1
|
Wu M, Zhang X, Zhang W, Yan L, Liu X, Zhang M, Pan Y, Lobie PE, Han X, Zhu T. Paracrine secretion of IL8 by breast cancer stem cells promotes therapeutic resistance and metastasis of the bulk tumor cells. Cell Commun Signal 2023; 21:59. [PMID: 36915147 PMCID: PMC10009947 DOI: 10.1186/s12964-023-01068-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/04/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Breast tumors consist of heterogeneous cellular subpopulations that differ in molecular properties and functional attributes. Cancer stem cells (CSCs) play pivotal roles in cancer therapeutic failure and metastasis. However, it remains indeterminate how CSCs determine the progression of the bulk cancer cell population. METHODS Co-culture systems in vitro and co-implantation systems in vivo were designed to characterize the interactions between breast cancer stem cells (BCSCs) and bulk cancer cells. RNA sequencing was performed to study the functional and mechanistic implications of the BCSC secretome on bulk cancer cells. A cytokine antibody array was employed to screen the differentially secreted cytokines in the BCSC secretome. Tail vein injection metastatic models and orthotopic xenograft models were applied to study the therapeutic potential of targeting IL8. RESULTS We identified that the BCSC secretome potentiated estrogen receptor (ER) activity in the bulk cancer cell population. The BCSC secretome rendered the bulk cancer cell population resistant to anti-estrogen and CDK4/6 inhibitor therapy; as well as increased the metastatic burden attributable to bulk cancer cells. Screening of the BCSC secretome identified IL8 as a pivotal factor that potentiated ERα activity, endowed tamoxifen resistance and enhanced metastatic burden by regulation of bulk cancer cell behavior. Pharmacological inhibition of IL8 increased the efficacy of fulvestrant and/or palbociclib by reversing tamoxifen resistance and abrogated metastatic burden. CONCLUSION Taken together, this study delineates the mechanism by which BCSCs determine the therapeutic response and metastasis of bulk cancer cells; and thereby suggests potential therapeutic strategies to ameliorate breast cancer outcomes. Video Abstract.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Linlin Yan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangtian Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. .,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China. .,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
2
|
Hong S, Song JM. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater 2022; 138:228-239. [PMID: 34718182 DOI: 10.1016/j.actbio.2021.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Drug-resistant cancer spheroids were fabricated by three-dimensional (3D) bioprinting for the quantitative evaluation of drug resistance of cancer cells, which is a very important issue in cancer treatment. Cancer spheroids have received great attention as a powerful in vitro model to replace animal experiments because of their ability to mimic the tumor microenvironment. In this work, the extrusion printing of gelatin-alginate hydrogel containing MCF-7 breast cancer stem cells successfully provided 3D growth of many single drug-resistant breast cancer spheroids in a cost-effective 3D-printed mini-well dish. The drug-resistant MCF-7 breast cancer spheroids were able to maintain their drug-resistant phenotype of CD44high/CD24low/ALDH1high in the gelatin-alginate media during 3D culture and exhibited higher expression levels of drug resistance markers, such as GRP78 chaperon and ABCG2 transporter, than bulk MCF-7 breast cancer spheroids. Furthermore, the effective concentration 50 (EC50) values for apoptotic and necrotic spheroid death could be directly determined from the 3D printed-gelatin-alginate gel matrix based on in situ 3D fluorescence imaging of cancer spheroids located out of the focal point and on the focal point. The EC50 values of anti-tumor agents (camptothecin and paclitaxel) for apoptotic and necrotic drug-resistant cancer spheroid death were higher than those for bulk cancer spheroid death, indicating a greater drug resistance. STATEMENT OF SIGNIFICANCE: This study proposed a novel 3D bioprinting-based drug screening model, to quantitatively evaluate the efficacy of anticancer drugs using drug-resistant MCF-7 breast cancer spheroids formed within a 3D-printed hydrogel. Quantitative determination of anticancer drug efficacy using EC50, which is extremely important in drug discovery, was achieved by 3D printing that enables concurrent growth of many single spheroids efficiently. This study verified whether drug-resistant cancer spheroids grown within 3D-printed gelatin-alginate hydrogel could maintain and present drug resistance. Also, the EC50 values of the apoptotic and necrotic cell deaths were directly acquired in 3D-embedded spheroids based on in situ fluorescence imaging. This platform provides a single-step straightforward strategy to cultivate and characterize drug-resistant spheroids to facilitate anticancer drug screening.
Collapse
|
3
|
Xu Y, Zhong Z, Gao Y, Wang Y, Zhang L, Huang H, Zheng J, Zhang K, Zheng X, Goodin S. The Mangrove-Derived Diterpenoid Diaporthe B Inhibits the Stemness and Increases the Efficacy of Docetaxel in Prostate Cancer PC-3 Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The absolute configuration of diaporthe B, a pimarane diterpene isolated from the mangrove derived endophytic fungus Eutypella sp #3E, was determined by a single-crystal x-ray diffraction study. The present study aimed to investigate the effects of diaporthe B on docetaxel-resistant prostate cancer PC-3 cells. Results of our studies showed that docetaxel-resistant PC-3 cells had higher sphere-forming efficiency and an increase in adherence to collagen-coated culture plates. The protein levels of cancer stem cell (CSC)-related markers CD44, CD133, and ALDH1A1 were higher in the docetaxel-resistant PC-3 cells than in the parental cells. Treatment with diaporthe B dose-dependently inhibited the growth and induced apoptosis in the resistant cells. Moreover, diaporthe B treatment decreased the sphere-forming efficiency and the adherence to collagen-coated plates in docetaxel-resistant PC-3 cells. Diaporthe B also decreased the protein levels of CSC-related markers CD44, CD133, and ALDH1A1 in the resistant cells. In addition, a combination of diaporthe B and docetaxel had a more potent effect on growth inhibition and apoptosis in the resistant cells than either agent alone. Our studies suggest that diaporthe B inhibits the stemness of prostate cancer cells and may have therapeutic potential for enhancing the efficacy of docetaxel in docetaxel-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Yao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Zhiwei Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yiwen Gao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yuhui Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Huarong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, People’s Republic of China
| | - Xi Zheng
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Shamsian A, Sepand MR, Javaheri Kachousangi M, Dara T, Ostad SN, Atyabi F, Ghahremani MH. Targeting Tumorigenicity of Breast Cancer Stem Cells Using SAHA/Wnt-b Catenin Antagonist Loaded Onto Protein Corona of Gold Nanoparticles. Int J Nanomedicine 2020; 15:4063-4078. [PMID: 32606664 PMCID: PMC7295335 DOI: 10.2147/ijn.s234636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among various theories for the origin of cancer, the "stemness phenotype model" suggests a dynamic feature for tumor cells in which non-cancer stem cells (non-CSCs) can inter-convert to CSCs. Differentiation with histone-deacetylase inhibitor, vorinostat (SAHA), can induce stem cells to differentiate as well as enforces non-CSCs to reprogram to CSCs. To avoid this undesirable effect, one can block the Wnt-βcatenin pathway. Thus, a dual delivery system of SAHA and a Wnt-βcatenin blocker will be beneficial in the induction of differentiation of CSCs. Protein corona (PC) formation in nanoparticle has a biologic milieu, and despite all problematic properties, it can be employed as a medium for dual loading of the drugs. MATERIALS AND METHODS We prepared sphere gold nanoparticles (GNPs) with human plasma protein corona loaded with SAHA as differentiating agent and PKF118-310 (PKF) as a Wnt-βcatenin antagonist. The MCF7 breast cancer stem cells were treated with NPs and the viability and differentiation were evaluated by Western blotting and sphere formation assay. RESULTS We found that both drugs loaded onto corona-capped GNPs had significant cytotoxicity in comparison to bare GNP-corona. Data demonstrated an increase in stem cell population and upregulation of mesenchymal marker, Snail by SAHA-loaded GNPs treatment; however, the combination of PKF loaded GNPs along with SAHA-loaded GNPs resulted in a reduction of stem cell populations and Snail marker. We have shown that in MCF7 and its CSCs simultaneous treatment with SAHA and PKF118-310 induced differentiation and inhibition of Snail induction. CONCLUSION Our study reveals the PC-coated GNPs as a biocompatible career for both hydrophilic (PKF) and hydrophobic (SAHA) agents which can decrease breast cancer stem cell populations along with reduced stemness state regression.
Collapse
Affiliation(s)
- Azam Shamsian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziye Javaheri Kachousangi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Dara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
CD44 Promotes Migration and Invasion of Docetaxel-Resistant Prostate Cancer Cells Likely via Induction of Hippo-Yap Signaling. Cells 2019; 8:cells8040295. [PMID: 30935014 PMCID: PMC6523775 DOI: 10.3390/cells8040295] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Patients receiving docetaxel developed a drug resistance within a few months. We generated docetaxel-resistant PC/DX25 and DU/DX50 CRPC cells from PC-3 and DU-145 PCa cells, respectively. We investigated the mechanism behind why PC/DX25 and DU/DX50 cells exhibited higher migration and invasion ability. Transwell assays were used to measure the migration and invasion of PCa cell. Fluorescence activated cell sorter (FACS) analysis was used to determine the population of cancer stem cell (CSC)-like cell. Micro-Western Array (MWA) was used to study the changes of the protein profile. FACS analysis revealed that PC/DX25 cells and DU/DX50 cells contain higher CD44+ population. MWA and Western blotting assay revealed that protein expression of CD44, YAP, CYR61, CTGF, phospho-ERK1/2 T202/Y204, ERK and vimentin was elevated in PC/DX25 cells. Knockdown of CD44 or YAP suppressed migration and invasion of PC/DX25 and DU/DX50 cells. Knockdown of CD44 decreased expression of YAP, CTGF and CYR61 but increased phosphorylation of S127 on YAP. CD44 knockdown also suppressed protein level of AKT, phospho-AKT T308, phospho-ERK1/2 T202/Y204 and vimentin. CD44 promotes migration and invasion of docetaxel-resistant PCa cells probably via induction of Hippo-Yap signaling pathway and CD44/YAP pathway may be a therapeutic target for docetaxel-resistant PCa.
Collapse
|
6
|
Schmidtova S, Kalavska K, Kucerova L. Molecular Mechanisms of Cisplatin Chemoresistance and Its Circumventing in Testicular Germ Cell Tumors. Curr Oncol Rep 2018; 20:88. [PMID: 30259297 DOI: 10.1007/s11912-018-0730-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. Majority of TGCTs respond well to cisplatin-based chemotherapy. However, patients with refractory disease have limited treatment modalities associated with poor prognosis. Here, we discuss the main molecular mechanisms associated with acquired cisplatin resistance in TGCTs and how their understanding might help in the development of new approaches to tackle this clinically relevant problem. We also discuss recent data on the strategies of circumventing the cisplatin resistance from different tumor types potentially efficient also in TGCTs. RECENT FINDINGS Recent data regarding deregulation of various signaling pathways as well as genetic and epigenetic mechanisms in cisplatin-resistant TGCTs have contributed to understanding of the mechanisms related to the resistance to cisplatin-based chemotherapy in these tumors. Understanding of these mechanisms enabled explaining why majority but not all TGCTs patients are curable with cisplatin-based chemotherapy. Moreover, it could lead to the development of more effective treatment of refractory TGCTs and potentially other solid tumors resistant to platinum-based chemotherapy. This review provides additional insights into mechanisms associated with cisplatin resistance in TGCTs, which is a complex phenomenon, and there is a need for novel modalities to overcome it.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kalavska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenová 1, 833 10, Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenová 1, Bratislava, 833 10, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
7
|
Manna A, Banerjee S, Khan P, Bhattacharya A, Das T. Contribution of nuclear events in generation and maintenance of cancer stem cells: revisiting chemo-resistance. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0193-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
8
|
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240:489-503. [PMID: 27287891 PMCID: PMC5064882 DOI: 10.1016/j.jconrel.2016.06.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| | - Ho Lun Wong
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - June Young Eoh
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| |
Collapse
|
9
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Kulsum S, Sudheendra HV, Pandian R, Ravindra DR, Siddappa G, R N, Chevour P, Ramachandran B, Sagar M, Jayaprakash A, Mehta A, Kekatpure V, Hedne N, Kuriakose MA, Suresh A. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol Carcinog 2016; 56:694-711. [PMID: 27380877 DOI: 10.1002/mc.22526] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023]
Abstract
Chemoresistance leading to disease relapse is one of the major challenges to improve outcome in head and neck cancers. Cancer Stem Cells (CSCs) are increasingly being implicated in chemotherapy resistance, this study investigates the correlation between CSC behavior and acquired drug resistance in in vitro cell line models. Cell lines resistant to Cisplatin (Cal-27 CisR, Hep-2 CisR) and 5FU (Cal-27 5FUR) with high Resistance Indices (RI) were generated (RI ≥ 3) by short-term treatment of head and neck squamous cell carcinoma (HNSCC) cell lines with chemotherapeutic drugs (Cisplatin, Docetaxel, 5FU), using a dose-incremental strategy. The cell lines (Cal-27 DoxR, Hep-2 DoxR, Hep-2 5FUR) that showed low RI, nevertheless had a high cross resistance to Cisplatin/5FU (P < 0.05). Cal-27 CisR and DoxR showed 12-14% enrichment of CD44+ cells, while CisR/5FUR showed 4-6% increase in ALDH1A1+ cells as compared to parental cells (P < 0.05). Increased expression of stem cell markers (CD44, CD133, NOTCH1, ALDH1A1, OCT4, SOX2) in these cell lines, correlated with enhanced spheroid/colony formation, migratory potential, and increased in vivo tumor burden (P < 0.05). Inhibition of ALDH1A1 in Cal-27 CisR led to down regulation of the CSC markers, reduction in migratory, self-renewal and tumorigenic potential (P < 0.05) accompanied by an induction of sensitivity to Cisplatin (P < 0.05). Further, ex vivo treatment of explants (n = 4) from HNSCC patients with the inhibitor (NCT-501) in combination with Cisplatin showed a significant decrease in proliferating cells as compared to individual treatment (P = 0.001). This study hence suggests an ALDH1A1-driven, CSC-mediated mechanism in acquired drug resistance of HNSCC, which may have therapeutic implications. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Safeena Kulsum
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India.,School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Holalugunda Vittalamurthy Sudheendra
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India
| | - Ramanan Pandian
- GROW Laboratory; Narayana Nethralaya Foundation, Narayana Health, Bangalore, Karnataka, India
| | | | - Gangotri Siddappa
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India
| | - Nisheena R
- Department of Pathology, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India
| | - Priyanka Chevour
- GROW Laboratory; Narayana Nethralaya Foundation, Narayana Health, Bangalore, Karnataka, India
| | - Balaji Ramachandran
- Department of In Vivo Pharmacology-Oncology, Syngene International Pvt. Ltd., Bangalore, India
| | - Milind Sagar
- Department of In Vivo Pharmacology-Oncology, Syngene International Pvt. Ltd., Bangalore, India
| | | | - Alka Mehta
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Vikram Kekatpure
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India
| | - Naveen Hedne
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India
| | - Moni A Kuriakose
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India.,Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India.,Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Buffalo, New York
| | - Amritha Suresh
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India.,Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bommasandra, Anekal Taluk Bangalore, Karnataka, India.,Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
11
|
Park HB, Son W, Chae DH, Lee J, Kim IW, Yang W, Sung JK, Lim K, Lee JH, Kim KH, Park JI. Cell cloning-on-the-spot by using an attachable silicone cylinder. Biochem Biophys Res Commun 2016; 474:768-772. [DOI: 10.1016/j.bbrc.2016.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
|
12
|
Marcucci F, Rumio C, Lefoulon F. Anti-Cancer Stem-like Cell Compounds in Clinical Development - An Overview and Critical Appraisal. Front Oncol 2016; 6:115. [PMID: 27242955 PMCID: PMC4861739 DOI: 10.3389/fonc.2016.00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with elevated tumor-initiating potential. Upon differentiation, they replenish the bulk of the tumor cell population. Enhanced tumor-forming capacity, resistance to antitumor drugs, and metastasis-forming potential are the hallmark traits of CSCs. Given these properties, it is not surprising that CSCs have become a therapeutic target of prime interest in drug discovery. In fact, over the last few years, an enormous number of articles describing compounds endowed with anti-CSC activities have been published. In the meanwhile, several of these compounds and also approaches that are not based on the use of pharmacologically active compounds (e.g., vaccination, radiotherapy) have progressed into clinical studies. This article gives an overview of these compounds, proposes a tentative classification, and describes their biological properties and their developmental stage. Eventually, we discuss the optimal clinical setting for these compounds, the need for biomarkers allowing patient selection, the redundancy of CSC signaling pathways and the utility of employing combinations of anti-CSC compounds and the therapeutic limitations posed by the plasticity of CSCs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | | |
Collapse
|
13
|
Xu L, Zhang L, Hu C, Liang S, Fei X, Yan N, Zhang Y, Zhang F. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int J Oncol 2016; 48:1175-86. [PMID: 26781188 DOI: 10.3892/ijo.2016.3337] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Acquisition of chemoresistance and metastatic phenotype are the major causes of breast cancer treatment failure and cancer-related mortality. Recently, a plethora of experimental and clinical studies points toward a central role of cancer stem cells (CSCs) in the chemoresistance and metastasis. In the present study, we demonstrated that pyrvinium pamoate (PP), an anthelmintic drug, inhibited proliferation of different subtypes of breast cancer cells (luminal: MCF-7, claudin-low: MDA-MB‑231, basal-like: MDA-MB‑468 and Her-2 enriched: SkBr-3) as a novel WNT pathway inhibitor. Additionally, PP was also shown to inhibit self-renewal of breast cancer stem cells (BCSCs) and decrease both CD44+CD24-/low and ALDH-positive BCSCs content in a panel of breast cancer cell lines. Besides, the metastatic potential and expression of EMT markers (such as N-cadherin, vimentin, Snail) were also found suppressed by PP. By using a xenograft model, we next tested the efficacy of PP on tumorigenicity of MDA-MB‑231, one of the most aggressive breast cancer cell lines, and we observed PP significantly delayed tumor growth in vivo. Moreover, in-depth analysis revealed that PP caused inhibition of WNT pathway activity and stemness regulator expression including NANOG, SOX2 and OCT4, which were inherently upregulated in the BCSCs as compared with the bulk of cells within the tumor. Collectively, our findings provide direct evidence for PP serving as a promising high-yield agent targeting BCSCs and cancer heterogeneity. Therefore, strategies combining PP with standard chemotherapy drugs which fail to eliminate the BCSCs hold promise to overcome BCSCs associated treatment resistance and achieve a better therapeutic outcome.
Collapse
Affiliation(s)
- Liang Xu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Le Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Chun Hu
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Shujing Liang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ningning Yan
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanyun Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM, Shanghai 200031, P.R. China
| | - Fengchun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
14
|
Santos Franco S, Raveh-Amit H, Kobolák J, Alqahtani MH, Mobasheri A, Dinnyes A. The crossroads between cancer stem cells and aging. BMC Cancer 2015; 15 Suppl 1:S1. [PMID: 25708542 PMCID: PMC4331724 DOI: 10.1186/1471-2407-15-s1-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
Collapse
|
15
|
Chang HW, Wang HC, Chen CY, Hung TW, Hou MF, Yuan SSF, Huang CJ, Tseng CN. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activity in MCF-7 human breast cancer cells. Molecules 2014; 19:3149-59. [PMID: 24633350 PMCID: PMC6271704 DOI: 10.3390/molecules19033149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells are a subset of cancer cells that initiate the growth of tumors. Low levels of cancer stem cells also exist in established cancer cell lines, and can be enriched in serum-free tumorsphere cultures. Since cancer stem cells have been reported to be resilient to common chemotherapeutic drugs in comparison to regular cancer cells, screening for compounds selectively targeting cancer stem cells may provide an effective therapeutic strategy. We found that 5-azacytidine (5-AzaC) selectively induced anoikis of MCF-7 in suspension cultures with an EC₅₀ of 8.014 µM, and effectively inhibited tumorsphere formation, as well as the migration and matrix metalloproteinases-9 (MMP-9) activity of MCF-7 cells. Furthermore, 5-AzaC and radiation collaboratively inhibited MCF-7 tumorsphere formation at clinically relevant radiation doses. Investigating the underlying mechanism may provide insight into signaling pathways crucial for cancer stem cell survival and pave the way to novel potential therapeutic targets.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chiau-Yi Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ting-Wei Hung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ming-Feng Hou
- Cancer Center and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Shyng-Shiou F Yuan
- Translational Research Center, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Chih-Jen Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Chao-Neng Tseng
- Department of Biomedical Science and Environmental Biology, Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
16
|
Peetla C, Vijayaraghavalu S, Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev 2013; 65:1686-98. [PMID: 24055719 DOI: 10.1016/j.addr.2013.09.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/08/2023]
Abstract
In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.
Collapse
Affiliation(s)
- Chiranjeevi Peetla
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|