1
|
Sadeghi S, Hakemi MS, Pourrezagholie F, Naeini F, Imani H, Mohammadi H. Effects of melatonin supplementation on metabolic parameters, oxidative stress, and inflammatory biomarkers in diabetic patients with chronic kidney disease: study protocol for a double-blind, randomized controlled trial. Trials 2024; 25:757. [PMID: 39533376 PMCID: PMC11559127 DOI: 10.1186/s13063-024-08584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a pervasive disease of the current century that usually affects the adult population, especially people with diabetes and hypertension. According to the recent studies, inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction are determining risk factors in the pathogenesis of CKD. Melatonin as a strong antioxidant is produced in various tissues including the kidneys. The present clinical trial aims to examine the efficacy of melatonin supplementation on metabolic parameters, oxidative stress, and inflammatory biomarkers in diabetic patients with CKD. METHODS This is a double-blind, randomized, placebo-controlled clinical study that will be investigated the impacts of melatonin supplementation in diabetic patients with CKD. Laboratory findings will be applied to diagnose diabetic CKD. Forty-eight eligible diabetic subjects with CKD will be selected and randomly assigned to receive 5 mg melatonin tablets or identical placebo twice daily for 10 weeks. Participants will be asked to remain on their usual diet and physical activity. The primary outcome of this study is changes in oxidative stress and inflammatory biomarkers. The secondary outcomes include changes in lipid profile, renal function indicators, fasting blood sugar and serum insulin, systolic and diastolic blood pressure (SBP and DBP), serum phosphorous concentration, sleep quality, body weight, body mass index (BMI), and waist circumference (WC). Statistical analysis will be conducted using the SPSS software (version 25). DISCUSSION We hypothesize that melatonin administration may be useful for treating diabetic CKD by modulating oxidative stress, inflammation, regulating lipid metabolism, and increasing insulin sensitivity through different mechanisms. The current trial will exhibit the effects of melatonin, whether negative or positive, on diabetic CKD status. ETHICAL ASPECTS The current trial received approval from Medical Ethics Committee of Tehran University of Medical Sciences, Tehran, Iran (IR.TUMS.SHARIATI.REC.1402.072). TRIAL REGISTRATION This study had been registered in Iranian Registry of Clinical Trials. REGISTRATION NUMBER IRCT20170202032367N9 on 11 August 2023. https://www.irct.ir/trial/70709 .
Collapse
Affiliation(s)
- Sara Sadeghi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Monir Sadat Hakemi
- Department of Nephrology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourrezagholie
- Department of Nephrology, Labbafinezhad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Burhan Altemimi R, Nabil Ibrahim N, Ali Nazar L, Ali Hasan H, Heilo Al-Musawi M, Mortazavi Moghadam F. The Predictive Value of Melatonin Levels for the Development of Diabetic Nephropathy in Men with Type 2 Diabetes Mellitus. Rep Biochem Mol Biol 2024; 13:341-348. [PMID: 40330571 PMCID: PMC12050062 DOI: 10.61186/rbmb.13.3.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 05/08/2025]
Abstract
Background Type 2 diabetes mellitus (T2DM) poses a significant public health challenge due to its high prevalence. Diabetic nephropathy (DN) is one of the most severe complications associated with T2DM. Early prediction of DN in patients with T2DM can significantly aid in managing this disease. This study takes an approach by investigating the potential role of melatonin and thyroid hormone levels as predictive biomarkers for the progression of diabetic nephropathy in individuals diagnosed with type 2 diabetes mellitus. Methods Our cross-sectional study involved 120 male participants, divided into two groups: 60 patients with T2DM and 60 with DN. The Cobas technique was used to measure serum thyroid hormone levels and quantified melatonin levels using an enzyme-linked immunosorbent assay (ELISA). A receiver utilizing characteristic (ROC) curve analysis to evaluate the predictive value of serum melatonin for DN was performed. Results No notable disparities in thyroid function tests were observed between diabetic patients with and without DN. However, the average serum melatonin quantity in patients with DN. (177.25 ± 60.48 pg/mL) was drastically lower in those with T2DM without DN (199.9 ± 55.16 pg/mL). The sensitivity and specificity of melatonin in predicting DN were 78% and 76%, respectively, with an optimal cut-off value of 178 pg/mL. Conclusions Serum melatonin levels exhibited a notable reduction. among individuals who were diabetic with DN, suggesting its potential utility as an additional predictive marker for developing DN in patients with T2DM.
Collapse
Affiliation(s)
- Refaa Burhan Altemimi
- Department of anesthesia techniques, College of Health and Medical Technology, Middle Technical university, Baghdad, Iraq.
| | - Nabaa Nabil Ibrahim
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Lara Ali Nazar
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, Iraq.
| | - Hiba Ali Hasan
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Mastafa Heilo Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | | |
Collapse
|
3
|
Aouichat S, Navarro-Alarcon M, Alarcón-Guijo P, Salagre D, Ncir M, Zourgui L, Agil A. Melatonin Improves Endoplasmic Reticulum Stress-Mediated IRE1α Pathway in Zücker Diabetic Fatty Rat. Pharmaceuticals (Basel) 2021; 14:232. [PMID: 33800157 PMCID: PMC8001258 DOI: 10.3390/ph14030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity and diabetes are linked to an increased prevalence of kidney disease. Endoplasmic reticulum stress has recently gained growing importance in the pathogenesis of obesity and diabetes-related kidney disease. Melatonin, is an important anti-obesogenic natural bioactive compound. Previously, our research group showed that the renoprotective effect of melatonin administration was associated with restoring mitochondrial fission/fusion balance and function in a rat model of diabesity-induced kidney injury. This study was carried out to further investigate whether melatonin could suppress renal endoplasmic reticulum (ER) stress response and the downstream unfolded protein response activation under obese and diabetic conditions. Zücker diabetic fatty (ZDF) rats and lean littermates (ZL) were orally supplemented either with melatonin (10 mg/kg body weight (BW)/day) (M-ZDF and M-ZL) or vehicle (C-ZDF and C-ZL) for 17 weeks. Western blot analysis of ER stress-related markers and renal morphology were assessed. Compared to C-ZL rats, higher ER stress response associated with impaired renal morphology was observed in C-ZDF rats. Melatonin supplementation alleviated renal ER stress response in ZDF rats, by decreasing glucose-regulated protein 78 (GRP78), phosphoinositol-requiring enzyme1α (IRE1α), and ATF6 levels but had no effect on phospho-protein kinase RNA-like endoplasmic reticulum kinase (PERK) level. In addition, melatonin supplementation also restrained the ER stress-mediated apoptotic pathway, as indicated by decreased pro-apoptotic proteins phospho-c-jun amino terminal kinase (JNK), Bax, and cleaved caspase-3, as well as by upregulation of B cell lymphoma (Bcl)-2 protein. These improvements were associated with renal structural recovery. Taken together, our findings revealed that melatonin play a renoprotective role, at least in part, by suppressing ER stress and related pro-apoptotic IRE1α/JNK signaling pathway.
Collapse
Affiliation(s)
- Samira Aouichat
- Department of Pharmacology, Biohealth Institute and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (P.A.-G.); (D.S.)
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, El Alia, Algiers 16111, Algeria
| | - Miguel Navarro-Alarcon
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Pablo Alarcón-Guijo
- Department of Pharmacology, Biohealth Institute and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (P.A.-G.); (D.S.)
| | - Diego Salagre
- Department of Pharmacology, Biohealth Institute and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (P.A.-G.); (D.S.)
| | - Marwa Ncir
- Bioactive Molecule Valorization Research Unit, Higher Institute of Applied Biology of Medenine, University of Gabes, Gabes 4119, Tunisia; (M.N.); (L.Z.)
| | - Lazhar Zourgui
- Bioactive Molecule Valorization Research Unit, Higher Institute of Applied Biology of Medenine, University of Gabes, Gabes 4119, Tunisia; (M.N.); (L.Z.)
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (S.A.); (P.A.-G.); (D.S.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospital of Granada, 18016 Granada, Spain
| |
Collapse
|
4
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Afsar B, Elsurer Afsar R, Sag AA, Kanbay A, Korkmaz H, Cipolla-Neto J, Covic A, Ortiz A, Kanbay M. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. Clin Kidney J 2020; 13:522-530. [PMID: 32905249 PMCID: PMC7467577 DOI: 10.1093/ckj/sfz198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity. Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link between melatonin deficiency and factors contributing to DN.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Division of Endocrinology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adrian Covic
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Promsan S, Lungkaphin A. The roles of melatonin on kidney injury in obese and diabetic conditions. Biofactors 2020; 46:531-549. [PMID: 32449276 DOI: 10.1002/biof.1637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Obesity is a common and complex health problem worldwide and can induce the development of Type 2 diabetes. Chronic kidney disease (CKD) is a complication occurring as a result of obesity and diabetic conditions that lead to an increased mortality rate. There are several mechanisms and pathways contributing to kidney injury in obese and diabetic conditions. The expansion of adipocytes triggers proinflammatory cytokines release into blood circulation and bind with the receptors at the cell membranes of renal tissues leading to kidney injury. Obesity-mediated inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction are the important causes and progression of CKD. Melatonin (N-acetyl-5-methoxytryptamine) is a neuronal hormone that is synthesized by the pineal gland and plays an essential role in regulating several physiological functions in the human body. Moreover, melatonin has pleiotropic effects such as antioxidant, anti-inflammation, antiapoptosis. In this review, the relationship between obesity, diabetic condition, and kidney injury and the renoprotective effect of melatonin in obese and diabetic conditions from in vitro and in vivo studies have been summarized and discussed.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Melatonin/metabolism
- Melatonin/pharmacology
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Oxidative Stress/drug effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
Collapse
Affiliation(s)
- Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University Chiang Mai, Thailand
| |
Collapse
|
7
|
Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12:30. [PMID: 32280378 PMCID: PMC7140344 DOI: 10.1186/s13098-020-00537-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes and diabetic complications are considered as leading causes of both morbidity and mortality in the world. Unfortunately, routine medical treatments used for affected patients possess undesirable side effects, including kidney and liver damages as well as gastrointestinal adverse reactions. Therefore, exploring the novel therapeutic strategies for diabetic patients is a crucial issue. It has been recently shown that melatonin, as main product of the pineal gland, despite its various pharmacological features including anticancer, anti-aging, antioxidant and anti-inflammatory effects, exerts anti-diabetic properties through regulating various cellular mechanisms. The aim of the present review is to describe potential roles of melatonin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang W, Zhang J, Wang X, Wang H, Ren Q, Li Y. Effects of melatonin on diabetic nephropathy rats via Wnt/β-catenin signaling pathway and TGF-β-Smad signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2488-2496. [PMID: 31938361 PMCID: PMC6958295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This research aimed to explore the protective effect of melatonin on diabetic nephropathy (DN) rats induced by streptozotocin (STZ) and its related signaling pathways. METHODS 100 SPF male Sprague-Dawley rats were divided into four groups: low dose melatonin group, medium dose melatonin group and high dose melatonin group. Rats were 35 mg/kg STZ once to establish a DN model, and control rats were given the corresponding dose of normal saline. A renal function test was used to measure urine protein (UP), blood urea nitrogen (BUN) and serum creatinine (Scr). Pathological changes of renal tissues were obtained by HE staining and Masson staining. Oxidative stress-related indicators were measured in a STZ-induced DN rat. Western blot was used to measure target proteins in renal tissues. RESULTS The levels of UP, BUN and Scr in the model group were significantly higher than control group (P<0.05). After administration of melatonin, each administration group was significantly decreased compared to the model group. Pathological changes of renal tissues in the high dose group were the closest to the control group. After administration of melatonin, activities of SOD, CAT and GSH-Px were significantly increased in the medium dose group and the high dose group (P<0.05), while the activity of MDA was significantly decreased (P<0.05). The expression of Wnt4 and β-catenin in the model group were higher than the control group (P<0.01). When melatonin was given, the expression of Wnt4 and β-catenin in the medium dose group and the high dose group were significantly lower than the model group. Levels of TGF-β1, p-Samd2 and p-Samd3 in the control group were lower than the model group (P<0.05), and were decreased in the medium dose group and the high dose group. CONCLUSIONS Melatonin improves renal function, relieves oxidative stress, and protects the renal tissue via the Wnt/β-catenin signaling pathway and the TGF-β1-Smad2/3 signaling pathway in STZ-induced DN rats.
Collapse
Affiliation(s)
- Weichao Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical UniversityChina
| | - Jie Zhang
- Department of Ophthalmology, Shijiazhuang Third HospitalChina
| | | | - Hong Wang
- Department of Geriatrics, Shijiazhuang First HospitalChina
| | - Qiaohua Ren
- Department of Endocrinology, Shijiazhuang First HospitalChina
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical UniversityChina
| |
Collapse
|
9
|
Motawi TK, Darwish HA, Hamed MA, El-Rigal NS, Aboul Naser AF. Coenzyme Q10 and niacin mitigate streptozotocin- induced diabetic encephalopathy in a rat model. Metab Brain Dis 2017; 32:1519-1527. [PMID: 28560538 DOI: 10.1007/s11011-017-0037-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
Abstract
Diabetic encephalopathy is an important complication of diabetes characterized by cognitive impairment, neurochemical and structural abnormalities. This study aimed to investigate the effect of coenzyme Q10 (CoQ10) and niacin as well as their combination in the treatment of encephalopathy associated with streptozotocin (STZ)- induced diabetes in rats. Glibenclamide (reference diabetic drug) and donepezil hydrochloride (acetylcholinesterase inhibitor) were also evaluated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg). One month after STZ injection, diabetic rats were treated with the aforementioned drugs for two weeks. The evaluation was done through measuring glucose level, total antioxidant capacity (TAC), interleukin 6 (IL6), DNA degradation as well as serotonin and noradrenaline as neurotransmitters. The present data illustrated that combining CoQ10 and niacin exhibiting the most potent effect in improving the measured parameters and ameliorating some of diabetes complications.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmaceutical Science and Pharmaceutical Industries, Future University, Cairo, Egypt
| | - Manal A Hamed
- Therapeutic Chemistry Department, National Research Centre, 33El-Bohouth St, Giza, Dokki, 60014618, Egypt.
| | - Nagy S El-Rigal
- Therapeutic Chemistry Department, National Research Centre, 33El-Bohouth St, Giza, Dokki, 60014618, Egypt
| | - Asmaa F Aboul Naser
- Therapeutic Chemistry Department, National Research Centre, 33El-Bohouth St, Giza, Dokki, 60014618, Egypt
| |
Collapse
|
10
|
Yang G, Zhao Z, Zhang X, Wu A, Huang Y, Miao Y, Yang M. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1065-1079. [PMID: 28408805 PMCID: PMC5384688 DOI: 10.2147/dddt.s124971] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR on the renal tubular EMT in DN and its mechanisms of action are unknown. This study was performed to explore the effects of BBR on the renal tubular EMT and the molecular mechanisms of BBR in DN model KKAy mice and on the high glucose (HG)-induced EMT in mouse renal tubular epithelial cells. Our results showed that, relative to the model mice, the mice in the treatment group had an improved general state and reduced blood glucose and 24-h urinary protein levels. Degradation of renal function was ameliorated by BBR. We also observed the protective effects of BBR on renal structural changes, including normalization of an index of renal interstitial fibrosis and kidney weight/body weight. Moreover, BBR suppressed the activation of the Notch/snail pathway and upregulated the α-SMA and E-cadherin levels in DN model KKAy mice. BBR was further found to prevent HG-induced EMT events and to inhibit the HG-induced expression of Notch pathway members and snail1 in mouse renal tubular epithelial cells. Our findings indicate that BBR has a therapeutic effect on DN, including its inhibition of the renal tubular EMT and renal interstitial fibrosis. Furthermore, the BBR-mediated EMT inhibition occurs through Notch/snail pathway regulation.
Collapse
Affiliation(s)
- Guannan Yang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zongjiang Zhao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinxue Zhang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Amin Wu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yawei Huang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yonghui Miao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Meijuan Yang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|