1
|
Frascati F, Rotunno S, Accotto GP, Noris E, Vaira AM, Miozzi L. Exogenous Application of dsRNA for Protection against Tomato Leaf Curl New Delhi Virus. Viruses 2024; 16:436. [PMID: 38543801 PMCID: PMC10974794 DOI: 10.3390/v16030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, including Solanaceae, Cucurbitaceae, Fabaceae, Malvaceae and Euphorbiaceae. Up to now, protection from ToLCNDV infection has been achieved mainly by RNAi-mediated transgenic resistance, and non-transgenic fast-developing approaches are an urgent need. Plant protection by the delivery of dsRNAs homologous to a pathogen target sequence is an RNA interference-based biotechnological approach that avoids cultivating transgenic plants and has been already shown effective against RNA viruses and viroids. However, the efficacy of this approach against DNA viruses, particularly Geminiviridae family, is still under study. Here, the protection induced by exogenous application of a chimeric dsRNA targeting all the coding regions of the ToLCNDV DNA-A was evaluated in zucchini, an important crop strongly affected by this virus. A reduction in the number of infected plants and a delay in symptoms appearance, associated with a tendency of reduction in the viral titer, was observed in the plants treated with the chimeric dsRNA, indicating that the treatment is effective against geminiviruses but requires further optimization. Limits of RNAi-based vaccinations against geminiviruses and possible causes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| |
Collapse
|
2
|
Nagendran K, Kumari S, Pandey S, Karmakar P, Chaubey T, Kumar R, Vignesh S, Karthikeyan G, Behera TK. Emergence of yellowing disease in cucurbitaceous vegetables caused by Crinivirus and Polerovirus in India. Virology 2023; 587:109876. [PMID: 37688923 DOI: 10.1016/j.virol.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Totally 102 symptomatic samples of cucurbitaceous vegetables showing yellowing were collected from fields of Uttar Pradesh and screened by RT-PCR assay for the presence of Crinivirus and Polerovirus. Among them, Crinivirus (16%) and Polerovirus (23%) were tested positive with the universal primer pairs. Based on the sequence analysis of amplified product, two Crinivirus (Cucurbit chlorotic yellows virus - CCYV and Cucurbit yellow stunting disorder virus - CYSDV) and two Polerovirus (Cucurbit aphid-borne yellows virus - CABYV and Luffa aphid-borne yellows virus - LABYV) species were characterized. Phylogenetic analysis revealed less genetic distance among the Indian isolates of CCYV, CYSDV and LABYV whereas CABYV closely related to Chinese isolates. To the best of our knowledge, this study documents infection of CCYV on cucumber, round melon and muskmelon; CYSDV on satputia and sponge gourd; CABYV on ivy gourd; and LABYV on ridge gourd, satputia and muskmelon for the first time in India.
Collapse
Affiliation(s)
- Krishnan Nagendran
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India.
| | - Shweta Kumari
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Tribhuvan Chaubey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Rajesh Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - S Vignesh
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Gandhi Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | |
Collapse
|
3
|
Tan JL, Trandem N, Fránová J, Hamborg Z, Blystad DR, Zemek R. Known and Potential Invertebrate Vectors of Raspberry Viruses. Viruses 2022; 14:v14030571. [PMID: 35336978 PMCID: PMC8949175 DOI: 10.3390/v14030571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
The estimated global production of raspberry from year 2016 to 2020 averaged 846,515 tons. The most common cultivated Rubus spp. is European red raspberry (Rubus idaeus L. subsp. idaeus). Often cultivated for its high nutritional value, the red raspberry (Rubus idaeus) is susceptible to multiple viruses that lead to yield loss. These viruses are transmitted through different mechanisms, of which one is invertebrate vectors. Aphids and nematodes are known to be vectors of specific raspberry viruses. However, there are still other potential raspberry virus vectors that are not well-studied. This review aimed to provide an overview of studies related to this topic. All the known invertebrates feeding on raspberry were summarized. Eight species of aphids and seven species of plant-parasitic nematodes were the only proven raspberry virus vectors. In addition, the eriophyid mite, Phyllocoptes gracilis, has been suggested as the natural vector of raspberry leaf blotch virus based on the current available evidence. Interactions between vector and non-vector herbivore may promote the spread of raspberry viruses. As a conclusion, there are still multiple aspects of this topic that require further studies to get a better understanding of the interactions among the viral pathogens, invertebrate vectors, and non-vectors in the raspberry agroecosystem. Eventually, this will assist in development of better pest management strategies.
Collapse
Affiliation(s)
- Jiunn Luh Tan
- Department of Zoology, Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
- Biology Centre CAS, Institute of Entomology, 37005 České Budějovice, Czech Republic;
- Correspondence:
| | - Nina Trandem
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway; (N.T.); (Z.H.); (D.-R.B.)
| | - Jana Fránová
- Biology Centre CAS, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic;
| | - Zhibo Hamborg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway; (N.T.); (Z.H.); (D.-R.B.)
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway; (N.T.); (Z.H.); (D.-R.B.)
| | - Rostislav Zemek
- Biology Centre CAS, Institute of Entomology, 37005 České Budějovice, Czech Republic;
| |
Collapse
|
4
|
Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022; 11:273. [PMID: 35215215 PMCID: PMC8879208 DOI: 10.3390/pathogens11020273] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Food security has become a major concern worldwide in recent years due to ever increasing population. Providing food for the growing billions without disturbing environmental balance is incessantly required in the current scenario. In view of this, sustainable modes of agricultural practices offer better promise and hence are gaining prominence recently. Moreover, these methods have taken precedence currently over chemical-based methods of pest restriction and pathogen control. Adoption of Biological Control is one such crucial technique that is currently in the forefront. Over a period of time, various biocontrol strategies have been experimented with and some have exhibited great success and promise. This review highlights the different methods of plant-pathogen control, types of plant pathogens, their modus operandi and various biocontrol approaches employing a range of microorganisms and their byproducts. The study lays emphasis on the use of upcoming methodologies like microbiome management and engineering, phage cocktails, genetically modified biocontrol agents and microbial volatilome as available strategies to sustainable agricultural practices. More importantly, a critical analysis of the various methods enumerated in the paper indicates the need to amalgamate these techniques in order to improve the degree of biocontrol offered by them.
Collapse
Affiliation(s)
- Manisha Arora Pandit
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Saloni Gulati
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Neeru Bhandari
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Poonam Mehta
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Roma Katyal
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Jasleen Kaur
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| |
Collapse
|
5
|
Saurabh S, Mishra M, Rai P, Pandey R, Singh J, Khare A, Jain M, Singh PK. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity-A Case for Next-Generation Control Strategies of Whiteflies. INSECTS 2021; 12:insects12070585. [PMID: 34203297 PMCID: PMC8307429 DOI: 10.3390/insects12070585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary Despite being a pest of global importance, effective management of whiteflies by the implication of environmentally friendly approaches is still a far-reaching task. In this review, we have tried to bring the readers’ attention to next-generation control strategies such as RNA interference and genetic modifications of plants for the expression of anti-whitefly proteins. These strategies offer huge promise to provide an effective and sustainable solution to the problem of whiteflies, either in isolation or in combination with other widely used practices under the regimes of integrated pest management. Focus has also been given to advanced technologies such as nanotechnology and genome editing, with promising prospects for field applications. The importance, applicability, and demand of these technologies for the control of whiteflies have been highlighted. We have also attempted to present the holistic picture of challenges in the path of commercial application of these promising technologies. To underline the pest status of whiteflies concisely, we have enlisted all economically important species of the pest along with their host plants/crops across the world. A comprehensive list of various insecticides of chemical, microbial, and botanical origin, applied in the field for the control of sweetpotato whitefly along with their resistance status, ecotoxicities, and effects on biological control agents, has been provided for readers. Abstract Whiteflies are a group of universally occurring insects that are considered to be a serious pest in their own way for causing both direct and indirect damages to crops. A few of them serve as vectors of plant viruses that are detrimental to the crop in question and cause an actual loss in productivity. A lot of attention is focused on pest control measures under the umbrella of IPM. In this review, we attempt to summarize the existing literature on how and why whiteflies are a serious concern for agriculture and society. We reviewed why there could be a need for fresh insight into the ways and means with which the pest can be combated. Here, we have emphasized next-generation strategies based on macromolecules, i.e., RNA interference and genetic engineering (for the expression of anti-whitefly proteins), as these strategies possess the greatest scope for research and improvement in the future. Recent scientific efforts based on nanotechnology and genome editing, which seem to offer great potential for whitefly/crop pest control, have been discussed. Comprehensive apprehensions related to obstacles in the path of taking lab-ready technologies into the farmers’ field have also been highlighted. Although the use of RNAi, GM crops, nanotechnologies, for the control of whiteflies needs to be evaluated in the field, there is an emerging range of possible applications with promising prospects for the control of these tiny flies that are mighty pests.
Collapse
Affiliation(s)
- Sharad Saurabh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Manisha Mishra
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Preeti Rai
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Rashmi Pandey
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Jyoti Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Akansha Khare
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Meeta Jain
- School of Biochemistry, Khandwa Rd., D.A.V.V., Bhawarkuwa, DAVV Takshila Parisar, Indore 452001, Madhya Pradesh, India;
| | - Pradhyumna Kumar Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: ; Tel.: +91-7080844111
| |
Collapse
|
6
|
Domingo-Calap ML, Chase O, Estapé M, Moreno AB, López-Moya JJ. The P1 Protein of Watermelon mosaic virus Compromises the Activity as RNA Silencing Suppressor of the P25 Protein of Cucurbit yellow stunting disorder virus. Front Microbiol 2021; 12:645530. [PMID: 33828542 PMCID: PMC8019732 DOI: 10.3389/fmicb.2021.645530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Instituto Valencia de Investigaciones Agrarias, IVIA, Valencia, Spain
| | - Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mariona Estapé
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Universitair Medisch Centrum, UMC, Utrecht, Netherlands
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
7
|
Orfanidou C, Katsiani A, Papayiannis L, Katis NI, Maliogka VI. Interplay of Cucurbit Yellow Stunting Disorder Virus With Cucurbit Chlorotic Yellows Virus and Transmission Dynamics by Bemisia tabaci MED. PLANT DISEASE 2021; 105:416-424. [PMID: 32706325 DOI: 10.1094/pdis-03-20-0621-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) are two closely related criniviruses that often coinfect cucurbits and are associated with cucurbit yellows disease. Both viruses are distributed worldwide and are transmitted in a semipersistent manner by the whitefly vectors Bemisia tabaci MED or MEAM1. The major goal of this study was to provide insight into the interaction of CCYV and CYSDV in cucumber and to study the effect on transmission by B. tabaci MED. The titers of both viruses were estimated in single- and dually infected cucumber plants via reverse transcription PCR assays. In mixed infections, the accumulation of both viruses was significantly decreased. When B. tabaci MED adults were placed on cucumber infected with both viruses, their simultaneous transmission efficiency was significantly higher, whereas transmission efficiency of each individual virus was low. Moreover, nonviruliferous whiteflies preferentially settled on crinivirus-infected cucumber plants, whereas viruliferous whiteflies were attracted by healthy cucumber plants. Finally, the titer of both viruses was calculated in five commercial cucumber hybrids, followed by subsequent transmission experiments. Our results show that although the titers of CYSDV and CCYV were significantly lower in mixed infections in cucumbers, their simultaneous transmission increased.
Collapse
Affiliation(s)
- Chrysoula Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Asimina Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | | | - Nikolaos I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Varvara I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. Int J Mol Sci 2020; 21:ijms21175970. [PMID: 32825131 PMCID: PMC7504372 DOI: 10.3390/ijms21175970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Cucurbit yellow stunting disorder virus (CYSDV) is one of the main limiting factors of melon cultivation worldwide. To date, no commercial melon cultivars resistant to CYSDV are available. The African accession TGR-1551 is resistant to CYSDV. Two major quantitative trait loci (QTLs) have been previously reported, both located near each other in chromosome 5. With the objective of further mapping the gene or genes responsible of the resistance, a recombinant inbred line (RIL) population derived from the cross between TGR-1551 and the susceptible cultivar ‘Bola de Oro’ was evaluated for resistance to CYSDV in five different assays and genotyped in a genotyping by sequencing (GBS) analysis. The major effect of one of the two QTLs located on chromosome 5 was confirmed in the multienvironment RIL assay and additionally verified through the analysis of three segregating BC1S1 populations derived from three resistant RILs. Furthermore, progeny test using the offspring of selected BC3 plants allowed the narrowing of the candidate interval to a 700 kb region. The SNP markers identified in this work will be useful in marker-assisted selection in the context of introgression of CYSDV resistance in elite cultivars.
Collapse
|
9
|
Natsuhara D, Takishita K, Tanaka K, Kage A, Suzuki R, Mizukami Y, Saka N, Nagai M, Shibata T. A Microfluidic Diagnostic Device Capable of Autonomous Sample Mixing and Dispensing for the Simultaneous Genetic Detection of Multiple Plant Viruses. MICROMACHINES 2020; 11:mi11060540. [PMID: 32466570 PMCID: PMC7344993 DOI: 10.3390/mi11060540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
As an efficient approach to risk management in agriculture, the elimination of losses due to plant diseases and insect pests is one of the most important and urgent technological challenges for improving the crop yield. Therefore, we have developed a polydimethylsiloxane (PDMS)-based microfluidic device for the multiplex genetic diagnosis of plant diseases and pests. It offers unique features, such as rapid detection, portability, simplicity, and the low-cost genetic diagnosis of a wide variety of plant viruses. In this study, to realize such a diagnostic device, we developed a method for the autonomous dispensing of fluid into a microchamber array, which was integrated with a set of three passive stop valves with different burst pressures (referred to as phaseguides) to facilitate precise fluid handling. Additionally, we estimated the mixing efficiencies of several types of passive mixers (referred to as chaotic mixers), which were integrated into a microchannel, through experimental and computational analyses. We first demonstrated the ability of the fabricated diagnostic devices to detect DNA-based plant viruses from an infected tomato crop based on the loop-mediated isothermal amplification (LAMP) method. Moreover, we demonstrated the simultaneous detection of RNA-based plant viruses, which can infect cucurbits, by using the reverse transcription LAMP (RT-LAMP) method. The multiplex RT-LAMP assays revealed that multiple RNA viruses extracted from diseased cucumber leaves were successfully detected within 60 min, without any cross-contamination between reaction microchambers, on our diagnostic device.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
- Correspondence: (D.N.); (T.S.)
| | - Keisuke Takishita
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Kisuke Tanaka
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Azusa Kage
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Ryoji Suzuki
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Yuko Mizukami
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Norikuni Saka
- Agro-Environmental Division, Aichi Agricultural Research Center, Nagakute, Aichi 480-1193, Japan; (R.S.); (Y.M.); (N.S.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8560, Japan; (K.T.); (K.T.); (A.K.); (M.N.)
- Correspondence: (D.N.); (T.S.)
| |
Collapse
|
10
|
Priming Melon Defenses with Acibenzolar- S-methyl Attenuates Infections by Phylogenetically Distinct Viruses and Diminishes Vector Preferences for Infected Hosts. Viruses 2020; 12:v12030257. [PMID: 32111005 PMCID: PMC7150938 DOI: 10.3390/v12030257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023] Open
Abstract
Plant virus management is mostly achieved through control of insect vectors using insecticides. However, insecticides are only marginally effective for preventing virus transmission. Furthermore, it is well established that symptoms of virus infections often encourage vector visitation to infected hosts, which exacerbates secondary spread. Plant defense elicitors, phytohormone analogs that prime the plant immune system against attack, may be a viable approach for virus control that complements insecticide use by disrupting pathologies that attract vectors. To explore this, we tested the effect of a commercial plant elicitor, acibenzolar-S-methyl (ASM), on infection rates, virus titers, and symptom development in melon plants inoculated with one of two virus species, Cucumber mosaic virus (CMV) and Cucurbit yellow stunting disorder virus (CYSDV). We also conducted behavioral assays to assess the effect of ASM treatment and virus inoculation on vector behavior. For both pathogens, ASM treatment reduced symptom severity and delayed disease progression. For CYSDV, this resulted in the attenuation of symptoms that encourage vector visitation and virion uptake. We did observe slight trade-offs in growth vs. defense following ASM treatment, but these effects did not translate into reduced yields or plant performance in the field. Our results suggest that immunity priming may be a valuable tool for improving management of insect-transmitted plant viruses.
Collapse
|
11
|
Domingo-Calap ML, Moreno AB, Díaz Pendón JA, Moreno A, Fereres A, López-Moya JJ. Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. PHYTOPATHOLOGY 2020; 110:174-186. [PMID: 31502517 DOI: 10.1094/phyto-04-19-0126-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Antonio Díaz Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Aranzazu Moreno
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Barcelona, Spain
| |
Collapse
|
12
|
Wang Y, Zhu P, Zhou Q, Zhou X, Guo Z, Cheng L, Zhu L, He X, Zhu Y, Hu Y. Detection of disease in Cucurbita maxima Duch. ex Lam . caused by a mixed infection of Zucchini yellow mosaic virus, Watermelon mosaic virus, and Cucumber mosaic virus in Southeast China using a novel small RNA sequencing method. PeerJ 2019; 7:e7930. [PMID: 31660276 PMCID: PMC6815192 DOI: 10.7717/peerj.7930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/21/2019] [Indexed: 11/20/2022] Open
Abstract
The genus Cucurbita comprises many popular vegetable and ornamental plants, including pumpkins, squashes, and gourds, that are highly valued in China as well as in many other countries. During a survey conducted in Zhejiang province, Southeast China in 2016, severe symptoms of viral infection were observed on Cucurbita maxima Duch. ex Lam. Diseased plants showed symptoms such as stunting, mosaicking, Shoe string, blistering, yellowing, leaf deformation, and fruit distortion. Approximately, 50% of Cucurbita crops produced in Jinhua were diseased, causing an estimated yield loss of 35%. In this study, we developed a method using all known virus genomes from the NCBI database as a reference to map small RNAs to develop a diagnostic tool that could be used to diagnose virus diseases of C. maxima. 25 leaf samples from different symptomatic plants and 25 leaf samples from non-symptomatic plants were collected from the experimental field of Jihua National Agricultural Technology Garden for pathogen identification. Small RNAs from each set of three symptomatic and non-symptomatic samples were extracted and sequenced by Illumina sequencing. Twenty-four different viruses were detected in total. However, the majority of the small RNAs were from Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), and Cucumber mosaic virus (CMV). Mixed infections of these three viruses were diagnosed in leaf samples from diseased plants and confirmed by reverse transcription PCR (RT-PCR) using primers specific to these three viruses. Crude sap extract from symptomatic leaf samples was mechanically inoculated back into healthy C. maxima plants growing under greenhouse conditions. Inoculated plants developed the same disease symptoms as those observed in the diseased plants and a mixed infection of ZYMV, WMV, and CMV was detected again by RT-PCR, thus fulfilling Koch's postulates. The diagnostic method developed in this study involves fewer bioinformatics processes than other diagnostic methods, does not require complex settings for bioinformatics parameters, provides a high level of sensitivity to rapidly diagnose plant samples with symptoms of virus diseases and can be performed cheaply. This method therefore has the potential to be widely applied as a diagnostic tool for viruses that have genome information in the NCBI database.
Collapse
Affiliation(s)
- Yi Wang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Pu Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Qin Zhou
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Xiaojun Zhou
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Ziqing Guo
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Linrun Cheng
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Liyan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Yidan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Yang Hu
- Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resouces, Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Qiao W, Zarzyńska‐Nowak A, Nerva L, Kuo Y, Falk BW. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2236-2247. [PMID: 29704454 PMCID: PMC6638120 DOI: 10.1111/mpp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA silencing is a conserved antiviral defence mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harbouring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RNA-dependent RNA polymerase (RdRp) sequence exhibited immunity to systemic LIYV infection. Deep sequencing analysis was performed to characterize virus-derived small interfering RNAs (vsiRNAs) generated on systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune-transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants, except for a significant increase in t-siRNAs of 24 nucleotides in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21, 22 and 24 nucleotides in length. The accumulated 24-nucleotide sequences have not yet been reported in transgenic plants partially resistant to criniviruses, and thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nucleotide t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24-nucleotide t-siRNAs is associated with crinivirus immunity in transgenic plants.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Aleksandra Zarzyńska‐Nowak
- Department of Virology and BacteriologyInstitute of Plant Protection‐National Research InstitutePoznańPoland, 60‐318
| | - Luca Nerva
- Council for Agricultural Research and Economics – Research Centre for Viticulture and EnologyConegliano (TV)Italy, 00198
- Institute for Sustainable Plant ProtectionTorinoItaly, 10135
| | - Yen‐Wen Kuo
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| |
Collapse
|
14
|
Orfanidou CG, Baltzi A, Dimou NA, Katis NI, Maliogka VI. Cucurbit chlorotic yellows virus: Insights Into Its Natural Host Range, Genetic Variability, and Transmission Parameters. PLANT DISEASE 2017; 101:2053-2058. [PMID: 30677385 DOI: 10.1094/pdis-02-17-0164-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is implicated in cucurbit yellows disease (CYV), causing typical interveinal yellowing symptoms in leaves, and is transmitted by Bemisia tabaci Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1). Due to its recent report in cucurbit crops in Greece, field surveys were conducted during 2011-2016 to determine the presence of the virus in symptomatic cucurbits and alternative hosts among arable weed species. Results indicated the restricted spread of the virus and identified 13 weed species as CCYV hosts for the first time. Sequence analysis of the RNA-dependent RNA polymerase (RNA1) coat and minor coat proteins (RNA2) revealed very low genetic diversity (<0.1%) among the Greek isolates. Transmission experiments were also conducted using B. tabaci MED with retention determined at four days, whereas transmission efficiency was positively correlated with the number of adults used, features linked to the virus semipersistent mode of transmission.
Collapse
Affiliation(s)
- C G Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Baltzi
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - N A Dimou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - N I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - V I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| |
Collapse
|
15
|
Tang X, Shi X, Zhang D, Li F, Yan F, Zhang Y, Liu Y, Zhou X. Detection and epidemic dynamic of ToCV and CCYV with Bemisia tabaci and weed in Hainan of China. Virol J 2017; 14:169. [PMID: 28870255 PMCID: PMC5584531 DOI: 10.1186/s12985-017-0833-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In recent years, two of the crinivirus, Tomato chlorosis virus (ToCV) and Cucurbit chlorotic yellows virus (CCYV) have gained increasing attention due to their rapid spread and devastating impacts on vegetable production worldwide. Both of these viruses are transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), in a semi-persistent manner. Up to now, there is still lack of report in Hainan, the south of China. METHODS We used observational and experimental methods to explore the prevalence and incidence dynamic of CCYV and ToCV transmitted by whiteflies in Hainan of China. RESULTS In 2016, the chlorosis symptom was observed in the tomato and cucumber plants with a large number of B. tabaci on the infected leaves in Hainan, China, with the incidence rate of 69.8% and 62.6% on tomato and cucumber, respectively. Based on molecular identification, Q biotype was determined with a viruliferous rate of 65.0% and 55.0% on the tomato and cucumber plants, respectively. The weed, Alternanthera philoxeroides near the tomato and cucumber was co-infected by the two viruses. Furthermore, incidence dynamic of ToCV and CCYV showed a close relationship with the weed, Alternanthera philoxeroides, which is widely distributed in Hainan. CONCLUSION Our results firstly reveal that the weed, A. philoxeroides is infected by both ToCV and CCYV. Besides, whiteflies showed a high viruliferous rate of ToCV and CCYV. Hainan is an extremely important vegetable production and seed breeding center in China. If the whitefly can carry these two viruses concurrently, co-infection in their mutual host plants can lead to devastating losses in the near future.
Collapse
Affiliation(s)
- Xin Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410125 China
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Xiaobin Shi
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Deyong Zhang
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Yunnan, 650201 China
| | - Fei Yan
- Institute of virus and biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong Liu
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Xuguo Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, 410125 China
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North Lexington, Lexington, KY 40546-0091 USA
| |
Collapse
|
16
|
Li J, Liang X, Wang X, Shi Y, Gu Q, Kuo YW, Falk BW, Yan F. Direct evidence for the semipersistent transmission of Cucurbit chlorotic yellows virus by a whitefly vector. Sci Rep 2016; 6:36604. [PMID: 27812032 PMCID: PMC5095664 DOI: 10.1038/srep36604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023] Open
Abstract
Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is an emerging plant virus, and is now spreading and causing severe economic losses to cucurbit crops in many Asian countries. CCYV is believed to be transmitted specifically by the sweetpotato whitefly, Bemisia tabaci, in a semipersistent manner. In the present study, we provide direct evidence for the semipersistent transmission of CCYV by Mediterranean (MED) cryptic species of B. tabaci complex. We investigated CCYV transmission characteristics, and immunofluorescently labeled and localized the virus retention site within the vector by laser confocal microscopy. Whiteflies required ≥1 h of acquisition access period (AAP) to successfully acquire CCYV, and the proportion of RT-PCR positive whitefly individuals reached to 100% at 48 h of AAP. CCYV virons could be retained within vectors as long as 12 d, but the proportion of RT-PCR positive whiteflies dropped to 55% by 3 d. Groups of thirty whiteflies given a 24 h of inoculation access period (IAP) to inoculate CCYV on cucumber plants showed a transmission efficiency rate of 72.73%. The retention site of CCYV virons was located in the foregut of virion-fed vectors. These results definitely indicated the semipersistent transmission mode of CCYV by B. tabaci MED.
Collapse
Affiliation(s)
- Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiangzhi Liang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xueli Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, One shields Avenue, Davis, CA 95616-8600, USA
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, Davis, One shields Avenue, Davis, CA 95616-8600, USA
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| |
Collapse
|
17
|
Owen CA, Moukarzel R, Huang X, Kassem MA, Eliasco E, Aranda MA, Coutts RHA, Livieratos IC. In Vitro Synthesized RNA Generated from cDNA Clones of Both Genomic Components of Cucurbit yellow stunting disorder virus Replicates in Cucumber Protoplasts. Viruses 2016; 8:v8060170. [PMID: 27314380 PMCID: PMC4926190 DOI: 10.3390/v8060170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022] Open
Abstract
Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants.
Collapse
Affiliation(s)
- Carolyn A Owen
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania GR-73100, Greece.
| | - Romy Moukarzel
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania GR-73100, Greece.
| | - Xiao Huang
- Sir Alexander Fleming Building, Department of Biological Sciences, Imperial College, London SW7 2AZ, UK.
| | - Mona A Kassem
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Eleonora Eliasco
- Sir Alexander Fleming Building, Department of Biological Sciences, Imperial College, London SW7 2AZ, UK.
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Robert H A Coutts
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, UK.
| | - Ioannis C Livieratos
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, Chania GR-73100, Greece.
| |
Collapse
|
18
|
Abstract
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Collapse
|