1
|
Pontes JF, Diogo HP, Conceição E, Almeida MP, Borges Dos Santos RM, Grenha A. Development of a dry powder insufflation device with application in in vitro cell-based assays in the context of respiratory delivery. Eur J Pharm Sci 2024; 197:106775. [PMID: 38643941 DOI: 10.1016/j.ejps.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Research on pharmaceutical dry powders has been increasing worldwide, along with increased therapeutic strategies for an application through the pulmonary or the nasal routes. In vitro methodologies and tests that mimic the respiratory environment and the process of inhalation itself are, thus, essential. The literature frequently reports cell-based in vitro assays that involve testing the dry powders in suspension. This experimental setting is not adequate, as both the lung and the nasal cavity are devoid of abundant liquid. However, devices that permit powder insufflation over cells in culture are either scarce or technically complex and expensive, which is not feasible in early stages of research. In this context, this work proposes the development of a device that allows the delivery of dry powders onto cell surfaces, thus simulating inhalation more appropriately. Subsequently, a quartz crystal microbalance (QCM) was used to establish a technique enabling the determination of dry powder deposition profiles. Additionally, the determination of the viability of respiratory cells (A549) after the insufflation of a dry powder using the developed device was performed. In all, a prototype for dry powder insufflation was designed and developed, using 3D printing methods for its production. It allowed the homogenous dispersion of the insufflated powders over a petri dish and a QCM crystal, and a more detailed study on how dry powders disperse over the supports. The device, already protected by a patent, still requires further improvement, especially regarding the method for powder weighing and the efficiency of the insufflation process, which is being addressed. The impact of insufflation of air and of locust bean gum (LBG)-based microparticles revealed absence of cytotoxic effect, as cell viability roughly above 70 % was always determined.
Collapse
Affiliation(s)
- Jorge F Pontes
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Hermínio P Diogo
- University of Lisbon, Instituto Superior Técnico, Centro de Química Estrutural, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Eusébio Conceição
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Maria P Almeida
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Rui M Borges Dos Santos
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Ana Grenha
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus Gambelas, Faro, 8005-139, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Liu F, Duan G, Yang H. Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. Int J Biol Macromol 2023; 235:123787. [PMID: 36858089 DOI: 10.1016/j.ijbiomac.2023.123787] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Carrageenans are a group of biopolymers widely found in red seaweeds. Commercial carrageenans have been traditionally used as emulsifiers, stabilizers, and thickening and gelling agents in food products. Carrageenans are regarded as bioactive polysaccharides with disease-modifying and microbiota-modulating activities. Novel biomedical applications of carrageenans as biocompatible functional materials for fabricating hydrogels and nanostructures, including carbon dots, nanoparticles, and nanofibers, have been increasingly exploited. In this review, we describe the unique structural characteristics of carrageenans and their functional relevance. We summarize salient physicochemical features, including thixotropic and shear-thinning properties, of carrageenans. Recent results from clinical trials in which carrageenans were applied as both antiviral and antitumor agents and functional materials are discussed. We also highlight the most recent advances in the development of carrageenan-based targeted drug delivery systems with various pharmaceutical formulations. Promising applications of carrageenans as a bioink material for 3D printing in tissue engineering and regenerative medicine are systematically evaluated. We envisage some key hurdles and challenges in the commercialization of carrageenans as a versatile material for clinical practice. This comprehensive review of the intimate relationships among the structural features, unique rheological properties, and biofunctionality of carrageenans will provide novel insights into their biomedicine application potential.
Collapse
Affiliation(s)
- Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Joshi M, Sapra B. Emergence of Glucomannan and Xyloglucan for Respirable Delivery. NATURAL POLYMERIC MATERIALS BASED DRUG DELIVERY SYSTEMS IN LUNG DISEASES 2023:167-181. [DOI: 10.1007/978-981-19-7656-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
5
|
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery - A review of their properties and fates. Carbohydr Polym 2022; 277:118784. [PMID: 34893219 DOI: 10.1016/j.carbpol.2021.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022]
Abstract
Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Sarmento
- INEB - Institute of Biomedical Engineering Instituto, University of Porto, 4150-180 Porto, Portugal; i3S - Institute for Research & Innovation in Health, University of Porto, 4150-180 Porto, Portugal; CESPU - Institute for Research and Advanced Training in Health Sciences and Technologies, 4585-116 Gandra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
González-Ballesteros N, Torres MD, Flórez-Fernández N, Diego-González L, Simón-Vázquez R, Rodríguez-Argüelles MC, Domínguez H. Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity. Int J Biol Macromol 2021; 183:1436-1449. [PMID: 34023369 DOI: 10.1016/j.ijbiomac.2021.05.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Carrageenan was extracted from Mastocarpus stellatus using hot water extraction under atmospheric and pressurized conditions. The influence of heating temperature during a non-isothermal heating profile up to temperatures in the range 70-190 °C was studied to evaluate the extraction yields and properties of the carrageenan fraction. Under the selected conditions (130 °C), extracted carrageenan (CMs) was used for the green synthesis of gold nanoparticles (AuNPs). After the optimization of the reaction conditions, the synthesized gold nanoparticles (Au@CMs) were characterized by UV-Vis spectroscopy, Z potential measurements, electron microscopy, and X-ray diffraction analysis, which confirmed the formation of spherical, polycrystalline, and negatively charged nanoparticles with a mean diameter of 14.3 ± 2.1 nm. The study conducted by scanning transmission electron microscopy, energy dispersive X-ray analysis and mapping confirmed the presence of carrageenan stabilizing AuNPs. Finally, Fourier transformed infrared spectroscopy was performed to analyze the functional groups of CMs involved in the reduction and stabilization of AuNPs. The selective cytotoxicity and the antioxidant activity of the Au@CMs were evaluated in different cell lines and compared to the CMs. Au@CMs showed an improved antioxidant capacity in cells under oxidative stress and the induction of apoptosis in a monocytic cell line, while no antitumor effect was observed in a lung endothelial cell line.
Collapse
Affiliation(s)
| | - M D Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| | - L Diego-González
- CINBIO, Universidade de Vigo, Inmunología, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - R Simón-Vázquez
- CINBIO, Universidade de Vigo, Inmunología, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | | | - H Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain
| |
Collapse
|