1
|
Bao L, Qiao F, Yu N, Zhao Q, Zuo W, Yang J. Thermo-responsive in situ gel of fluticasone propionate nanosuspension modified with carboxymethyl chitosan for enhanced blepharitis therapy. Int J Biol Macromol 2025; 309:143028. [PMID: 40228770 DOI: 10.1016/j.ijbiomac.2025.143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Blepharitis (BLE) is a common eyelid inflammation with irritation and discomfort, which can lead to meibomian gland dysfunction and dry eye. However, most of the conventional eye drops for BLE have insufficient retention and poor solubility in the eyes, resulting in sub-optimal therapeutic effect. Herein, we prepared fluticasone propionate (FP) nanosuspensions (FP-NSs) modified by carboxymethyl chitosan, then a thermo-responsive in situ gel we constructed by encapsulating FP - NSs within the hydrogels matrix (SEP) synthesized from selenide (Se), Polyethylene glycol (PEG) and polypropylene glycol (PPG). Specifically, the FP nanosuspensions can improve their solubility and stability due to small particle size (274.6 ± 1.60 nm), the minimum PDI (0.267 ± 0.03) and large absolute zeta-potential value (38.17 ± 0.7 mV). FP nanosuspension-loaded thermo-responsive in situ gel (NS-SEP- G) exhibits. Temperature-sensitive sol-gel transition behavior (37 °C), a long-lasting drug release and ocular retention time via the hydrophobic interaction. In a BLE rat model, NS-SEP-G produces notable therapeutic benefits such as increasing tear secretion, reducing eyelid swelling and conjunctival capillary dilatation, inhibiting inflammatory substance infiltration and expression of inflammatory factors. Meanwhile, NS-SEP-G shows good biocompatibility in in-vitro cytotoxicity tests and eye irritation in mice. Based on this study, this paper provides a more convenient and effective drug option for the treatment of BLE.
Collapse
Affiliation(s)
- Lili Bao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China
| | - Na Yu
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan 750004, PR China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Bingaman D, Appidi T, Pejavar J, Ensign LM. Can Sustained Suppression of VEGF Be Achieved by Topical Ocular Delivery? Am J Ophthalmol 2025:S0002-9394(25)00126-6. [PMID: 40081746 DOI: 10.1016/j.ajo.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Affiliation(s)
- David Bingaman
- From the PanOptica, Inc. (D.B.), Freehold, New Jersey, USA
| | - Tejaswini Appidi
- The Center for Nanomedicine (T.A., J.P., L.M.E.), Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jahnavi Pejavar
- The Center for Nanomedicine (T.A., J.P., L.M.E.), Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering (L.M.E., J.P.), Johns Hopkins University, Baltimore, Maryland, USA
| | - Laura M Ensign
- The Center for Nanomedicine (T.A., J.P., L.M.E.), Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering (L.M.E., J.P.), Johns Hopkins University, Baltimore, Maryland, USA; Departments of Pharmacology and Molecular Sciences, Biomedical Engineering, Gynecology and Obstetrics, Oncology, and Division of Infectious Diseases (L.M.E.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Valtari A, Kalinin S, Jäntti J, Vanhanen P, Hanzlikova M, Tonduru A, Stenberg K, Viitala T, Vellonen KS, Toropainen E, Ruponen M, Urtti A. Melanin-Binding-Based Discovery of Topically Instilled Carbonic Anhydrase Inhibitors for Targeted Delivery and Prolonged Action in the Eye. Mol Pharm 2025; 22:721-732. [PMID: 39780407 PMCID: PMC11795524 DOI: 10.1021/acs.molpharmaceut.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Glaucoma is a vision-threatening disease that is currently treated with intraocular-pressure-reducing eyedrops that are instilled once or multiple times daily. Unfortunately, the treatment is associated with low patient adherence and suboptimal treatment outcomes. We developed carbonic anhydrase II inhibitors (CAI-II) for a prolonged reduction of intraocular pressure (IOP). The long action is based on the melanin binding of the drugs that prolongs ocular drug retention and response. Overall, 63 new CAI-II compounds were synthesized and tested for melanin binding in vitro. Carbonic anhydrase affinity and IOP reduction of selected compounds were tested in rabbits. Prolonged reduction of IOP in pigmented rabbits was associated with increasing melanin binding of the compound. Installation of a single eye drop of a high melanin binder carbonic anhydrase inhibitor (CAI) resulted in ≈2 weeks' decrease of IOP, whereas the effect lasted less than 8 h in albino rabbits. Duration of the IOP response correlated with melanin binding of the compounds. Ocular pharmacokinetics of a high melanin binder compound was studied after eye drop instillation to the rat eyes. The CAI showed prolonged drug retention in the pigmented iris-ciliary body but was rapidly eliminated from the albino rat eyes. The melanin-bound drug depot maintained effective free concentrations of CAI in the ciliary body for several days after application of a single eye drop. In conclusion, melanin binding is a useful tool in the discovery of long-acting ocular drugs.
Collapse
Affiliation(s)
- Annika Valtari
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Stanislav Kalinin
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Janika Jäntti
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Pekka Vanhanen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Martina Hanzlikova
- Drug
Research Program, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5, 00014 Helsinki, Finland
| | - Arun Tonduru
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Katja Stenberg
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Tapani Viitala
- Drug
Research Program, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5, 00014 Helsinki, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Kati-Sisko Vellonen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Elisa Toropainen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Marika Ruponen
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Arto Urtti
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
- Drug
Research Program, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Muench NA, Schmitt HM, Schlamp CL, Su AJA, Washington K, Nickells RW. Preservation of Murine Whole Eyes With Supplemented UW Cold Storage Solution: Anatomical Considerations. Transl Vis Sci Technol 2024; 13:24. [PMID: 39560629 DOI: 10.1167/tvst.13.11.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose Retinal ganglion cell (RGC) apoptosis and axon regeneration are the principal obstacles challenging the development of successful whole eye transplantation (WET). The purpose of this study was to create a neuroprotective cocktail that targets early events in the RGC intrinsic apoptotic program to stabilize RGCs in a potential donor eye. Methods University of Wisconsin (UW) solution was augmented with supplements known to protect RGCs. Supplements targeted tyrosine kinase signaling, histone deacetylase activity, K+ ion efflux, macroglial stasis, and provided energy support. Modified UW (mUW) solutions with individual supplements were injected into the vitreous of enucleated mouse eyes, which were then stored in cold UW solution for 24 hours. Histopathology, immunostaining of individual retinal cell types, and analysis of cell-specific messenger RNAs (mRNAs) were used to identify supplements that were combined to create optimal mUW solution. Results UW and mUW solutions reduced ocular edema and focal ischemia in globes stored in cold storage. Two major issues were noted after cold storage, including retinal detachment and reduction in glial fibrillary acidic protein staining in astrocytes. A combination of supplements resolved both these issues and performed better than the individual supplements alone. Cold storage resulted in a reduction in cell-specific mRNAs, even though it preserved the corresponding protein products. Conclusions Eyes treated with optimal mUW solution exhibited preservation of retinal and cellular architecture, but did display a decrease in mRNA levels, suggesting that cold storage induced cellular stasis. Translational Relevance Application of optimal mUW solution lowers an important barrier to the development of a successful whole eye transplantation procedure.
Collapse
Affiliation(s)
- Nicole A Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather M Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Perfuse Therapeutics Inc., Durham, NC, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kia Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- https://orcid.org/0000-0002-2998-5494
| |
Collapse
|
5
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
6
|
Köster KA, Dethlefs M, Duque Escobar J, Oetjen E. Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms. Cells 2024; 13:333. [PMID: 38391946 PMCID: PMC10886912 DOI: 10.3390/cells13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein-protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function.
Collapse
Affiliation(s)
- Kyra-Alexandra Köster
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Marten Dethlefs
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
| | - Jorge Duque Escobar
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- University Center of Cardiovascular Science, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (K.-A.K.); (M.D.)
- DZHK Standort Hamburg, Kiel, Lübeck, Germany;
- Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Dang M, Shoichet MS. Long-Acting Ocular Injectables: Are We Looking In The Right Direction? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306463. [PMID: 38018313 PMCID: PMC10885661 DOI: 10.1002/advs.202306463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
The complex anatomy and physiological barriers of the eye make delivering ocular therapeutics challenging. Generally, effective drug delivery to the eye is hindered by rapid clearance and limited drug bioavailability. Biomaterial-based approaches have emerged to enhance drug delivery to ocular tissues and overcome existing limitations. In this review, some of the most promising long-acting injectables (LAIs) in ocular drug delivery are explored, focusing on novel design strategies to improve therapeutic outcomes. LAIs are designed to enable sustained therapeutic effects, thereby extending local drug residence time and facilitating controlled and targeted drug delivery. Moreover, LAIs can be engineered to enhance drug targeting and penetration across ocular physiological barriers.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
8
|
Hsueh HT, Chou RT, Rai U, Kolodziejski P, Liyanage W, Pejavar J, Mozzer A, Davison C, Appell MB, Kim YC, Leo KT, Kwon H, Sista M, Anders NM, Hemingway A, Rompicharla SVK, Pitha I, Zack DJ, Hanes J, Cummings MP, Ensign LM. Engineered peptide-drug conjugate provides sustained protection of retinal ganglion cells with topical administration in rats. J Control Release 2023; 362:371-380. [PMID: 37657693 PMCID: PMC10591956 DOI: 10.1016/j.jconrel.2023.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.
Collapse
Affiliation(s)
- Henry T Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Usha Rai
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Mozzer
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charlotte Davison
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yoo Chun Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirby T Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - HyeYoung Kwon
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maanasa Sista
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Kannan RM, Pitha I, Parikh KS. A new era in posterior segment ocular drug delivery: Translation of systemic, cell-targeted, dendrimer-based therapies. Adv Drug Deliv Rev 2023; 200:115005. [PMID: 37419213 DOI: 10.1016/j.addr.2023.115005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Vision impairment and loss due to posterior segment ocular disorders, including age-related macular degeneration and diabetic retinopathy, are a rapidly growing cause of disability globally. Current treatments consist primarily of intravitreal injections aimed at preventing disease progression and characterized by high cost and repeated clinic visits. Nanotechnology provides a promising platform for drug delivery to the eye, with potential to overcome anatomical and physiological barriers to provide safe, effective, and sustained treatment modalities. However, there are few nanomedicines approved for posterior segment disorders, and fewer that target specific cells or that are compatible with systemic administration. Targeting cell types that mediate these disorders via systemic administration may unlock transformative opportunities for nanomedicine and significantly improve patient access, acceptability, and outcomes. We highlight the development of hydroxyl polyamidoamine dendrimer-based therapeutics that demonstrate ligand-free cell targeting via systemic administration and are under clinical investigation for treatment of wet age-related macular degeneration.
Collapse
Affiliation(s)
- Rangaramanujam M Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Ian Pitha
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kunal S Parikh
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Bioengineering Innovation & Design, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Hsueh HT, Chou RT, Rai U, Liyanage W, Kim YC, Appell MB, Pejavar J, Leo KT, Davison C, Kolodziejski P, Mozzer A, Kwon H, Sista M, Anders NM, Hemingway A, Rompicharla SVK, Edwards M, Pitha I, Hanes J, Cummings MP, Ensign LM. Machine learning-driven multifunctional peptide engineering for sustained ocular drug delivery. Nat Commun 2023; 14:2509. [PMID: 37130851 PMCID: PMC10154330 DOI: 10.1038/s41467-023-38056-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.
Collapse
Affiliation(s)
- Henry T Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Usha Rai
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoo Chun Kim
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kirby T Leo
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charlotte Davison
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Mozzer
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - HyeYoung Kwon
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maanasa Sista
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Avelina Hemingway
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia Edwards
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Bu H, Li Z, Lu Y, Zhuang Z, Zhen Y, Zhang L. Deciphering the multifunctional role of dual leucine zipper kinase (DLK) and its therapeutic potential in disease. Eur J Med Chem 2023; 255:115404. [PMID: 37098296 DOI: 10.1016/j.ejmech.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
Dual leucine zipper kinase (DLK, MAP3K12), a serine/threonine protein kinase, plays a key role in neuronal development, as it regulates axon regeneration and degeneration through its downstream kinase. Importantly, DLK is closely related to the pathogenesis of numerous neurodegenerative diseases and the induction of β-cell apoptosis that leads to diabetes. In this review, we summarize the current understanding of DLK function, and then discuss the role of DLK signaling in human diseases. Furthermore, various types of small molecule inhibitors of DLK that have been published so far are described in detail in this paper, providing some strategies for the design of DLK small molecule inhibitors in the future.
Collapse
Affiliation(s)
- Haiqing Bu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhiyao Zhuang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
12
|
Xuejiao Y, Junwei Y. New strategies for neuro protection in glaucoma. Front Cell Dev Biol 2022; 10:983195. [PMID: 36187483 PMCID: PMC9520966 DOI: 10.3389/fcell.2022.983195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a progressive, irreversible loss of retinal ganglion cells (RGCs) and axons that results in characteristic optic atrophy and corresponding progressive visual field defect. The exact mechanisms underlying glaucomatous neuron loss are not clear. The main risk factor for glaucoma onset and development is high intraocular pressure (IOP), however traditional IOP-lowering therapies are often not sufficient to prevent degeneration of RGCs and the vision loss may progress, indicating the need for complementary neuroprotective therapy. This review summarizes the progress for neuro protection in glaucoma in recent 5 years, including modulation of neuroinflammation, gene and cell therapy, dietary supplementation, and sustained-release system.
Collapse
Affiliation(s)
- Yang Xuejiao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yang Xuejiao,
| | | |
Collapse
|
13
|
Yang C, Zhao Q, Li S, Pu L, Yu L, Liu Y, Lai X. Effects of Lycium barbarum L. Polysaccharides on Vascular Retinopathy: An Insight Review. Molecules 2022; 27:5628. [PMID: 36080395 PMCID: PMC9457721 DOI: 10.3390/molecules27175628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular retinopathy is a pathological change in the retina caused by ocular or systemic vascular diseases that can lead to blurred vision and the risk of blindness. Lycium barbarum polysaccharides (LBPs) are extracted from the fruit of traditional Chinese medicine, L. barbarum. They have strong biological activities, including immune regulation, antioxidation, and neuroprotection, and have been shown to improve vision in numerous studies. At present, there is no systematic literature review of LBPs on vascular retinal prevention and treatment. We review the structural characterization and extraction methods of LBPs, focus on the mechanism and pharmacokinetics of LBPs in improving vascular retinopathy, and discuss the future clinical application and lack of work. LBPs are involved in the regulation of VEGF, Rho/ROCK, PI3K/Akt/mTOR, Nrf2/HO-1, AGEs/RAGE signaling pathways, which can alleviate the occurrence and development of vascular retinal diseases in an inflammatory response, oxidative stress, apoptosis, autophagy, and neuroprotection. LBPs are mainly absorbed by the small intestine and stomach and excreted through urine and feces. Their low bioavailability in vivo has led to the development of novel dosage forms, including multicompartment delivery systems and scaffolds. Data from the literature confirm the medicinal potential of LBPs as a new direction for the prevention and complementary treatment of vascular retinopathy.
Collapse
Affiliation(s)
- Chunhong Yang
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhao
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiling Li
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lili Pu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liqiong Yu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaqin Liu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrong Lai
- Department of Ethnic Medicine, College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
14
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Ion-Complex Microcrystal Formulation Provides Sustained Delivery of a Multimodal Kinase Inhibitor from the Subconjunctival Space for Protection of Retinal Ganglion Cells. Pharmaceutics 2021; 13:pharmaceutics13050647. [PMID: 34062883 PMCID: PMC8147274 DOI: 10.3390/pharmaceutics13050647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is one of the major risk factors for glaucoma onset and progression, and available pharmaceutical interventions are exclusively targeted at IOP lowering. However, degeneration of retinal ganglion cells (RGCs) may continue to progress despite extensive lowering of IOP. A complementary strategy to IOP reduction is the use of neuroprotective agents that interrupt the process of cell death by mechanisms independent of IOP. Here, we describe an ion complexation approach for formulating microcrystals containing ~50% loading of a protein kinase inhibitor, sunitinib, to enhance survival of RGCs with subconjunctival injection. A single subconjunctival injection of sunitinib-pamoate complex (SPC) microcrystals provided 20 weeks of sustained retina drug levels, leading to neuroprotection in a rat model of optic nerve injury. Furthermore, subconjunctival injection of SPC microcrystals also led to therapeutic effects in a rat model of corneal neovascularization. Importantly, therapeutically relevant retina drug concentrations were achieved with subconjunctival injection of SPC microcrystals in pigs. For a chronic disease such as glaucoma, a formulation that provides sustained therapeutic effects to complement IOP lowering therapies could provide improved disease management and promote patient quality of life.
Collapse
|