly higher biomarker serum-levels among patients suffering from AA with/without PCA. Thus, both serum biomarker levels and polymorphic genotypes of infected patients play decisive role in development of PCA.
Collapse
Affiliation(s)
- Siddhartha Sengupta
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, West Bengal 700073, India
| | - Nemai Bhattacharya
- Department of Microbiology, Virus unit, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, West Bengal 700073, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, West Bengal 700073, India.
| |
Collapse
|
5
|
Pustake M, Ganiyani MA, Shah D, Dhondge V, Deshmukh K. Post Chikungunya Fever and Post COVID-19 Bilateral Pedal Edema: A Case Report. Cureus 2022; 14:e27588. [PMID: 36059353 PMCID: PMC9433348 DOI: 10.7759/cureus.27588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
An 86-year-old male presented with fever and joint pain for seven days. Clinical features were suggestive of chikungunya fever, but reverse transcription-polymerase chain reaction (RT-PCR) was negative. After ruling out the differentials, the patient was clinically diagnosed with chikungunya fever. Chikungunya IgG antibody was positive two months after the onset of symptoms. He had a history of asymptomatic coronavirus disease (COVID-19) infection two months ago. About 20 days after his first symptom, he developed bipedal edema, refractory to diuretics. All other causes of pedal edema, including heart failure, renal failure, and liver failure, were ruled out. The bipedal edema was managed conservatively with compression bandages. Only a few case reports and studies on limb edema as a symptom post chikungunya fever have been published up to this point. Furthermore, it is difficult to say whether his COVID-19 infection is linked to the edema.
Collapse
Affiliation(s)
- Manas Pustake
- Internal Medicine, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, IND
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
| | - Mohammad Arfat Ganiyani
- Internal Medicine, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, IND
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
| | - Dhwani Shah
- Internal Medicine, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, IND
| | - Vijay Dhondge
- Internal Medicine, Sapphire Multispeciality Hospital, Nashik, IND
- Internal Medicine, Dr. Dhondge's Clinic, Nashik, IND
| | - Krishna Deshmukh
- Internal Medicine, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, IND
| |
Collapse
|
6
|
Gupta M, Singla N, Mohi G. An encounter with potentially reemerging chikungunya infection during 2016-2017. APOLLO MEDICINE 2022. [DOI: 10.4103/am.am_98_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
8
|
Karliuk Y, Vom Hemdt A, Wieseler J, Pfeffer M, Kümmerer BM. Characterization and Vector Competence Studies of Chikungunya Virus Lacking Repetitive Motifs in the 3' Untranslated Region of the Genome. Viruses 2021; 13:v13030403. [PMID: 33806267 PMCID: PMC7999577 DOI: 10.3390/v13030403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022] Open
Abstract
Using reverse genetics, we analyzed a chikungunya virus (CHIKV) isolate of the Indian Ocean lineage lacking direct repeat (DR) elements in the 3′ untranslated region, namely DR1a and DR2a. While this deletion mutant CHIKV-∆DR exhibited growth characteristics comparable to the wild-type virus in Baby Hamster Kidney cells, replication of the mutant was reduced in Aedes albopictus C6/36 and Ae. aegypti Aag2 cells. Using oral and intrathoracic infection of mosquitoes, viral infectivity, dissemination, and transmission of CHIKV-∆DR could be shown for the well-known CHIKV vectors Ae. aegypti and Ae. albopictus. Oral infection of Ae. vexans and Culex pipiens mosquitoes with mutant or wild-type CHIKV showed very limited infectivity. Dissemination, transmission, and transmission efficiencies as determined via viral RNA in the saliva were slightly higher in Ae. vexans for the wild-type virus than for CHIKV-∆DR. However, both Ae. vexans and Cx. pipiens allowed efficient viral replication after intrathoracic injection confirming that the midgut barrier is an important determinant for the compromised infectivity after oral infection. Transmission efficiencies were neither significantly different between Ae. vexans and Cx. pipiens nor between wild-type and CHIKV-∆DR. With a combined transmission efficiency of 6%, both Ae. vexans and Cx. pipiens might serve as potential vectors in temperate regions.
Collapse
Affiliation(s)
- Yauhen Karliuk
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Anja Vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Kumar D, Meena MK, Kumari K, Patel R, Jayaraj A, Singh P. In-silico prediction of novel drug-target complex of nsp3 of CHIKV through molecular dynamic simulation. Heliyon 2020; 6:e04720. [PMID: 32904235 PMCID: PMC7452467 DOI: 10.1016/j.heliyon.2020.e04720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
Literature reported that nsp3 of CHIKV is an important target for the designing of drug as it involves in the replication, survival etc. Herein, about eighteen million molecules available in the ZINC database are filtered against nsp3 using RASPD. Top five hit drug molecules were then taken from the total screened molecules (6988) from ZINC database. Then, a one pot-three components reaction is designed to get the pyrazolophthalazine and its formation was studied using DFT method. Authors created a library of 200 compounds using the product obtained in the reaction and filtered against nsp3 of CHIKV based on docking using iGEMDOCK, a computational tool. Authors have studied the best molecules after applying the the Lipinski's rule of five and bioactive score. Further, the authors took the best compound i.e. CMPD178 and performed the MD simulations and tdMD simulations with nsp3 protease using AMBER18. MD trajectories were studied to collect the information about the nsp3 of CHIKV with and without screened compound and then, MM-GBSA calculations were performed to calculate change in binding free energies for the formation of complex. The aim of the work is to find the potential candidate as promising inhibitor against nsp3 of CHIKV.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Mahendra Kumar Meena
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Deparment of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Rajan Patel
- CIRBS, Jamia Millia Islamia, New Delhi, India
| | | | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Kumar D, Kumari K, Jayaraj A, Singh P. Development of a theoretical model for the inhibition of nsP3 protease of Chikungunya virus using pyranooxazoles. J Biomol Struct Dyn 2019; 38:3018-3034. [PMID: 31366291 DOI: 10.1080/07391102.2019.1650830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chikungunya virus (CHIKV) causes Chikungunya fever (CHIKF) and till date no effective medicine for its cure is available in market. Different research groups find various possible interactions between small molecules and non-structural proteins, viz. nsP3, one of the most important viral elements in CHIKV. In this work, authors have studied the interactions of nsP3 protease of CHIKV with pyranooxazoles. Initially, a one-pot three-component reaction was designed using oxazolidine-2,4-dione, benzaldehyde and cyanoethylacetate to get a proposed biological active molecule, i.e. based on pyranooxazoles. The mechanism for the synthesis of the product based on pyranooxazole was studied through density functional theory (DFT) using Gaussian. Then, a library of the obtained pyranooxazole was created through computational tools by varying the substituents. Further, virtual screening of the designed library of pyranooxazoles (200 compounds) against nsP3 protease of CHIKV was performed. Herein, CMPD 104 showed strongest binding affinity toward the targeted nsP3 protease of CHIKV, based on the least binding energy obtained from docking. Based on docking results, the pharmacological, toxicity, biological score and Lipinski's filters were studied. Further, DFT studies of top five compounds were done using Gaussian. Molecular dynamics (MD) simulation of nsP3 protease of CHIKV with and without 104 was performed using AMBER18 utilizing ff14SB force field in three steps (minimization, equilibration and production). This work is emphasized to designing of one-pot three-component synthesis and to develop a theoretical model to inhibit the nsP3 protease of CHIKV. AbbreviationsCHIKFChikungunya feverCHIKVChikungunya virusDFTdensity functional theoryDSDiscovery StudioMDmolecular dynamicsMM-GBSAmolecular mechanics-generalized born surface areaMMVMolegro molecular viewerCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, D.D.U. College, University of Delhi, New Delhi, India
| | | | - Prashant Singh
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| |
Collapse
|
11
|
Feng X, Huo X, Tang B, Tang S, Wang K, Wu J. Modelling and Analyzing Virus Mutation Dynamics of Chikungunya Outbreaks. Sci Rep 2019; 9:2860. [PMID: 30814598 PMCID: PMC6393467 DOI: 10.1038/s41598-019-38792-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
Chikungunya fever, caused by chikungunya virus (CHIKV) and transmitted to humans by infected Aedes mosquitoes, has posed a global threat in several countries in 2015. Recent outbreaks in La Réunion, Italy and China are related with a new variant of CHIKV with shorter extrinsic incubation period in contaminated mosquitoes, but the role of this new variant on the spread of chikungunya fever is unclear. We develop a mathematical model that incorporates the virus mutation dynamics in the transmission of CHIKV among mosquitoes and humans. Our numerical simulations show that a substantial virus mutation rate combined with high virus transmission probabilities from mosquito to human, could result in sustainable chikungunya fever outbreaks. Further, we apply Markov Chain Monte Carlo sampling method to fit our model to the 2007 chikungunya fever outbreak data in North-Eastern Italy where the mutant strain was detected. We conclude that the basic reproduction number might be underestimated without considering the mutation dynamics, and our estimation shows that the basic reproduction number of the 2007 Italy outbreak was [Formula: see text] = 2.035[95%Cl: 1.9424 - 2.1366]. Sensitivity analysis shows that the transmission rate of the mutant strain from mosquitoes to human is more influential on [Formula: see text] than the shortened extrinsic incubation period. We conclude that the virus mutation dynamics could play an important role in the transmission of CHIKV, and there is a crucial need to better understand the mutation mechanism.
Collapse
Affiliation(s)
- Xiaomei Feng
- School of mathematics and information sciences, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
- School of mathematics and information technology, Yuncheng University, Yuncheng, 044000, People's Republic of China
| | - Xi Huo
- Department of Mathematics, University of Miami, Coral Gables, FL, 33124-4250, USA
| | - Biao Tang
- Laboratory for Industrial and Applied Mathematics, Faculty of Sciences, York University, Toronto, ON, M3J1P3, Canada
| | - Sanyi Tang
- School of mathematics and information sciences, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, Faculty of Sciences, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
12
|
Ching KC, F P Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2018; 72:2973-2989. [PMID: 28981632 PMCID: PMC7110243 DOI: 10.1093/jac/dkx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.
Collapse
Affiliation(s)
- Kuan-Chieh Ching
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| | - Lisa F P Ng
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, #04-06, Singapore 138648.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive, #14-01T, Singapore 117599.,Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L697BE, UK
| | - Christina L L Chai
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
13
|
Contopoulos-Ioannidis D, Newman-Lindsay S, Chow C, LaBeaud AD. Mother-to-child transmission of Chikungunya virus: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018; 12:e0006510. [PMID: 29897898 PMCID: PMC6075784 DOI: 10.1371/journal.pntd.0006510] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/03/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an emerging arboviral infection with a global distribution and may cause fetal and neonatal infections after maternal CHIKV-infections during gestation. METHODOLOGY We performed a systematic review to evaluate the risk for: a) mother-to-child transmission (MTCT), b) antepartum fetal deaths (APFD), c) symptomatic neonatal disease, and d) neonatal deaths from maternal CHIKV-infections during gestation. We also recorded the neonatal clinical manifestations after such maternal infections (qualitative data synthesis). We searched PubMed (last search 3/2017) for articles, of any study design, with any of the above outcomes. We calculated the overall risk of MTCT, APFDs and risk of symptomatic neonatal disease by simple pooling. For endpoints with ≥5 events in more than one study, we also synthesized the data by random-effect-model (REM) meta-analysis. PRINCIPAL FINDINGS Among 563 identified articles, 13 articles from 8 cohorts were included in the quantitative data synthesis and 33 articles in the qualitative data synthesis. Most cohorts reported data only on symptomatic rather than on all neonatal infections. By extrapolation also of these data, the overall pooled-MTCT-risk across cohorts was at least 15.5% (206/1331), (12.6% by REMs). The pooled APFD-risk was 1.7% (20/1203); while the risk of CHIKV-confirmed-APFDs was 0.3% (3/1203). Overall, the pooled-risk of symptomatic neonatal disease was 15.3% (203/1331), (11.9% by REMs). The pooled risk of symptomatic disease was 50.0% (23/46) among intrapartum vs 0% (0/712) among antepartum/peripartum maternal infections. Infected newborns, from maternal infections during gestation were either asymptomatic or presented within their first week of life, but not at birth, with fever, irritability, hyperalgesia, diffuse limb edema, rashes and occasionally sepsis-like illness and meningoencephalitis. The pooled-risk of neonatal death was 0.6% (5/832) among maternal infections and 2.8% (5/182) among neonatal infections; long-term neurodevelopmental delays occurred in 50% of symptomatic neonatal infections. CONCLUSIONS/SIGNIFICANCE Published cohorts with data on the risk to the fetus and/or newborn from maternal CHIKV-infections during gestation were sparse compared to the number of recently reported CHIKV-infection outbreaks worldwide; however perinatal infections do occur, at high rates during intrapartum period, and can be related to neonatal death and long-term disabilities.
Collapse
Affiliation(s)
- Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shoshana Newman-Lindsay
- Department of Pediatrics, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Camille Chow
- Department of Internal Medicine, St. Agnes Medical Center, Fresno, CA, United States of America
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
14
|
Sharma R, Kesari P, Kumar P, Tomar S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018; 515:223-234. [DOI: 10.1016/j.virol.2017.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
15
|
Alto BW, Wiggins K, Eastmond B, Ortiz S, Zirbel K, Lounibos LP. Diurnal Temperature Range and Chikungunya Virus Infection in Invasive Mosquito Vectors. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:217-224. [PMID: 29040730 DOI: 10.1093/jme/tjx182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Climate strongly influences the geographic distribution and timing of mosquito-borne disease outbreaks. Environmental temperature affects phenotypic traits of mosquitoes including vector competence for arboviruses mediated by changes in infection, extrinsic incubation period and in rates of transmission. Most experiments, however, are done at constant temperatures. In nature, mosquitoes are more likely to experience daily fluctuations in temperature. Here we compare disseminated infection (leg infection) and saliva infection of Aedes aegypti (L.) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) from Florida following oral exposure to an Asian genotype of chikungunya virus emergent in the Americas. We evaluated experimentally the effect of variable temperature regimens on disseminated infection and saliva infection of these Aedes species. Each of three temperature regimes had approximately the same average temperature (27-28°C), but differed in the magnitude of the diurnal temperature range (DTR). The large DTR was 8.0°C (range 23-31°C) and the small DTR was 4.0°C (range 26-30°C) which approximate ranges in different locations of Florida during July-October when risk of transmission is highest. The constant temperature was set at 27°C. Testing three geographic populations of each mosquito species, significant effects on disseminated infection were detected for an interaction between temperature regime and geographic population for both Ae. aegypti and Ae. albopictus. There were no significant treatment effects of temperature, geographic population, or temperature by geographic population interaction on saliva infection for either mosquito species. Constant temperature resulted in a higher viral load in the saliva of Ae. albopictus, but not Ae. aegypti, compared to conditions where the temperature fluctuated.
Collapse
Affiliation(s)
- Barry W Alto
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, IFAS, Vero Beach, FL
| | - Keenan Wiggins
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, IFAS, Vero Beach, FL
| | - Bradley Eastmond
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, IFAS, Vero Beach, FL
| | - Sara Ortiz
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, IFAS, Vero Beach, FL
| | - Kylie Zirbel
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, IFAS, Vero Beach, FL
| | - L Philip Lounibos
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, IFAS, Vero Beach, FL
| |
Collapse
|
16
|
Eastwood G, Sang RC, Guerbois M, Taracha ELN, Weaver SC. Enzootic Circulation of Chikungunya Virus in East Africa: Serological Evidence in Non-human Kenyan Primates. Am J Trop Med Hyg 2017; 97:1399-1404. [PMID: 29016323 DOI: 10.4269/ajtmh.17-0126] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a globally emerging pathogen causing debilitating arthralgia and fever in humans. First identified in Tanzania (1953), this mosquito-borne alphavirus received little further attention until a 2004 re-emergence in Kenya from an unknown source. This outbreak subsequently spread to the Indian Ocean, with adaptation for transmission by a new urban vector. Under the hypothesis that sylvatic progenitor cycles of CHIKV exist in Kenya (as reported in West Africa, between non-human primates (NHPs) and arboreal Aedes spp. mosquitoes), we pursued evidence of enzootic transmission and human spillover events. We initially screened 252 archived NHP sera from Kenya using plaque reduction neutralization tests. Given an overall CHIKV seroprevalence of 13.1% (marginally higher in western Kenya), we sought more recent NHP samples during 2014 from sites in Kakamega County, sampling wild blue monkeys, olive baboons, and red-tailed monkeys (N = 33). We also sampled 34 yellow baboons near Kwale, coastal Kenya. Overall, CHIKV seropositivity in 2014 was 13.4% (9/67). Antibodies reactive against closely related o'nyong-nyong virus (ONNV) occurred; however, neutralization titers were too low to conclude ONNV exposure. Seroprevalence for the flavivirus dengue was also detected (28%), mostly near Kwale, suggesting possible spillback from humans to baboons. CHIKV antibodies in some juvenile and subadult NHPs suggested recent circulation. We conclude that CHIKV is circulating in western Kenya, despite the 2004 human outbreaks only being reported coastally. Further work to understand the enzootic ecology of CHIKV in east Africa is needed to identify sites of human spillover contact where urban transmission may be initiated.
Collapse
Affiliation(s)
- Gillian Eastwood
- Centre for Viral Research, Kenya Medical Research Institute, Nairobi, Kenya.,Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Rosemary C Sang
- Centre for Viral Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Matilde Guerbois
- Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | | | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
17
|
Christian KA, Iuliano AD, Uyeki TM, Mintz ED, Nichol ST, Rollin P, Staples JE, Arthur RR. What We Are Watching-Top Global Infectious Disease Threats, 2013-2016: An Update from CDC's Global Disease Detection Operations Center. Health Secur 2017; 15:453-462. [PMID: 28805465 PMCID: PMC5661857 DOI: 10.1089/hs.2017.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023] Open
Abstract
To better track public health events in areas where the public health system is unable or unwilling to report the event to appropriate public health authorities, agencies can conduct event-based surveillance, which is defined as the organized collection, monitoring, assessment, and interpretation of unstructured information regarding public health events that may represent an acute risk to public health. The US Centers for Disease Control and Prevention's (CDC's) Global Disease Detection Operations Center (GDDOC) was created in 2007 to serve as CDC's platform dedicated to conducting worldwide event-based surveillance, which is now highlighted as part of the "detect" element of the Global Health Security Agenda (GHSA). The GHSA works toward making the world more safe and secure from disease threats through building capacity to better "Prevent, Detect, and Respond" to those threats. The GDDOC monitors approximately 30 to 40 public health events each day. In this article, we describe the top threats to public health monitored during 2012 to 2016: avian influenza, cholera, Ebola virus disease, and the vector-borne diseases yellow fever, chikungunya virus, and Zika virus, with updates to the previously described threats from Middle East respiratory syndrome-coronavirus (MERS-CoV) and poliomyelitis.
Collapse
|
18
|
Alto BW, Wiggins K, Eastmond B, Velez D, Lounibos LP, Lord CC. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl Trop Dis 2017; 11:e0005724. [PMID: 28749964 PMCID: PMC5531436 DOI: 10.1371/journal.pntd.0005724] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/18/2017] [Indexed: 12/23/2022] Open
Abstract
Between 2014 and 2016 more than 3,800 imported human cases of chikungunya fever in Florida highlight the high risk for local transmission. To examine the potential for sustained local transmission of chikungunya virus (CHIKV) in Florida we tested whether local populations of Aedes aegypti and Aedes albopictus show differences in susceptibility to infection and transmission to two emergent lineages of CHIKV, Indian Ocean (IOC) and Asian genotypes (AC) in laboratory experiments. All examined populations of Ae. aegypti and Ae. albopictus mosquitoes displayed susceptibility to infection, rapid viral dissemination into the hemocoel, and transmission for both emergent lineages of CHIKV. Aedes albopictus had higher disseminated infection and transmission of IOC sooner after ingesting CHIKV infected blood than Ae. aegypti. Aedes aegypti had higher disseminated infection and transmission later during infection with AC than Ae. albopictus. Viral dissemination and transmission of AC declined during the extrinsic incubation period, suggesting that transmission risk declines with length of infection. Interestingly, the reduction in transmission of AC was less in Ae. aegypti than Ae. albopictus, suggesting that older Ae. aegypti females are relatively more competent vectors than similar aged Ae. albopictus females. Aedes aegypti originating from the Dominican Republic had viral dissemination and transmission rates for IOC and AC strains that were lower than for Florida vectors. We identified small-scale geographic variation in vector competence among Ae. aegypti and Ae. albopictus that may contribute to regional differences in risk of CHIKV transmission in Florida. The emergence of mosquito-borne chikungunya virus in the Americas starting in 2013 has been associated with geographically widespread outbreaks of human illness. Transmission of chikungunya virus in the U.S. is a major public health risk, especially in Florida where the environmental conditions are favorable for the two main mosquitoes involved in transmission. We measured susceptibility to infection and transmission for Florida Aedes aegypti and Aedes albopictus mosquitoes for two emergent strains of chikungunya virus (Indian Ocean and Asian strains). Both mosquito species showed high susceptibility to infection and rapid spread of the virus throughout the body of the mosquito, including the saliva for both emergent strains of chikungunya virus. Aedes albopictus had higher body infection and transmission of the Indian Ocean strain sooner after feeding on chikungunya virus infected blood than Ae. aegypti. Aedes aegypti had higher body infection and saliva infection later during infection with the Asian strain of chikungunya virus than Ae. albopictus. We also observed declines in body infection and transmission over time, suggesting that transmission risk declines with length of infection. The information here will be useful as parameters in models of risk of chikungunya virus transmission.
Collapse
Affiliation(s)
- Barry W. Alto
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
- * E-mail:
| | - Keenan Wiggins
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Bradley Eastmond
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Daniel Velez
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - L. Philip Lounibos
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Cynthia C. Lord
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| |
Collapse
|
19
|
Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress. Acta Trop 2017; 167:121-127. [PMID: 28024869 DOI: 10.1016/j.actatropica.2016.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and enhance survival of the Andaman population of both the Aedine species. Biological implications of these findings could impact the vector competencies.
Collapse
|
20
|
Evaluating the effectiveness of localized control strategies to curtail chikungunya. Sci Rep 2016; 6:23997. [PMID: 27045523 PMCID: PMC4820747 DOI: 10.1038/srep23997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022] Open
Abstract
Chikungunya, a re-emerging arbovirus transmitted to humans by Aedes aegypti and Ae. albopictus mosquitoes, causes debilitating disease characterized by an acute febrile phase and chronic joint pain. Chikungunya has recently spread to the island of St. Martin and subsequently throughout the Americas. The disease is now affecting 42 countries and territories throughout the Americas. While chikungunya is mainly a tropical disease, the recent introduction and subsequent spread of Ae. albopictus into temperate regions has increased the threat of chikungunya outbreaks beyond the tropics. Given that there are currently no vaccines or treatments for chikungunya, vector control remains the primary measure to curtail transmission. To investigate the effectiveness of a containment strategy that combines disease surveillance, localized vector control and transmission reduction measures, we developed a model of chikungunya transmission dynamics within a large residential neighborhood, explicitly accounting for human and mosquito movement. Our findings indicate that prompt targeted vector control efforts combined with measures to reduce transmission from symptomatic cases to mosquitoes may be highly effective approaches for controlling outbreaks of chikungunya, provided that sufficient detection of chikungunya cases can be achieved.
Collapse
|
21
|
Ruiz-Moreno D. Assessing Chikungunya risk in a metropolitan area of Argentina through satellite images and mathematical models. BMC Infect Dis 2016; 16:49. [PMID: 26830024 PMCID: PMC4735964 DOI: 10.1186/s12879-016-1348-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/13/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Chikungunya fever is a viral disease that recently invaded the American continent. In America, it is transmitted mainly by the mosquito Aedes aegypti, but Aedes albopictus is the main vector in other regions of the world. This work estimates the risk of disease emergence and the corresponding population at risk for the case of a naive population in the metropolitan area of Buenos Aires, the capital city of Argentina. METHODS A classic metapopulation epidemiological model, that considers human and mosquito populations, was extended in order to include different environmental signals. First, the vital rates of the mosquitoes were affected by local temperature. Second, habitat availability estimated from satellite images was used to determine the carrying capacity for local mosquito populations. Disease invasion was proposed to occur at different moments of the year. For each scenario, Monte Carlo simulations were used to estimate the risk of disease invasion and the population at risk. RESULTS The risk of a Chikungunya outbreak displays strong temporal (seasonal) patterns as well as spatial variability at the level of neighborhoods in the study area. According to the model, Summer and Fall display high risk for a Chikungunya invasion. The population at risk displays less variation over the year underlying the importance of preventive actions. CONCLUSIONS The ability of mapping habitat quality for vector-borne diseases allows developing risk analysis at scales that are easily manageable for public health officers. For this location, the correlation of disease risk with the season of the year and the habitat availability could provide information to develop efficient control strategies. This also underlines the importance of involving the whole community when developing control measures for Chikungunya fever and other recently invading vector-borne diseases such as Zika fever.
Collapse
Affiliation(s)
- Diego Ruiz-Moreno
- Grupo de Ecologia Computacional, Instituto de Ciencias Sociales y Administración, Universidad Nacional Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Structural basis for complementary and alternative medicine: Phytochemical interaction with non-structural protein 2 protease-a reverse engineering strategy. Chin J Integr Med 2014; 21:445-52. [DOI: 10.1007/s11655-014-1764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Indexed: 10/24/2022]
|
23
|
Parreira R, Centeno-Lima S, Lopes A, Portugal-Calisto D, Constantino A, Nina J. Dengue virus serotype 4 and chikungunya virus coinfection in a traveller returning from Luanda, Angola, January 2014. ACTA ACUST UNITED AC 2014; 19. [PMID: 24650864 DOI: 10.2807/1560-7917.es2014.19.10.20730] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A concurrent dengue virus serotype 4 and chikungunya virus infection was detected in a woman in her early 50s returning to Portugal from Luanda, Angola, in January 2014. The clinical, laboratory and molecular findings, involving phylogenetic analyses of partial viral genomic sequences amplified by RT-PCR, are described. Although the circulation of both dengue and chikungunya viruses in Angola has been previously reported, to our knowledge this is the first time coinfection with both viruses has been detected there.
Collapse
Affiliation(s)
- R Parreira
- Unidade de Microbiologia Medica (Grupo de Virologia) and Unidade de Parasitologia e Microbiologia Medicas (UPMM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
24
|
Ruiz-Moreno D, Vargas IS, Olson KE, Harrington LC. Modeling dynamic introduction of Chikungunya virus in the United States. PLoS Negl Trop Dis 2012; 6:e1918. [PMID: 23209859 PMCID: PMC3510155 DOI: 10.1371/journal.pntd.0001918] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Chikungunya is a mosquito-borne viral infection of humans that previously was confined to regions in central Africa. However, during this century, the virus has shown surprising potential for geographic expansion as it invaded other countries including more temperate regions. With no vaccine and no specific treatment, the main control strategy for Chikungunya remains preventive control of mosquito populations. In consideration for the risk of Chikungunya introduction to the US, we developed a model for disease introduction based on virus introduction by one individual. Our study combines a climate-based mosquito population dynamics stochastic model with an epidemiological model to identify temporal windows that have epidemic risk. We ran this model with temperature data from different locations to study the geographic sensitivity of epidemic potential. We found that in locations with marked seasonal variation in temperature there also was a season of epidemic risk matching the period of the year in which mosquito populations survive and grow. In these locations controlling mosquito population sizes might be an efficient strategy. But, in other locations where the temperature supports mosquito development all year the epidemic risk is high and (practically) constant. In these locations, mosquito population control alone might not be an efficient disease control strategy and other approaches should be implemented to complement it. Our results strongly suggest that, in the event of an introduction and establishment of Chikungunya in the US, endemic and epidemic regions would emerge initially, primarily defined by environmental factors controlling annual mosquito population cycles. These regions should be identified to plan different intervention measures. In addition, reducing vector: human ratios can lower the probability and magnitude of outbreaks for regions with strong seasonal temperature patterns. This is the first model to consider Chikungunya risk in the US and can be applied to other vector borne diseases. Chikungunya fever is a mosquito-borne viral infection showing a surprising potential for geographic expansion. Similar to other tropical infectious diseases having no vaccine and no specific treatment, the main control strategy for Chikungunya remains reduction of mosquito population size. We developed a model for disease introduction that combines a climate based mosquito population dynamics stochastic model with an epidemiological model in order to identify temporal windows during which disease introduction through one exposed individual might compromise the health status of the entire human population. We ran this model with temperature data from different locations showing the geographic sensitivity of this risk. The identification of temporal windows with epidemic risk at different spatial locations is key to guiding mosquito population control campaigns. Locations with marked seasonal variation also have a season with high epidemic risk matching the period in which mosquito populations survive and grow, therefore controlling mosquito population sizes might be an optimal strategy in those areas. However, locations with other temperature patterns may need additional control strategies to avoid epidemics. To our knowledge, this is the first model to explore Chikungunya introduction in the USA. Our modeling approach can be used for other vector borne diseases and can be expanded to compare the outcome with different control strategies.
Collapse
Affiliation(s)
- Diego Ruiz-Moreno
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America.
| | | | | | | |
Collapse
|
25
|
Zayed A, Awash AA, Esmail MA, Al-Mohamadi HA, Al-Salwai M, Al-Jasari A, Medhat I, Morales-Betoulle ME, Mnzava A. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen. Acta Trop 2012; 123:62-6. [PMID: 22469818 DOI: 10.1016/j.actatropica.2012.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/04/2012] [Accepted: 03/08/2012] [Indexed: 11/29/2022]
Abstract
In October 2010, the Ministry of Public Health and Population reported an outbreak of dengue-like acute febrile illness in Al Hodayda governorate. By January 2011, a total of 1542 cases had been recorded from 19 of the 26 districts in the governorate with 104 purportedly associated deaths. In response this event, in January 2011 entomological investigations aimed at identifying the primary vector and the epidemic associated etiological agent were carried out. Based on the reported cases and the progress of the outbreak in the governorate, mosquito collection was undertaken in two of the most recent outbreak areas; Al Khokha district (130km south of Al Hodayda) and Al Muneera district (100km north). Mosquito adults were collected from houses using BG-sentinel™ traps, aspiration of resting mosquitoes and knock-down spraying. Indoor and outdoor containers adjacent to the houses were inspected for larvae. Subsequently mosquito pools were analyzed by RT-PCR for detection of the four dengue virus serotypes (DENV-1, DENV-2, DENV-3, DENV-4), and for Chikungunya virus (CHIKV). Aedes aegypti was the dominant mosquito species collected. Four pools represent 40% of the tested pools, all containing adult female Ae. aegypti, were positive for CHIKV. Three CHIKV isolates were obtained from the RNA positive mosquito pools and identified by rRT-PCR. This finding marks the first record of CHIKV isolated from Ae. aegypti in Yemen. The larval container and Breteau indices in the visited localities surveyed were estimated at 53.8 and 100, respectively. The emergence of this unprecedented CHIKV epidemic in Al Hodayda is adding up another arboviral burden to the already existing vector-borne diseases. Considering the governorate as one focal port in the Red Sea region, the spread of the disease to other areas in Yemen and in neighboring countries is anticipated. Public health education and simple measures to detect and prevent mosquito breeding in water storage containers could prevent and reduce the spread of mosquito-borne viruses like CHIKV and DENV in Yemen.
Collapse
Affiliation(s)
- Alia Zayed
- Vector Biology Research Program, U.S. Naval Medical Research Unit No. 3, Cairo, Egypt.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|