1
|
Niculescu AG, Mitache MM, Grumezescu AM, Chifiriuc MC, Mihai MM, Tantu MM, Tantu AC, Popa LG, Grigore GA, Cristian RE, Popa MI, Vrancianu CO. From Microbial Ecology to Clinical Challenges: The Respiratory Microbiome's Role in Antibiotic Resistance. Pathogens 2025; 14:355. [PMID: 40333133 PMCID: PMC12030467 DOI: 10.3390/pathogens14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antibiotic resistance represents a growing public health threat, with airborne drug-resistant strains being especially alarming due to their ease of transmission and association with severe respiratory infections. The respiratory microbiome plays a pivotal role in maintaining respiratory health, influencing the dynamics of antibiotic resistance among airborne pathogenic microorganisms. In this context, this review proposes the exploration of the complex interplay between the respiratory microbiota and antimicrobial resistance, highlighting the implications of microbiome diversity in health and disease. Moreover, strategies to mitigate antibiotic resistance, including stewardship programs, alternatives to traditional antibiotics, probiotics, microbiota restoration techniques, and nanotechnology-based therapeutic interventions, are critically presented, setting an updated framework of current management options. Therefore, through a better understanding of respiratory microbiome roles in antibiotic resistance, alongside emerging therapeutic strategies, this paper aims to shed light on how the global health challenges posed by multi-drug-resistant pathogens can be addressed.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
| | - Mihaela Magdalena Mitache
- Department of Preclinical Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Biological Sciences Division, Romanian Academy, Calea Victoriei 125, Sector 1, 010071 Bucharest, Romania
| | - Mara Madalina Mihai
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Oncologic Dermatology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Monica Marilena Tantu
- Department of Medical Assistance and Physical Therapy, Pitesti University Center, Târgu din Vale 1, 110040 Pitești, Romania;
- Faculty of Science, Physical Education and Informatics, National University of Science and Technology, Politehnica, Splaiul Independenței 313, District 6, 060042 Bucharest, Romania
| | - Ana Catalina Tantu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania;
- Emergency Clinical County Hospital of Craiova, Tabaci 1, 200642 Craiova, Romania
| | - Loredana Gabriela Popa
- Microbiology Discipline II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (M.I.P.)
| | - Georgiana Alexandra Grigore
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Roxana-Elena Cristian
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Mircea Ioan Popa
- Microbiology Discipline II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (M.I.P.)
- Preclinical Testing Unit, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari 8, District 5, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
3
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
5
|
Shi S, Shi W, Zhou B, Qiu S. Research and Application of Chitosan Nanoparticles in Orthopedic Infections. Int J Nanomedicine 2024; 19:6589-6602. [PMID: 38979535 PMCID: PMC11228078 DOI: 10.2147/ijn.s468848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Orthopedic infection is one of the most intractable orthopedic problems. Bacteria resistant to antibiotics also develop gradually. Chitosan is widely used in the Biomedical field because of its high biocompatibility, biodegradability, and antibacterial activity. Chitosan-based drug delivery systems are frequently utilized to produce controlled medication release. When combined with antibiotics, synergistic antibacterial effects can be achieved. Chitosan-based nanoparticles are one of the most widely used applications in drug delivery systems. The focus of this review is to provide information on new methods being developed for chitosan-based nanoparticles in the field of bone infection treatment, including chitosan nanoparticles for antibacterial purposes, Ch-loaded with antibiotics, Ch-loaded with metal, and used as immune adjuvants. It may Provide ideas for the fundamental research and the prospects of future clinical applications of orthopedic infections.
Collapse
Affiliation(s)
- Sifeng Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Weiran Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Bing Zhou
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shang Qiu
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
6
|
Wathoni N, Herdiana Y, Suhandi C, Mohammed AFA, El-Rayyes A, Narsa AC. Chitosan/Alginate-Based Nanoparticles for Antibacterial Agents Delivery. Int J Nanomedicine 2024; 19:5021-5044. [PMID: 38832335 PMCID: PMC11146614 DOI: 10.2147/ijn.s469572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Nanoparticle systems integrating alginate and chitosan emerge as a promising avenue to tackle challenges in leveraging the potency of pharmacological active agents. Owing to their intrinsic properties as polysaccharides, alginate and chitosan, exhibit remarkable biocompatibility, rendering them conducive to bodily integration. By downsizing drug particles to the nano-scale, the system enhances drug solubility in aqueous environments by augmenting surface area. Additionally, the system orchestrates extended drug release kinetics, aligning well with the exigencies of chronic drug release requisite for antibacterial therapeutics. A thorough scrutiny of existing literature underscores a wealth of evidence supporting the utilization of the alginate-chitosan nanoparticle system for antibacterial agent delivery. Literature reviews present abundant evidence of the utilization of nanoparticle systems based on a combination of alginate and chitosan for antibacterial agent delivery. Various experiments demonstrate enhanced antibacterial efficacy, including an increase in the inhibitory zone diameter, improvement in the minimum inhibitory concentration, and an enhancement in the bacterial reduction rate. This enhancement in efficacy occurs due to mechanisms involving increased solubility resulting from particle size reduction, prolonged release effects, and enhanced selectivity towards bacterial cell walls, stemming from ionic interactions between positively charged particles and teichoic acid on bacterial cell walls. However, clinical studies remain limited, and there are currently no marketed antibacterial drugs utilizing this system. Hence, expediting clinical efficacy validation is crucial to maximize its benefits promptly.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| |
Collapse
|
7
|
Ivana Romina S, Benjamín DLCT, Melina Mara M, Gladys Ester G. Quantification of rifampicin loaded into inhaled polymeric nanoparticles by reversed phase high-performance liquid chromatography in pulmonary nonphagocytic cellular uptake. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1908-1915. [PMID: 38494905 DOI: 10.1039/d4ay00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Rifampicin is an antibiotic effective against both Gram-negative and Gram-positive bacteria and is commonly used as a first-line treatment for tuberculosis caused by Mycobacterium tuberculosis. In this study, a reversed-phase high-performance liquid chromatography method was developed and validated to assess rifampicin, either free or combined with ascorbic acid, loaded into chitosan/Tween 80-coated alginate nanoparticles. The method utilized a reversed-phase C18 Restek column with specific chromatographic conditions: a mobile phase of 60 : 40 ratios of methanol/buffer phosphate (pH 7.0), at a flow rate of 0.8 mL min-1, and an injection volume of 15 μL. rifampicin and the internal standard (rifamycin) had retention times of 4.0 and 2.5 min, respectively, and were detected at 334 nm. The method demonstrated the stability of stored samples after freezing-thawing cycles and specificity for rifampicin, even in the presence of degradation products from stress conditions. The high-performance liquid chromatography method was found to be specific, precise, robust, and sensitive. Results indicated that rifampicin accumulation and uptake kinetics varied based on cell type, formulation (free or loaded in nanoparticles), rifampicin concentration, and incubation time. Confocal fluorescence microscopy images supported these findings, showing isothiocyanate fluorescein nanoparticles distribution in different intracellular regions depending on the cell type used. The societal impact of this research lies in its potential to advance the treatment of respiratory infectious diseases, such as tuberculosis, through the development of more effective and specific drug delivery methods. By optimizing the way drugs, particularly rifampicin in this case, interact with lung cells, we aim to achieve greater treatment efficacy and alleviate the overall burden of disease. Furthermore, our study offers novel insights into the intracellular behavior of rifampin from polymeric nanoparticles, paving the way for personalized medicine approaches in the treatment of respiratory infections. This dual focus on social impact and innovation underscores our commitment to improving global health outcomes and addressing pressing public health challenges.
Collapse
Affiliation(s)
- Scolari Ivana Romina
- Unidad de Investigación Y Desarrollo en Tecnología Farmacéutica (UNITEFA - CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina.
| | - De La Cruz-Thea Benjamín
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina
| | - Musri Melina Mara
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Granero Gladys Ester
- Unidad de Investigación Y Desarrollo en Tecnología Farmacéutica (UNITEFA - CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
8
|
Scolari IR, Páez PL, Granero GE. Synergistic bactericidal combinations between gentamicin and chitosan capped ZnO nanoparticles: A promising strategy for repositioning this first-line antibiotic. Heliyon 2024; 10:e25604. [PMID: 38356535 PMCID: PMC10864972 DOI: 10.1016/j.heliyon.2024.e25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Gentamicin (GEN), a widely used broad-spectrum antibiotic, faces challenges amid the global emergency of antimicrobial resistance. This study aimed to explore the synergistic effects of zinc oxide nanoparticles (ZnO NPs) in combination with GEN on the bactericidal activity against various bacterial strains. Results showed ZnO NPs with MICs ranging from 0.002 to 1.5 μg/mL, while the precursor salt displayed a MIC range of 48.75-1560 μg/mL. Chitosan (CS)-capped ZnO NPs exhibited even lower MICs than their uncapped counterparts, with the CS-capped synthesized ZnO NPs demonstrating the lowest values. Minimal bactericidal concentrations (MBC) aligned with MIC trends. Combinations of CS-capped synthesized ZnO NPs and GEN proved highly effective, inhibiting bacterial growth at significantly lower concentrations than GEN or ZnO NPs alone. This phenomenon may be attributed to the conformation of CS on the ZnO NPs' surface, enhancing the positive particle surface charge. This possibly facilitates a more effective interaction between ZnO NPs and microorganisms, leading to increased accumulation of zinc and GEN within bacterial cells and an overproduction of reactive oxygen species (ROS). It's crucial to note that, while this study did not specifically involve resistant strains, its primary focus remains on enhancing the overall antimicrobial activity of gentamicin. The research aims to contribute to addressing the global challenge of antimicrobial resistance, recognizing the urgent need for effective strategies to combat this critical issue. The findings, particularly the observed synergy between ZnO NPs and GEN, hold significant implications for repositioning the first-line antibiotic GEN.
Collapse
Affiliation(s)
- Ivana R. Scolari
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Paulina L. Páez
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Gladys E. Granero
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA)-CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
9
|
Hussein Al-Assady NA, Badran HA, Kamil SA, Abo-Alhal RC. Preparation and evaluation in vitro release of sodium alginate/chitosan polyelectrolyte microparticles containing rifampicin and theoretical study using DFT methods. J Biomol Struct Dyn 2024; 42:1795-1811. [PMID: 37139549 DOI: 10.1080/07391102.2023.2202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/08/2023] [Indexed: 05/05/2023]
Abstract
In this work, rifampicin-loaded sodium alginate/chitosan polyelectrolyte microparticles were prepared by the ionotropic gelation technique using CaCl2 as a cross-linking agent. The influence of different sodium alginate and chitosan concentrations on particle size, surface properties, and in vitro release behavior was studied. An infrared spectroscopy investigation verified the lack of any drug-polymer interaction. The microparticles prepared using (30, 50) mg of sodium alginate were spherical while when using 75 mg of sodium alginate, vesicles with round heads and tapered tails were formed. The results showed that the microparticle diameters were between (11.872-35.3645) µm. The amount of rifampicin released and the kinetics of drug release from microparticles were studied, and the results showed that by increasing the concentration of the polymer, the release of the rifampicin from the microparticles decreased. The findings showed that rifampicin release followed zero-order kinetics and that drug release from these particles is frequently influenced by diffusion. The electronic structure and characteristics of the conjugated polymers (sodium alginate/Chitosan) were examined using density functional theory (DFT) and PM3 calculations with Gaussian 9, using the B3LYP, and electronic structure calculations using 6-311 G (d,p). The HOMO and LUMO energy levels are determined as the HOMO's maximum and the LUMO's minimum, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Hussain A Badran
- Department of Physics, College of Education for Pure Science, University of Basrah, Basrah, Iraq
| | - Sarah A Kamil
- Department of Chemistry, College of Education for Pure Science, University of Basrah, Basrah, Iraq
| | - Ryadh Ch Abo-Alhal
- Department of Physics, College of Education for Pure Science, University of Basrah, Basrah, Iraq
| |
Collapse
|
10
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
11
|
Barman S, Chakraborty A, Saha S, Sikder K, Maitra Roy S, Modi B, Bahadur S, Khan AH, Manna D, Bag P, Sarkar AK, Bhattacharya R, Basu A, Maity AR. Efficient Synergistic Antibacterial Activity of α-MSH Using Chitosan-Based Versatile Nanoconjugates. ACS OMEGA 2023; 8:12865-12877. [PMID: 37065019 PMCID: PMC10099120 DOI: 10.1021/acsomega.2c08209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The application of antimicrobial peptides has emerged as an alternative therapeutic tool to encounter against multidrug resistance of different pathogenic organisms. α-Melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, is found to be efficient in eradicating infection of various kinds of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). However, the chemical stability and efficient delivery of these biopharmaceuticals (i.e., α-MSH) to bacterial cells with a significant antibacterial effect remains a key challenge. To address this issue, we have developed a chitosan-cholesterol polymer using a single-step, one-pot, and simple chemical conjugation technique, where α-MSH is loaded with a significantly high amount (37.7%), and the final product is obtained as chitosan-cholesterol α-MSH polymer-drug nanoconjugates. A staphylococcal growth inhibition experiment was performed using chitosan-cholesterol α-MSH and individual controls. α-MSH and chitosan-cholesterol both show bacterial growth inhibition by a magnitude of 50 and 79%, respectively. The killing efficiency of polymer-drug nanoconjugates was very drastic, and almost no bacterial colony was observed (∼100% inhibition) after overnight incubation. Phenotypic alternation was observed in the presence of α-MSH causing changes in the cell structure and shape, indicating stress on Staphylococcus aureus. As a further consequence, vigorous cell lysis with concomitant release of the cellular material in the nearby medium was observed after treatment of chitosan-cholesterol α-MSH nanoconjugates. This vigorous lysis of the cell structure is associated with extensive aggregation of the bacterial cells evident in scanning electron microscopy (SEM). The dose-response experiment was performed with various concentrations of chitosan-cholesterol α-MSH nanoconjugates to decipher the degree of the bactericidal effect. The concentration of α-MSH as low as 1 pM also shows significant inhibition of bacterial growth (∼40% growth inhibition) of Staphylococcus aureus. Despite playing an important role in inhibiting bacterial growth, our investigation on hemolytic assay shows that chitosan-cholesterol α-MSH is significantly nontoxic at a wide range of concentrations. In a nutshell, our analysis demonstrated novel antimicrobial activity of nanoparticle-conjugated α-MSH, which could be used as future therapeutics against multidrug-resistant Staphylococcus aureus and other types of bacterial cells.
Collapse
Affiliation(s)
- Sourav Barman
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Asmita Chakraborty
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sujata Saha
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Kunal Sikder
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sayoni Maitra Roy
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Barkha Modi
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sabarnee Bahadur
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Ali Hossain Khan
- S.
N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Dipak Manna
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Pousali Bag
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Ankan Kumar Sarkar
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Rishi Bhattacharya
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Arnab Basu
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Amit Ranjan Maity
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| |
Collapse
|
12
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
13
|
Advancement and future perspectives on ampicillin-loaded antimicrobial polymers- A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Zhang Z, Wang X, Li F. An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota. Front Microbiol 2023; 14:1072151. [PMID: 36778853 PMCID: PMC9909292 DOI: 10.3389/fmicb.2023.1072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alginate oligosaccharides (AOS) can be obtained by acidolysis and enzymatic hydrolysis. The products obtained by different methods have different structures and physiological functions. AOS have received increasing interest because of their many health-promoting properties. AOS have been reported to exert protective roles for intestinal homeostasis by modulating gut microbiota, which is closely associated with intestinal inflammation, gut barrier strength, bacterial infection, tissue injury, and biological activities. However, the roles of AOS in intestinal inflammation network remain not well understood. A review of published reports may help us to establish the linkage that AOS may improve intestinal inflammation network by affecting T helper type 1 (Th1) Th2, Th9, Th17, Th22 and regulatory T (Treg) cells, and their secreted cytokines [the hub genes of protein-protein interaction networks include interleukin-1 beta (IL-1β), IL-2, IL-4, IL-6, IL-10 and tumor necrosis factor alpha (TNF-α)] via the regulation of probiotics. The potential functional roles of molecular mechanisms are explored in this study. However, the exact mechanism for the direct interaction between AOS and probiotics or pathogenic bacteria is not yet fully understood. AOS receptors may be located on the plasma membrane of gut microbiota and will be a key solution to address such an important issue. The present paper provides a better understanding of the protecting functions of AOS on intestinal inflammation and immunity.
Collapse
Affiliation(s)
- Zhikai Zhang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | | | | |
Collapse
|
15
|
Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics 2023; 15:pharmaceutics15020393. [PMID: 36839715 PMCID: PMC9964171 DOI: 10.3390/pharmaceutics15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is currently the second deadliest infectious disease. Existing antitubercular therapies are long, complex, and have severe side effects that result in low patient compliance. In this context, nanosized drug delivery systems (DDSs) have the potential to optimize the treatment's efficiency while reducing its toxicity. Hundreds of publications illustrate the growing interest in this field. In this review, the main challenges related to the use of drug nanocarriers to fight TB are overviewed. Relevant publications regarding DDSs for the treatment of TB are classified according to the encapsulated drugs, from first-line to second-line drugs. The physicochemical and biological properties of the investigated formulations are listed. DDSs could simultaneously (i) optimize the therapy's antibacterial effects; (ii) reduce the doses; (iii) reduce the posology; (iv) diminish the toxicity; and as a global result, (v) mitigate the emergence of resistant strains. Moreover, we highlight that host-directed therapy using nanoparticles (NPs) is a recent promising trend. Although the research on nanosized DDSs for TB treatment is expanding, clinical applications have yet to be developed. Most studies are only dedicated to the development of new formulations, without the in vivo proof of concept. In the near future, it is expected that NPs prepared by "green" scalable methods, with intrinsic antibacterial properties and capable of co-encapsulating synergistic drugs, may find applications to fight TB.
Collapse
|
16
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
17
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|
18
|
Drug-in-cyclodextrin-in-polymeric nanoparticles: A promising strategy for rifampicin administration. Eur J Pharm Biopharm 2022; 180:190-200. [DOI: 10.1016/j.ejpb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022]
|
19
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
20
|
Balde A, Kim SK, Benjakul S, Nazeer RA. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. Int J Biol Macromol 2022; 220:1464-1479. [PMID: 36116588 DOI: 10.1016/j.ijbiomac.2022.09.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Respiratory distress syndrome and pneumothorax are the foremost causes of death as a result of the changing lifestyle and increasing air pollution. Numerous approaches have been studied for the pulmonary delivery of drugs, proteins as well as peptides using meso/nanoparticles, nanocrystals, and liposomes. These nano/microcarrier systems (NMCs) loaded with drug provide better systemic as well as local action. Furthermore, natural polysaccharide-based polymers such as chitosan (CS), alginate (AG), hyaluronic acid, dextran, and cellulose are highly used for the preparation of nanoparticles and delivery of the drug into the pulmonary tract due to their advantageous properties such as low toxicity, high hydrophobicity, supplementary mucociliary clearance, mucoadhesivity, and biological efficacy. These properties ease the delivery of drugs onto the targeted site. Herein, recent advances in the natural polymer-derived NMCs have been reviewed for their transport and mechanism of action into the bronchiolar region as well as the respiratory region. Various physicochemical properties such as surface charge, size of nanocarrier system, surface modifications, and toxicological effects of these nanocarriers in vitro and in vivo are elucidated as well. Furthermore, challenges faced for the preparation of a model NMCs for pulmonary drug delivery are also discoursed.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan-si, Gyeonggi-do 11558, South Korea
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
21
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
22
|
Dudhat K, Patel H. Preparation and evaluation of pirfenidone loaded chitosan nanoparticles pulmonary delivery for idiopathic pulmonary fibrosis. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disorder caused by abnormal extracellular matrix deposition, which results in increasing dyspnea and loss of pulmonary function. Pirfenidone (PFD) has antifibrotic properties that have been approved by the US FDA for the treatment of IPF. Pirfenidone is currently delivered orally, which has drawbacks like reduced bioavailability in the presence of food, gastrointestinal (dyspepsia and anorexia), and dermatological (photosensitivity) side-effects, large amount of dose, and elimination half-life of 2.4 h. This study aimed was to prepare inhalable powders containing PFD-loaded chitosan nanoparticles for sustained delivery of the drug to the lung.
Result
The quasi-solvent diffusion method was used with optimized 100 mg PFD and 100 mg chitosan (CS). An in-vitro drug release research found that increasing the amount of chitosan reduced the rate of drug release from nanoparticles. Entrapment of PFD into chitosan nanoparticles decreased with the increased concentration of stabilizer concentration. All batches produced nanoparticles with a spherical morphology confirmed by SEM and sizes ranging from 239.3 ± 1.8 to 928.7 ± 4.6 nm. The optimized nanoparticles exhibited a mean particle size of 467.33 ± 7.8 nm with a polydispersity index of 0.127 ± 0.022, zeta potential of + 34.8 ± 1.6 mV, % entrapment efficiency (39.45 ± 4.63%), % drug release after 12 h (94.78 ± 2.88%), and in-vitro deposition (81.49%). Results showed that the obtained powders had different aerosolization properties. The particle size of nanoparticles reduced, and the process yield, extra-fine particle fraction, geometric standard diameter, and fine particle fraction increased significantly. Stability study showed, there are no aggregation observed and stable for six month study.
Conclusion
Prepared pirfenidone-loaded chitosan nanoparticles can be result of 6 months of stability studies that give details that there was no significant aggregation of PFD-loaded CS NPs and the spherical shape particle with smooth surface as per SEM studies. Hence, PFD-loaded CS NPs can be a suitable alternative to the currently available therapy.
Graphical abstract
Collapse
|
23
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
24
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
25
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
26
|
Moreno-Lanceta A, Medrano-Bosch M, Edelman ER, Melgar-Lesmes P. Polymeric Nanoparticles for Targeted Drug and Gene Delivery Systems. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:561-608. [DOI: 10.1007/978-3-031-12658-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Al-nemrawi N, Alkhatib RQ, Ayyad H, Alshraiedeh N. Formulation and Characterization of Tobramycin-Chitosan Nanoparticles Coated with Zinc Oxide Nanoparticles. Saudi Pharm J 2022; 30:454-461. [PMID: 35527830 PMCID: PMC9068742 DOI: 10.1016/j.jsps.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Herein we describe the preparation, characterization and the antibacterial effect of Tobramycin-chitosan nanoparticles (TOB-CS NPs) coated with zinc oxide nanoparticles (ZnO NPs). Four formulations of TOB-CS NPs (A-D) were prepared to study the effect of experimental variables on the NPs behavior. Two formulations of ZnO NPs were prepared using the solvothermal and the precipitation methods (ZnO1 and ZnO2), and then characterized. TOB-CS NPs (Formula d) was coated with the ZnO1. Moreover, the antibacterial activity of TOB-CS NPs, ZnO NPs and the coated nanoparticles against S. aureus and E. coli was examined. Changing the variables in preparing TOB-CS NPs resulting in variabilities in sizes (297.6–1116.3 nm), charges (+8.29–+39.00 mV), entrapment (51.95–90.60%). Further, TOB release was sustained over four days. ZnO NPs have sizes of 47.44 and 394.4 nm and charges of −62.3 and 89.4 mV when prepared by solvothermal and precipitation technique, respectively. Coated TOB-CS NPs had a size of 342 nm, a charge of +4.39 and released 100 µg/ mL of the drug after four days. The antimicrobial activity of TOB-CS NPs was lower than free TOB against S. aureus and E. coli. The coated NPs showed higher antimicrobial effect in comparison to formula D and ZnO1. In conclusion, coating TOB-CS NPs with ZnO NPs exhibited a great antibacterial effect that may be sustained for days.
Collapse
|
28
|
Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. NANO-MICRO LETTERS 2021; 13:88. [PMID: 33717630 PMCID: PMC7938387 DOI: 10.1007/s40820-021-00598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
Sepsis, a highly life-threatening organ dysfunction caused by uncontrollable immune responses to infection, is a leading contributor to mortality in intensive care units. Sepsis-related deaths have been reported to account for 19.7% of all global deaths. However, no effective and specific therapeutic for clinical sepsis management is available due to the complex pathogenesis. Concurrently eliminating infections and restoring immune homeostasis are regarded as the core strategies to manage sepsis. Sophisticated nanoplatforms guided by supramolecular and medicinal chemistry, targeting infection and/or imbalanced immune responses, have emerged as potent tools to combat sepsis by supporting more accurate diagnosis and precision treatment. Nanoplatforms can overcome the barriers faced by clinical strategies, including delayed diagnosis, drug resistance and incapacity to manage immune disorders. Here, we present a comprehensive review highlighting the pathogenetic characteristics of sepsis and future therapeutic concepts, summarizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and drive clinical translation to remedy sepsis.
Collapse
Affiliation(s)
- Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Ya Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| |
Collapse
|
29
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
30
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
31
|
Najafi A, Ghazvini K, Sankian M, Gholami L, Amini Y, Zare S, Khademi F, Tafaghodi M. T helper type 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci 2021; 282:119806. [PMID: 34252419 DOI: 10.1016/j.lfs.2021.119806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Tuberculosis, a cost and life threatening disease, was being subjected for improving vaccine strategies beyond BCG. Thus, a novel particulate delivery system using alginate-coated chitosan nanoparticles including PPE17 protein and CpG were administered through intranasal (IN) and subcutaneous (SC) routes. METHODS The encapsulated nanoparticles were first characterized for size, surface charge, encapsulation efficiency and in vitro release of PPE17 antigen. The nanoparticles were then administered intranasal and subcutaneously to evaluate the induction of systemic and/or mucosal immune responses in mice. RESULTS According to our result, the mean size of nanoparticles was measured about 427 nm, and exhibited a negative zeta potential of -37 mV. Following subcutaneous and intranasal administration, the results from cytokines assay showed that an increasing in the level of IFN-γ, and adversely a decrease in the level of IL-4 (presumptive Th1 biased immune response) was happened and also a notable elicitation in IL-17 cytokine was observed. CONCLUSION In conclusion, our study demonstrated that alginate-coated chitosan nanoparticles showed to be an effective way to improve BCG efficiency as booster strategy for subcutaneous vaccine, and also can induce strong immune responses as prime strategy through intranasal vaccination.
Collapse
Affiliation(s)
- Adel Najafi
- Clinical Microbiology Laboratory, Fatemieh Hospital, Hamedan University of Medical Science, Hamedan, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Bu Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Yousef Amini
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Sirwan Zare
- Immunology Research Center, Bu Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
32
|
Wu D, Wei D, Du M, Ming S, Ding Q, Tan R. Targeting Antibacterial Effect and Promoting of Skin Wound Healing After Infected with Methicillin-Resistant Staphylococcus aureus for the Novel Polyvinyl Alcohol Nanoparticles. Int J Nanomedicine 2021; 16:4031-4044. [PMID: 34140770 PMCID: PMC8203101 DOI: 10.2147/ijn.s303529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Topical agents typically remain in the wound site for time duration that are too short to effectively eradicate MRSA tradition formation of BZK that can be maintained within the wound site for longer time periods, should be more effective. METHODS The novel chitosan and poly (D,L-lactide-co-glycoside) nanoparticles loaded with benzalkonium bromide (BZK) were designed, for the promotion wound healing after MRSA infection. The physical characterization of these nanoparticles, as well as their antibacterial activity in vitro, release profile in simulated wound fluid, cell toxicity, anti-biofilm activity, and their ability to improve the skin wound healing in a mouse model were also studied. RESULTS These novel nanoparticles were found to have a significant antibacterial activity (p<0.01), both in vitro and in vivo test. The stronger anti-biofilm ability of the nanoparticles to inhibit the formation of bacterial biofilms, at a concentration of 3.33 μg/mL, and clear existing bacterial biofilms, at a concentration of 5 mg/mL, compared with its water solution. In addition, significant damage to bacterial cell walls also was found, providing insight into the mechanism of antibacterial activity. CONCLUSION Taken together, these results demonstrated the ability of BZK-loaded nanoparticles in the promotion of skin wound healing with MRSA infection. The current findings open a new avenue for nanomedicine development and future clinical applications in the treatment of wounds.
Collapse
Affiliation(s)
- Dengyan Wu
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Dong Wei
- Plastic Surgery, Pengshui County People’s Hospital, Pengshui, 409600, People’s Republic of China
| | - Maotao Du
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Song Ming
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Qian Ding
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Ranjing Tan
- Department of Dermatology, Second affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
33
|
Motiei M, Pleno de Gouveia L, Šopík T, Vícha R, Škoda D, Císař J, Khalili R, Domincová Bergerová E, Münster L, Fei H, Sedlařík V, Sáha P. Nanoparticle-Based Rifampicin Delivery System Development. Molecules 2021; 26:molecules26072067. [PMID: 33916814 PMCID: PMC8038351 DOI: 10.3390/molecules26072067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.
Collapse
Affiliation(s)
- Marjan Motiei
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
- Correspondence:
| | - Luis Pleno de Gouveia
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 169-003 Lisbon, Portugal;
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, TBU, Vavrečkova 275, 76001 Zlín, Czech Republic;
| | - David Škoda
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Jaroslav Císař
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Reza Khalili
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 12808 Prague 2, Czech Republic;
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Lukáš Münster
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Haojie Fei
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, TBU, tr. Tomase Bati 5678, 76001 Zlin, Czech Republic; (T.Š.); (D.Š.); (J.C.); (E.D.B.); (L.M.); (H.F.); (V.S.); (P.S.)
| |
Collapse
|
34
|
Scolari IR, Volpini X, Fanani ML, La Cruz-Thea BD, Natali L, Musri MM, Granero GE. Exploring the Toxicity, Lung Distribution, and Cellular Uptake of Rifampicin and Ascorbic Acid-Loaded Alginate Nanoparticles as Therapeutic Treatment of Lung Intracellular Infections. Mol Pharm 2021; 18:807-821. [PMID: 33356316 DOI: 10.1021/acs.molpharmaceut.0c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.
Collapse
Affiliation(s)
- Ivana R Scolari
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Ximena Volpini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - María L Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba X5000HUA, Argentina
| | - Benjamín De La Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Melina M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gladys E Granero
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
35
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|