1
|
Zöller DDJA, Säurich J, Metzger J, Jung K, Lepenies B, Becker SC. Innate Immune Response Against Batai Virus, Bunyamwera Virus, and Their Reassortants. Viruses 2024; 16:1833. [PMID: 39772143 PMCID: PMC11680289 DOI: 10.3390/v16121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Orthobunyaviruses (OBVs) represent a diverse group of RNA viruses, encompassing a progressively increasing number of arboviruses that cause disease in both humans and livestock. Yet, studies investigating these viruses remain scarce despite the critical importance of such knowledge for assessing their zoonotic potential. In this study, we conducted an evaluation of the early immune response against the understudied Batai virus (BATV), as well as the influence of reassortment with the Bunyamwera virus (BUNV) on this response. Using RNA sequencing of infected murine bone marrow-derived dendritic cells, complemented by qPCR assays, we assessed the innate immune response at the transcriptome level. Additionally, we extended the qPCR analysis by including human THP-1-derived dendritic cells and ovine SFT-R cells to identify differences across species. Our results provide the first evidence that BATV elicits a strong innate immune response compared to BUNV, which largely evades early detection. Reassortants exhibited intermediate phenotypes, although unique changes in the early immune response were found as well. These findings provide a starting point for a better understanding of the immune response to BATV. Furthermore, they raise the question of whether reassortment induces changes in the innate immune response that might contribute to the differences in pathogenicity between reassortant OBVs and their parental generations.
Collapse
Affiliation(s)
- David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Josefin Säurich
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Julia Metzger
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Klaus Jung
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| |
Collapse
|
2
|
Meng J, Wang F, He Y, Li N, Yang Z, Yao J, Wang S, Xiong G, Yuan Z, Xia H, Wang J. In vivo and in vitro characterization a new isolate of Oya virus from Culicoides spp. and its seroprevalence in domestic animals in Yunnan, China. PLoS Negl Trop Dis 2023; 17:e0011374. [PMID: 37319258 DOI: 10.1371/journal.pntd.0011374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Biting midges are one of the most common hematophagous insects. They are capable of transmitting a wide range of arboviruses and have a significant impact on public health and veterinary medicine. Herein, from midge samples collected in 2013 in Yunnan, China, one sample induced a cell cytopathic effect (CPE) in BHK-21, MA104, and PK15 cell lines. Next-generation sequencing data, RACE and PCR determined the genome sequence of the sample and designated as an Oya virus (OYAV) isolate SZC50. Phylogenetic analysis of the sample revealed that it was cluster into viruses from species Orthobunyavirus catqueense. The open reading frames of S, M, and L segment of OYAV SZC50 were closest to those of OYAV SC0806. Moreover, 831 serum samples (736 pigs, 45 cattle, and 50 sheep) were gathered from 13 cities in Yunnan Province to detect neutralizing antibody of OYAV SZC50. A significant proportion of OYAV SZC50 antibody (more than 30%) was found in Yunnan pig populations, with the positive rate of OYAV SZC50 antibody in pigs from Malipo reaching 95%. To determine the pathogenicity of OYAV SZC50, we chose three animal models: specific pathogen-free Kunming mice, C57BL/6 mice lacking the interferon α/β receptor, and chicken embryos. At 5, 6, and 7 days post-infection, all adult and suckling C57BL/6 mice, and specific pathogen-free suckling Kunming mice were dead. Our finding was expanding the knowledge about the infection and pathogenic risk of the neglected virus in the Orthobunyavirus.
Collapse
Affiliation(s)
- Jinxin Meng
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Fei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Shunlong Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodian Xiong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
3
|
Boora S, Yadav S, Soniya K, Kaushik S, Yadav JP, Seth M, Kaushik S. Monkeypox virus is nature's wake-up call: a bird's-eye view. Virusdisease 2023:1-13. [PMID: 37363364 PMCID: PMC10214339 DOI: 10.1007/s13337-023-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Several infections have emerged in humans, domestic animals, wildlife, and plant populations, causing a severe problem for humanity. Since the discovery of the Monkeypox virus (Mpox) in 1958 in Copenhagen, Denmark, it has resurfaced several times, producing severe infections in humans and resulting in a significant fatality rate. Mpox is an Orthopoxvirus of the Poxviridae family. This family contains various medically important viruses. The natural reservoir of Mpox is unknown yet. Mpox might be carried by African rodents and nonhuman primates (such as monkeys). The role of monkeys has been confirmed by its various outbreaks. The infection may be transferred from unidentified wild animals to monkeys, who can then spread it to humans by crossing species barriers. In close contact, human-to-human transmission is also possible. Mpox outbreaks have been documented regularly in Central and Western Africa, but recently in 2022, it has spread to over one hundred-six countries. There is no specific treatment for it, although the smallpox vaccine, antivirals, and vaccinia immune globulin help in the effective management of Mpox. In conclusion: Monkeypox poses a severe threat to public health due to the lack of specific vaccinations and effective antivirals. Surveillance studies in affected regions can assist in the early diagnosis of disease and help to control significant outbreaks. The present review provides information on epidemiology, clinical symptoms, risk factors, diagnosis, and preventive measures of Mpox.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Suman Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Kumari Soniya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak, Hr India
| | | | - Mihir Seth
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Hr India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|